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The exact solutions for the fields inside and outside a dielectric ring in a uniform, axial, electrostatic field are 
derived in the system of toroidal coordinates. Comparison is made with the perturbation solution generated by 
inverse aspect ratio expansion, and it is shown how the exact solution may be truncated to any desired accuracy. 
The cylindrical limits of the exact and truncated solutions are obtained. 

1. INTRODUCTION 

The determination of the electrostatic potentials for 
the regions inside and outside a uniform dielectric 
ring in an externally imposed electric field poses an 
inhomogeneous Neumann problem. The potentials are 
solutions of the Laplace equation, and their deriva­
tives satisfy nonzero continuity conditions on the sur­
face of the ring. A Similar, though simpler, problem 
of this type was first considered by Hicks. 1 He ob­
tained a solution for the potential external to a ring 
when the total normal derivative was prescribed on 
the surface of the ring. The conditions of our pro­
blem are significantly different from those of Hicks, 
so we must seek an alternative method of solution. 

In Sec. 2 we derive an exact solution to the problem 
in the system of toroidal coordinates. This system is 
such that the solutions of the Laplace equation are 
separable, and such that the ring surface is simply 
described by a single coordinate. However, the toroi­
dal harmonics we use are not orthogonal, which in 
turn generate three-term recurrence relations be­
tween their amplitudes when we satisfy the boundary 
conditions. We solve these inhomogeneous recur­
rence relations by using Green's functions for dif­
ference equations in a manner entirely analogous to 
the solution of second-order inhomogeneous differen­
tial equations by Green's functions. Convergence of 
the exact solutions is proved in Sec. 3. The exact 
solution is compared, in Sec. 4, with a solution of the 
same problem using a perturbation expansion in in­
verse aspect ratio of the ring up to second order. 
The latter solution is shown to break down at dis­
tances from the ring of order the aspect ratio of the 
ring multiplied by its minor radius. 

For practical applications, the form of the exact solu­
tion is rather unwieldy. Thus, in Sec. 5, we demon­
strate how for a given aspect ratio of the ring the 
exact solution can be truncated and still represent the 

fields to any desired accuracy at all points of space. 
Finally in Sec. 6 we impose the cylindrical limit of 
toroidal coordinates to demonstrate that both the 
exact and truncated solutions converge to the solution 
of the corresponding problem in cylindrical geometry. 

2. EXACT SOLUTION 

The toroidal coordinate system is described in detail 
by Hobson.2 Unfortunately, however, Hobson's account 
of the properties of the associated Legendre func­
tions which occur in the solution of the Laplace equa­
tion in toroidal coordinates is not without error. We 
shall, therefore, cite Bateman3 for the properties of 
these functions, which are either given by or are 
readily derivable from this reference. 

In terms of toroidal coordinates (TJ, T, CP), the surface 
of the ring is described by TJ = TJo' where TJo is a con­
stant. The angle T is a measure of displacement 
around the minor circumference of the ring, and the 
angle cP is the azimuthal angle about the axis of sym­
metry of the ring, The aspect ratio of the ring-the 
ratio of major to minor radii-is given by coshTJo, and 
the only length dimension d is the radius of the limit­
ing torus when TJ ~ 00, 

The solutions of the Laplace equation which are both 
axisymmetric and form a complete set in (TJ, T) space 
are 

(coshTJ - cosT)1/2Pn_1/2(coshTJ)einT, 

(coshTJ - COST) 1/2 Q,,_1/2(coshTJ)e im , 

where n is an integer or zero. The Pn _1I2(coshTJ) and 
Qn_1I2(cosh1)) are half odd-integral order associated 
Legendre functions of the first and second kinds, re­
spectively. These functions are such that Pn -1/2 
(cosh1)) ---7 1 as 1) ---70 and Qn_1/2(cosh1)) ---70 as 1) ~ 00, 

Thus the P-type harmonics are suitable for describ­
ing the region external to the ring, where TJo ;. TJ ;. 0, 
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and the Q-type harmonics are suitable for describing 
the region internal to the ring where 7]0 ~ 7] < co. 

We take the axis of symmetry of the ring to be the z 
axis, whence the uniform electrostatic field is repre­
sented by 

Eo = EoVz, 

where Eo is the constant field amplitude. The func­
tion z has the following expansion in terms of the Q -
type harmonics: 

2-i2d co 
z = (cosh1) - COST)1/2 J:iT 6 nQn_1/2(cosh7])e inT • 

n=-oo 

Thus appropriate expressions for the electrostatic 
potentials <1> i and <1>0 for the regions inside and out­
side 7] = 1)0' respectively, are 

00 

<1> i = (cosh7] - COST) 1/2 6 A Q 1 (cosh7])e inT 
n n-1 2 , 

n::::-oo 

7] "?- 7]0 (2.1) 
co 

<1>0 = (cosh7] - COST)1/2 6 {BnPn_1/2(cosh7]) 
n=-oo 

+ [2v'2dEo/ iJr ]nQn-1/2( COsh7])}e in T, 

° ~ 7] ~ 7]0' (2.2) 

where the A nand Bn are constants to be determined. 

The boundary conditions which <1> i and <I> ° must satisfy 
on 1) = 1)0 reduce to 

a<1>i a<1>0 
E ---a:i) = -----ail' 7] = 7]0' (2.3) 

7] = 7]0' (2.4) 

where E is the dielectric constant of the ring. To 
facilitate satisfying these conditions, we rearrange 
the expression (2.2) for <1>0 into the form 

<1>0 = (cosh7] - COST)1/2 n=~oo (en Pn_1/ 2(cosh7]) 

+ (2,j2dEo/iJr)n [Pn_1/2(cosh7]0)Qn_1/2(cosh7]) 

- Qn_1/2(Cosh7]0)Pn_1/ 2 

x (COSh1)]/Pn_1/2(COSh1/0») e im , (2.5) 

where the constants en are related to the Bn by 

2,j2dE o Qn-1/2(Cosh1/0) (2.6) 
en = B + iJr n P ( h)' n. n-1/2 cos 7]0 

The tangential boundary condition (2.4) is then easily 
satisfied if for all n, 

(2.7) 

Substituting Eqs. (2.1) and (2; 5) in the radial boun­
dary condition (2.3) and eliminating the en using Eq. 
(2. 7), we obtain 

(cosh7] - COST)1/2 23 A QO (E Q~' - Pt) e in T 
o _ n n QO nO 

n--oo n rn 

+ (E - 1) 23 AnQ:!einT 
2(cosh1/0 - COST)1/2 n=-co 
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2·/2dE O = (cosh7]o - COST)1/2 
co wo 
6 n_n_e inT 

po ' iJr n=-oo n 
(2.8) 

where P2 == Pn-1/ 2(cosh7]0), Q~ == Qn_1/2(cosh7]0) and 
dash denotes differentation with respect to cosh7]o' 
The Wronskian W2 is defined by 

° ' , W c= pOQo - pOQo = - 1/sinh27] n n n n n o· 

Upon introducing a Simplification in notation, 

Dn == A n Q2, II~ '= E(Q2'!Q:!) - (Pn°'/P2), (2.9) 

and rearranging Eq. (2. 8), we obtain 
00 co 

(E - 1) .6 Dneinr + 2(cosh1]0 - COST) 6 Dnl1~einT 
n =-0<: 

co 

= 2(cosh7]o - COST) 6 An e inT, (2.10) 

where 
n ::-00 

We make a second change in notation to 

( E - 1) q == 2 cosh7] + -'-----'--
n ° 0' IIn 

and Fourier analyze Eq. (2.10) in T, yielding 

(2. 11) 

(2. 12) 

En+1 - qnEn + E n- 1 = An+1 - 2 cosh1]oA n + An-1, 

n = O,± 1, .... (2.13) 

Thus Eq. (2. 13) is a second-order inhomogeneous dif­
ference equation for the En in terms of the given An' 

The solution of Eq. (2.13) is constructed by using 
Green's function techniques for difference equations. 
Let Gn•N be a solution of the following equation, 
where 0i.j is the Kronecker delta: 

n = 0, ± 1, ... , (2. 14) 

for each value of integer N, - co < N < co. The sense 
of Eq. (2.14) is such that for each fixed value of N, a 
solution G n,N is to be constructed valid for all n. A 
solution to Eq. (2.13) is then 

00 

En = 6 Gn,NAN' 
N=-oo 

n = O,± 1, .•. , 

as can be verified by direct substitution. 

(2.15) 

To construct the functions Gn,N' we utilize the two in­
dependent solutions of the complementary difference 
equation of Eq. (2. 14), namely 

n=O,± 1, •.• , 

(2. 16) 
for each fixed value of N. The complementary solu­
tions of Eq. (2. 16) are in turn constructed from the 
solutions of the characteristic equation, which is 
generated from Eq. (2. 16) by taking the limit \ n \ ~ co. 

To determine this limit, we require the asymptotic 
forms of the associated Legendre functions for large 
\n \: 
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Inl1)o 

I;~ P.t_1I2(cosh1)0) "'" [21T(ln I : t) sinh1)0]1/2 
(2. 17) 

lim Qn_l/2(cosh1)0) ~ [2(1 I _ lc) . h ]1/2' 
Inl-->oo ' n 2 SIn 1)0 

(2. 18) 

Hence, from Eq. (2. 9) and (2. 12) 

n~ -t 0 and qn -t 2 cosh1Jo as I nl-t 00. 

Thus the characteristic equation is 

(2. 19) 

with roots e ±ryo for the ratio Gn+l.N/Gn,N' 

The roots of the characteristic equation are therefore 
distinct for 1)0 ;r. 0, and, consequently, we can utilize a 
theorem due to Perron. 4 This theorem states that 
there are two fundamental solutions to Eq. (2. 16) for 
G l.,/G N,whichtendtoe l1o ande-~o,respectively, 

n+ ... '" nr 

as I nl-t 00. From this result it is possible to con­
struct two independent solutions of Eq. (2.16)5: 

Gn+l,N = _____ 1_ ...... __ _ 

Gn,N qn+1 - ----1-71--
(2.20) 

qn+2 -----

Gn,N = _____ 1 
Gn-l,N 1 

(2.21) 
qn-l - 1 

qn-2 - q--_-.-.-. 
n-3 

such that both an and f3 n -t e- lJo as In l-t 00. The 
values of each an and f3 n are calculated from the re­
spective continued fraction. It also follows from Eqs. 
(2.20) and (2.21), and the symmetry properties 

pO == pO -n n , 

1 
f3 n ==q f3 ' n - n-1 

The solution of Eq. (2.14) is now constructed from 
Eqs. (2. 20) and (2.21) by setting 

Gn +l , N = an+1 Gn,N' n ;, N + 1, 

G n -1,N = f3 n- 1 Gn,N' n :$ N - 1. 

The Gn,N determined this way will be unique if 
GN+1,N and GN-l,N are specified. These two quantities, 
together with GN, N' are given by Eq. (2.14) for n == N 
- 1, N, and N + 1, respectively 

(f3 N- 2 - qN-l)GN -1.N + GN,N = 1, 

GN-l,N - qNGN,N + G N +1.N = - 2 cosh1)o, (2.22) 

G N •N + (aN+ 2 qN+l)GN+1.N = 1, 

with solution 

O'N+l(2 cosh1Jo - qN) 

G N +1,N = (qN - O'N+l - f3N - 1 ) , 

Upon combining Eqs. {2. 23), (2.15), (2.12), (2. 9), we 
obtain the following expressions for the potentials: 

2-12iE d 
<pi == 0 (cosh1) - COST)l/2 

17 sinh21Jo 

00 

x 6 
n=-oo 

00 Qn_1/2(coshl/). 
"" a e tnT 
LI n,N QnO ' N=-oo 

2.,j2iE Od 00 n 
<po = ·----(cosh1]- COST)1i2 ( 6 

1T n=-oo pO 

o :$ 1J :$ T}o, 
where 

m=n 

n 

(2.24) 

(2.25) 

and 8(x) = 0 if x :$ 0, = 1 if x> O. Note that there are 
no terms in n = 0 in either <p i or <po. The summation 
over N for n = 0 vanishes upon using the symmetry 
properties of the an and f3 n • 

The electic field components are given by 

E - V'" = (coshT} - COST) (i.. ~ 0) if.. 
- ,.. - d aT}' aT' 'i'. 

(2.27) 

In their respective domains, the electric field com­
ponents satisfy all boundary conditions and, as will be 
proved in the next section, they are absolutely con­
vergent. Thus the fields are unique, and, consequently, 
the corresponding potentials are only unique to with­
in an arbitrary constant. We can utilize this arbitra­
riness to alter the expressions for the potentials, if 
we wish, by employing the expansion of unity as a 
series of toroidal harmonics: 

which is valid for all values of 1) and T. 

3. CONVERGENCE 

For the exact solutions obtained in the previous sec­
tions to be physically meaningful, we must show that 
the potentials and field components converge at all 
points of their respective domains. We shall show 
that the expressions for <pi and <po given by Eqs. (2. 24) 
and (2.25) are absolutely convergent. The proof is 
easily adapted to showing absolute convergence of the 
corresponding field components. 

We can ignore the series of Q-type hRrmonics in Eq. 
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(2.25) since they represent the uniform applied field. 
The single summation over P-type harmonics in <po 
will be absolutely convergent if the series 

00 j QO I n=?2, n p~ Pn_1/2(cosh17) 
n 

(3.1) 

is convergent. Using the bounding properties of the 
associated Legendre functions 

I Pn_1/2(coshl]) l.s I P ~ I, O.s 17 ..,; 170' n;z'. 0, (3.2) 

I Qn-1/2(cosh17) l.s IQr? I, 17 ~ 170' 

the sum (3.1) is bounded by 
00 

E InQ~I. 
n::::-oo 

(3.3) 

For large values of I n I , we can use the asymptotic 
form for Qn_l/2(cosh17) as given by Eq. (2.18) to show 

InQr? I ~ (rrw InI1l0)/Sinh1/2170' 

Hence, since ~rne-lnllJo is convergent for 170 ;z'. 0, the 
series (3.3) and, therefore, (3.1) are absolutely con­
vergent for 170 ;z'. O. The case 1)0 == 0 is of no physical 
interest, since it corresponds to a dielectric ring 
completely filling the whole of space. 

If we apply the inequalities (3.2) to the remaining 
double sum in <po and to iP i , we find that both expres­
sions will be absolutely convergent if the double sum 

00 00 

L; E la n•N I, n ~-oo N~-oo 
(3.4) 

is convergent. We first demonstrate convergence of 
the n summation for each value of N. Substituting for 
an•N from Eq. (2. 26) and rearranging, the convergence 
of Eq. (3.4) is determined by the convergence of 

f; INI12 cosh1Jo - aN+1 - f:lN-11 

N=-oo In~p.E(qN- aN+ 1 - f:lN- 1) I 
00 1(2 cosh1)o + qN) I 

+ ~ --------------­
N=-oo P.E(qN - aN+1 - {3N-1) 

00 I e(n - N) Ii am + e(N - n) NOI f:l m i 
X ~ m=N+l m~n (3.5) 

n=-oo In~1 

For sufficiently large values of n, such that I n I » 
I NI, In I »1, we recall from Eqs. (2.20) and (2.21) 
that 

Further, from Eqs. (2.9), (2.17), and (2.18), 

n~ "" [- (€ + l)lnl]/sinh1)o, Inl ~ 00. 

For all but a finite number of values of n, the conver­
gence of the summation over n in Eq. (3. 5) is deter­
mined by the convergence of a series whose terms are 
of the form Inle-lnllJo for Inl» INI, Inl »1. Hence 
the n summation is convergent for 1)0 ;z'. O. 

The convergence of Eq. (3.4) is now dominated by the 
convergence of 
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~ 
N=-co 

where 

IN! (12 cosh1Jo - aN+1 - {3 N-I I 
Ip.Elln~1 IqN - aN+1 - {3N-1 1 

00 

+ 1(2 cosh1)o - qN) I I n~ 1M) , 
IqN - ll'N+l - tl N-l1 

M = sup ~ le(n- N) 
n 
II am 

m=N+l n=-oo 

(3.6) 

N-l 
+ e(N-n) II (3ml/III~1 

m=n 

over all values of N, and M is, therefore, independent 
of N. As I N I --') CfJ, each of the two expressions within 
brackets in Eq. (3.6) approaches an indeterminate 
limit. To avoid this difficulty, we use Eq. (2.23) to re­
cast Eq. (3. 6) as 

f; INI (IG
N 

NI + III~IMIGN+l'NI) • 
N=-oo Ip.EIIII~I· !ll'N+ll 

(3.7) 

By letting I NI --') 00 in the equations for G N. N' (2.22), 
we find 

As I ll'N+ll ~ e- llo in this limit, the asymptotic varia­
tion of terms in Eq. (3.7) is of order !nI1/2e-lnl1Jo. 
Hence the series (3.7) and (3.4) are absolutely con­
vergent for 1)0 ;z'. O. 

The absolute convergence of the field components is 
proved using the same techniques as above. The only 
essential difference between the expressions for cor­
responding fields and potentials is that Pn- 1/2 (cosh1) 
is replaced by either P~-1/2 (cosh1) or n P n- 1/2 (cosh1) 
and similarly for the Qn_l/2(cosh1). This means that 
wherever convergence is governed by series of terms 
varying as In I Pe-lnl lJ o , the terms are replaced by 

InIP+le-lnl1Jo,and convergence is again satisfied. 

4. PERTURBATION SOLUTION 

The exact solution obtained in Sec. 2 is valid at all 
pOints of space and for all values of the aspect ratio 
of the ring cosh1)o' However, the expressions for the 
potentials as given by Eqs. (2.24) and (2.25) are ra­
ther elaborate, and it is, therefore, pertinent to ask 
whether simpler expressions could be formulated 
which would represent the solution to any desired ac­
curacy. Since by definition cosh170 > 1, it is clearly 
worth seeking a perturbation solution which proceeds 
in increasing powers of the inverse aspect ratio 
(coSh1Jo)-l. This expansion is also physically attrac­
tive, since the lowest order solution (cosh1)o = 00) will 
correspond to the solution for an infinite straight di­
electric cylinder transverse to the applied field. Suc­
cessive higher order solutions will then be expected 
to generate corrections to the lowest order solution 
to account for the effects of toroidicity. 

One procedure for generating the inverse aspect ratio 
expansion would be to expand the exact solution in 
powers of (cOSh1)-l for 1) ~ 1)0 and in powers of 
(cosh1)/ cosh1)o) for 0 ..,; 1) ..,; 1)0' The disadvantages of 
such are twofold. Firstly, even to lowest order in 
such an expansion, the solution is not recognizable in 
terms of a straight cylinder without further geometric 
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expansions. Secondly, higher-order terms entail calcu­
lating power series expansions for the associated 
Legendre functions to greater order and then extract­
ing the necessary coefficients of each order from the 
doubly infinite series of the exact solutions. While 
there is no formal difficulty in either of these two 
points, we have found that it is both physically more 
illuminating and algebraically more tractable to gene­
rate the inverse aspect ratio solution using another 
toroidal coordinate system. 

The system of toroidal polar coordinates (r, B, cp) is 
based on the center of the minor cross section of the 
ring as origin and shares the azimuthal angle about 
the axis of symmetry cp with toroidal coordinates. In 
the minor cross-section, (r, B) are polar coordinates 
with the direction B = 0 corresponding to T = 0, radi­
ally outwards in the z = 0 plane. The major geometric 
difference between the two coordinate systems is that 
constant - r surfaces form a set of nested concentric 
tori, while constant - 1) surfaces form a set of nested 
coaxial tori. 

In the toroidal polar coordinate system, the axisym­
metric form of the Laplace equation is 

a~ (r(R + r cosO) ~) 
+ ~ (R +~ cosB) ?!l!) _ 

a Bra 0 - 0, (4.1) 

where R is the major radius of the ring. We define 
the inverse aspect ratio A = r/ R, so that the dimen­
sionless form of Eq. (4.1) is 

i)2<1> a <1> 
A2(1 + A cosB) -- + A(1 + 2A cose)-

aA 2 i)A 

a 2<1> a <I> 
+ (1 + A cose) - - A sinB - = O. (4.2) 

. ae2 aB 

It is not possible to solve Eq. (4.2) by simple separa­
tion of variables. For our inverse aspect ratio expan­
sion we write the equation in the form 

a 2<1> a <I> a2 <1> a 2<1> 
£ (<1» == A 2 - + A - + - = - A 3 cos e -

aA2 aA a B2 aA2 

a <I> a2 e a <1> 
-2A2 cosB--AcosB - +AsinB-, (4.3) 

aA ae2 ae 

so that the right-hand side is one order higher in A 
than the left-hand side. 

The equation for the lowest order solution is 

£(<1>0) = 0, (4.4) 

where the subscript denotes the order of the solution. 
The applied field potential is Eo r sine, so that solu­
tions of Eq. (3.4) appropriate to the spatial depen­
dence of the applied field are A sine, (l/A) sine, which 
together with the boundary conditions 

yields the solutions 

(<I>b!R) = [2E oI(E + I)JA sinO, 

A-!:! -R (4.5) 

(4.6) 

(<I>81R) = EoA sinB - [(E -1)/(E + 1)]Eo(aIR)2(sineIA). 

(4.7) 

The zeroth order solution is just the solution for an 
infinite straight dielectric cylinder transverse to the 
applied field and corresponds, therefore, to the cylin­
drical limit of the ring when R -> OC! for fixed a and r. 

The equation for the first-order potentials is 

a <1>0 a <1>0 
£(<1>1) = - A2 cosB - + A sinB -. (4.8) 

aA a B 

From Eqs. (4.6) and (4.7) there are two possibilities: 
<1>0 = A-I sine or <1>0 = A sine. Substituting in Eq. (4.8) 
yields, respectively, 

£(<1>1) = sin20 or £(<1>1) = 0, 

which have particular solutions: 

<1>1 = - ~ sin2 B or <1>1 = O. (4.9) 

The form of the particular solutions indicates that the 
only complementary solutions to be included are A2 
sin2 (} and (sin2 e)1 A 2. 

Upon satisfying the boundary conditions (4.5), we ob­
tain the first order potentials: 

<1>1 Eo (E -1) 
- A2 sin2e 

R 

<1>0 
1 

R 

4 (E + 1)2 ' 

Eo (E - 1) (~)2 
4 (E + 1) R 

(4.10) 

x [1 - ~E (~)2 ~J sin2e. 
(E + 1) R A2 

These expression contain the lowest order effects of 
toroidicity on the zeroth order solution, for if we al­
low R to increase indefinitely in (4.10) and hold a and 
r fixed, the potentials vanish. The field components 
corresponding to <1>{ and <1>£ vary as A inside the ring 
and as A-I outside the ring, so that the first-order so­
lution satisfies all the physical properties we would 
expect of it. However, if we compare the first-order 
electric field with the zeroth order field, we find 

lEi I 
IEbl 

(E - 1) A 

(E + 1) 4' 

a 
A"" -, 

R 

IE~I A 
--"" 
IE81 2' 

a A» -. 
R 

Thus the correction for toroidicity on the internal 
field is at most of order the inverse aspect ratio of 
the ring when compared with the cylindrical solution. 
The same correction for the external field is only 
small near the surface of the ring, and is of order of 
the cylindrical solution or greater for r ;;.:; o (a) . Thus 
the first-order solution can only be considered as a 
perturbation of the lowest-order solution inside or 
close to the surface of the ring. We shall, therefore, 
examine the second-order solutions to see if they im­
prove the convergence of the inverse aspect ratio ex­
pansion. 

The second-order potentials satisfy the equation 

(4.11) 
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We see from Eq. (4.10) that there are three possibi­
lities for <.1>1: 

sin2B, 

which give particular solutions of Eq. (4.11), respec­
tively, 

- ~ X sin30 + iX(logX) sinO, 

- sin30/4X, 

together with the appropriate complementary func­
tions X sinO, sinB/X, X3 sin30, sin30/,\3. 

The boundary conditions (4.5) and continuity of the e 
dependence, give the second-order potentials 

-EO(E -1) ) . ~)2 [(5E + 3) 
,\3 smO- - ---

16(E + 1) 2(E + 1) 

(i)2] 2 (2 E + 3) ~ + log - A sinB + - ,\ 3 sin3 e , 
3 (E + 1) 

__ 0 __ _ -,\ sin3e-2,\(logX) - E (E - 1) (a) 213 
16 (E + 1) R 2 (4.12) 

. E (a) 2 sin3B 
x smO- --- - --

(E + 1) R ,\ 

_ 2 (~) 2 [2(E + 1) _ (E -1) 10g(~)J 
R (E + 1)2 (E + 1) R 

sine 

+ (~)4 (3 - 4E - 3E2) 

R 6(E+l)2 

The second-order electric field components derived 
from Eq. (4.12) vanish as R increases indefinitely for 
fixed a and r. However, at large distances from the 
ring the external field now has a logarithmic singu­
larity in r. 

If we now combine the terms in the perturbation ex­
pansion (4.6) (4.7), (4.10), and (4.12), we see that 
higher orders in the expansion produce higher order 
singularities in the far field, so that the domain of 
validity of our solution is restricted to X :S 1, or 

r ?; R = atRIa). Hence as the aspect ratio of the ring 
decreases, for fixed a, the domain becomes increas­
ingly smaller. We, therefore, conclude that the toroid­
icity of the ring cannot be described approximately at 
all points of space by an inverse ratio expansion that 
uses a straight cylinder as its lowest approximation. 
Nevertheless, it is possible to obtain an approximation 
to the exact solution that has any desired accuracy at 
all points of space. As we shall show in the next sec­
tion, it is sufficient to retain the first few T modes in 
the exact solution, as the dominant effects of toroidi­
city are contained in the 1) dependence of these modes. 

5. APPROXIMATE SOLUTION 

As we saw in the previous section, the inverse aspect 
ratio expansion technique was inadequate for des­
cribing an approximate solution at all points of space. 
We shall now show that such an approximation can be 
obtained by simply truncating the exact solutions, 
apart from the applied field terms, beyondthefirstfew 
T modes. These low order modes contain all the do­
minant effects of toroidicity in their 1) dependence. 
For example, as will be shown in the next section, the 
cylindrical limit of the exact solution is contained in 
the two terms n = 1, N = 1 and n = -1, N = -1. 

We now demonstrate how the truncation procedure is 
effected for a given value of the ring aspect ratio 
cosh1)o' and, further, show that the number of terms to 
be retained in the exact solutions for a given accuracy 
increases as the aspect ratio of the ring decreases. 

The associated Legendre functions possess the follow­
ing monotonic properties: 

Qn-1/2 (cosh1), Q~-1/2 (cosh1) decrease as 11 in-

creases, (5.1) 

p n-1/2 (cosh1), P~-1/2 (cosh1) decrease as 1) de­

creases, n "" O. 

In any truncation we shall always retain the terms 
n = - 1 and 1. It then follows that the maximum trun­
cation error in the potentials or the fields for both 
the regions inside and outside the ring occurs at the 
ring surface 11 = 110, as can be seen by applying Eq. 
(5.1) to Eqs. (2.24)-(2.27). Thus we need only con­
Sider the exact solutions for 1) = 110' 

TABLE I: a n . N and b n for aspect ratios of 10, 5, and 3. For values of 1/ < 0 use the relation !I- n. N ~ (l".N' 

cosh110 .___ __ "-~ 1 _______ n =.2 ___ ... ______ n = 3 II = 4 

an,_l 

an,! 

a n ,2 

{In,3 

{In,4 

a n ,5 

b" 

10 
5 
3 

10 
5 
3 

10 
5 
3 

10 
5 
3 

10 

5 
3 

10 
5 
3 

10 
5 
3 

0.003 
- 1.163 
- 0.808 
- O. 594 

- 0.004 

- 1. 163 
- O. 808 
- O. 595 
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- 0.049 X 10-1 - 0.17 X 10-2 

- 0.007 -- 0.005 X 10-1 

- 0.009 - 0.011 X 10-1 

-- O. 875 X 10- 1 -- 0.24 X 10-2 

- 0.123 - 0.007 X 10-1 

-·0.155 - 0.015 X 10-1 

-- O. 546 X 10-2 

-- 0.155 X 10-1 - 0.016 X 10-2 

- O. 343 X 10-1 - 0.099 X 10-2 

- 0.183 X 10-2 

- 0.006 X 10-1 - 0.665 X 10-2 

- 0.002 X 10-2 

- 0.924 X 10- 1 -- 0.956 X 10-2 
- 0.130 - 0.167 x 10-1 - 0.199 X 10-2 

-- 0.164 -- O. 375 x 10-1 - 0.766 X 10-2 
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For each mode number n, we have to evaluate 
OCJ 

bn == ~ a n •N 
N~-OCJ 

(5.2) 

as a function of cosh170' The expression for a",. N' Eq. 
(2.26) falls off as exp(-IN - n 1170) for IN - n I» 1, 
and the dominant contribution to (5.2) is always from 
the n = N term. Thus in our calculated examples, as 
are shown in Table 1,6 for cosh170 = 10, 5, and 3, it is 
not necessary to include more than five terms for 
each bn to achieve an accuracy of 1°,{,. For this accu­
racy the number of terms increases as cosh170 de­
creases. 

The expressions for the potentials and field compo­
nents contain summation over n of terms of the form 

b e inr 
n , 

QO' 
_n b einr 
Q~ n , 

pO' 
_n b ein 
pO n , 

n 
po' 

InlQo~ e inr • 
n p~ 

With the exception of the second term, the coefficients 
of e inr in all these expressions decrease as n in­
creases, and therefore for a 1°,{, accuracy in the n sum­
mation it is only necessary to retain the first few 
terms in n. The decrease in the value of bn for in­
creasing I n I is also sufficiently rapid so that the sum­
mation over I n I bn converges to the given accuracy 
almost as quickly as the other summations. We also 
observe that for a given accuracy, the number of 
terms in the n summation to be retained increases as 
cosh170 increases. 

6. CYL1NDRICAL LIMIT 

The cylindrical limit of toroidal coordinates for this 
problem is affected by holding the value of the minor 
radius of the ring constant and allowing the major ra­
dius to increase indefinitely. This transformation ex­
pands the ring into an infinite straight dielectric cy­
linder of radius a, transverse to the uniform electric 
field. In terms of (r, e) coordinates in the cross-sec­
tion of the cylinder, the cylindrical potentials are 
given by Eqs. (4.5) and (4.6). We shall show that both 
the exact and approximate solutions in toroidal co­
ordinates reduce to the cylindrical solution in this li­
mit. 

The following relationships exist between R, d, and r: 

R = r cosh17, d = r sinh17. (6.1) 

Further, the surface 17 = 170 will correspond to the 
cylindrical surface r = a and, therefore, 

R = a cosh1)o' (6.2) 

Thus, as we follow a particular pOint under the trans­
formation R,d, n, and 1)0 increases indefinitely, while 
a and r remain fixed. From the definitions of T and () 
it follows that T -7 e as R --7 00. 

For large values of 1), the asymptotic forms of the 
associated Legendre functions are 

lim P n-1/2 
ij_OO 

2Inl-1/2 (Inl-I)! 
(cosh1) !O: 1 

1Tl/2 r(l n I + 2) 

X cosh1nl-l/21), Inl > 0, (6.3) 

1T1/2 r(lnl + ~) 
2Inl+1/2 In I! 

1 
x cosh Inl +1/2 , 

17 

1 
lim P-1/2 (cosh1) "'" ---­
ij_OO 1T cosh1)/2 

(6.4) 

(6.5) 

Applying the cylindrical limit to the series of Q-type 
harmonics in the expression for .po, (2.25) and substi­
tuting for d from Eq. (6.1), we obtain, using Eq. (6. 4), 

nr(lnl + ~)eine - iEor. 00 

-- lIm ~ 
1T 1/2 ~- 00 n~-oo 

= Eor sine, I nl ! 2 Inl-1cosh Inl-11) 

which is the representation of the uniform field in Eq. 
(3.6). 

To evaluate the cylindrical limit of the remaining 
terms in Eqs. (2.24) and (2.25) we need the asymp­
totic forms of n~ ,qn' an , and (3n for large 1)0' Substi­
tuting Eqs. (6.3)-(6.5) in Eq. (2.9) yields 

-[(E -1) + 21 nl(E + 1)] 
lim n~ "'" , 

ijo-->OO 2 cosh1)o 
n=O,±l, ... , 

(6.6) 
and from Eq. (2.12), 

41 n I (E + 1) cosh1) ° 
lim qn "'" 
ijo-->OO [(E - 1) + 21n I(E + 1)1 ' 

n = ±1, ... , 

(6.7) 
"'" 2 cosh1)o, n = O. 

It therefore follows from Eqs. (2.25) and (2.26) that 
for all n 

(6.8) 

Hence the only terms that remain in the summation 
over N in the expressions for .p i and .p ° are those for 
which N = n. This holds for both the exact and appro­
ximate expressions. 

The cylindrical limit of .p i, consequently, is 

4.J2iEo d(cosh1) - COST)1/2 
----- lim --------

1T 

~ nQ n-1/2 (cosh17) e inr 
X cosh1)o LJ 

n~-oo n~q~Q~p~ 

- 2.J2iEo. d cosh1/217 
= lIm 

1T(E + 1) ij_OO cosh1)o 

00 nQ n-1/2 (cosh17) e ine 
X L; 

n=oo / n / Q~P~ 

using Eqs. (6.6) and (6.7). Finally, using Eqs. (6.1) 
and (6.4), we have 

- 2iE or 
lim .p i "" ----­
ij-->oo 1Tl/2 (E + 1) 

00 nr(/n I + ~) e ine 

x lim L; 
1J-->""n~-oo In/2 Inl - 1 (/nl-1)! coshlnl-11) 

2Eor 

(E + 1) 
sinO, 

(6.9) 
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which is identical with Eq. (4.5). 

Similarly, the cylindrical limit of the field perturba­
tion in 4> 0 is 

2,fiiEo ~ 
--- lim d (cosh1j - COST)1/2 L.i 

11 1)-00 n=-OO 

nP n-l/2 (cosh1j) 

P~ 

00 nr(lnl+i)cosh1nl+11j . 
x lim 6 ---------e'nB 

1)~oo n=-oo Inl!2Inl-lcosh2Inl1jo ' 
(6.10) 

1 W. M. HickS, Phil. Trans. 176, 161 (1884). 
2 E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics 

(Chelsea, New York, 1955), p. 433. 
3 Higher Transcendental Functions edited by A. Erdelyi (McGraw­

Hill, New York, 1953), Vol. 1. 
4 L. M. Milne Thomsom, The Calculus of Finite Differences (Mac-

by Eqs. (6.1), (6.3), (6.6), and (6.7). Hence 

lim 4>0:;::; Eor sinB - [Eo«( - 1)/(£ + 1)] 
1)->00 

X (a 2/r) sinB, 

which is exactly Eq. (4.6). 

It is clear from Eqs. (6.9) and (6.10) that the only 
terms in the n summation that contribute to the cy­
lindricallimit are those for which n :;::; - 1 and n = 1. 
Since the truncation procedure of the previous section 
always retains these two terms, it follows that the cy­
lindrical limit of the truncated potentials will ap­
proach the same limit as the exact solutions. 

Millan, London 1960), p. 531. 
5 A proof of this result is given in Ref. 4, pp. 532-34. 
6 The values of p~ and Q~ are taken from Tables of Associated 

Legendre Functions. National Bureau of Standards (Columbia 
D.P., New York, 1945). 
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Unitary irreducible representations of the homogeneous Lorentz group 0(3,1) belonging to the principal series 
are reduced with respect to the subgroup 0(1,1) 0 0(2). As an application we determine the mixed basis mat­
rix elements between 0(3) and O{l, 1) 0 0(2) bases and derive recurrence relations for them. This set of func­
tions is then used to obtain invariant expansions of solutions of the Dirac and Proca free field equations. These 
expansions are shown to have the correct nonrelativistic limit. 

INTRODUCTION 
In recent years there has been considerable interest 
in the unitary irreducible representations (UIR's) of 
the homogeneous Lorentz group in various bases.1,2 
Harmonic analysiS of a scalar function in terms ofthe 
four subgroup bases [Le., 0(3), 0(2, 1), E(2), and 
0(1,1) ® 0(2)] has first been given by Smorodinski 
and Vilenkin.2 Since this work most of the attention 
has been paid to the little group bases as these also 
playa role in the usual POincare invariant partial 
wave analysis3 ,4 of scalar functions and helicity amp­
litudes. The properties of the reduction of 0(3, 1) with 
respect to 0(1, 1) ® 0(2) are, however, not SO well 
known. It is the purpose of this paper to develop 
these properties and indicate some possible uses. 
The content of the paper is arranged as follows. In 
Sec. 1 we collect the pertinent facts concerning 
SL(2, C) [the covering group of 0(3,1)], its Lie alge­
bra and UIR·s. In Sec. 2 we carry out the reduction of 
the principal series of SL(2, C) with respect to 
D(l, 1) ® D(2) (see Sec. 2) the universal covering 
group of 0(1,1) ® 0(2). The action of the infinitesi­
mal generators of the Lie algebra in such a basis is 
also determined. In Sec. 3 we develop the expansion 
of a single particle helicity state in terms of mixed 
basis matrix elements. An explicit expression for 
these matrix elements is obtained for the first time. 
In Sec. 4 we derive recurrence relations for these 
mixed basis matrix elements, which are used in Sec. 
5 to develop invariant expansions of solutions of the 
free field Proca and Dirac equations. Finally in Sec. 
6 the nonrelativistic limit of these solutions is ob­
tained. 
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1. RESUME OF SL(2, C) AND ITS urn'S 

The group SL(2, C)5 is the universal covering group 
of the homogeneous Lorentz group 0(3, 1). The ele­
ments of SL (2, C) are the unimodular complex mat­
rices in two dimensions 

a.O - f3y = 1. (1. 1) 

The subgroup S U(2) consists of all unitary unimodular 
matrices of the form 

(_ ~ ~), I a. 12 + I f312 = 1. (1. 2) 

S U(2) is of course the covering group of 0(3) the real 
orthogonal group in three dimensions. The covering 
group of 0(1,1) ® 0(2) is denoted by D(l, 1) ® D(2) 
and consists of all diagonal unimodular matrices: 

o{3 = 1. (1. 3) 

[Note: D(2) is the set of all diagonal matrices of the 
form 

(
e i

>i'
/2 0 ) 

R(l{;) = 0 e-£lj/2' 

such that to each rotation in the plane of the group 
0(2) there corresponds the matrices ± R(l{;). This is 
just the usual two to one homomorphism between an 
orthogonal group and its spinor group. Similar re­
marks apply to D(l, 1) the set of matrices 



                                                                                                                                    

1304 J. D. L 0 V E 

which is identical with Eq. (4.5). 

Similarly, the cylindrical limit of the field perturba­
tion in 4> 0 is 

2,fiiEo ~ 
--- lim d (cosh1j - COST)1/2 L.i 

11 1)-00 n=-OO 

nP n-l/2 (cosh1j) 

P~ 

00 nr(lnl+i)cosh1nl+11j . 
x lim 6 ---------e'nB 

1)~oo n=-oo Inl!2Inl-lcosh2Inl1jo ' 
(6.10) 

1 W. M. HickS, Phil. Trans. 176, 161 (1884). 
2 E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics 

(Chelsea, New York, 1955), p. 433. 
3 Higher Transcendental Functions edited by A. Erdelyi (McGraw­

Hill, New York, 1953), Vol. 1. 
4 L. M. Milne Thomsom, The Calculus of Finite Differences (Mac-

by Eqs. (6.1), (6.3), (6.6), and (6.7). Hence 

lim 4>0:;::; Eor sinB - [Eo«( - 1)/(£ + 1)] 
1)->00 

X (a 2/r) sinB, 

which is exactly Eq. (4.6). 

It is clear from Eqs. (6.9) and (6.10) that the only 
terms in the n summation that contribute to the cy­
lindricallimit are those for which n :;::; - 1 and n = 1. 
Since the truncation procedure of the previous section 
always retains these two terms, it follows that the cy­
lindrical limit of the truncated potentials will ap­
proach the same limit as the exact solutions. 

Millan, London 1960), p. 531. 
5 A proof of this result is given in Ref. 4, pp. 532-34. 
6 The values of p~ and Q~ are taken from Tables of Associated 

Legendre Functions. National Bureau of Standards (Columbia 
D.P., New York, 1945). 
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the homogeneous Lorentz group in various bases.1,2 
Harmonic analysiS of a scalar function in terms ofthe 
four subgroup bases [Le., 0(3), 0(2, 1), E(2), and 
0(1,1) ® 0(2)] has first been given by Smorodinski 
and Vilenkin.2 Since this work most of the attention 
has been paid to the little group bases as these also 
playa role in the usual POincare invariant partial 
wave analysis3 ,4 of scalar functions and helicity amp­
litudes. The properties of the reduction of 0(3, 1) with 
respect to 0(1, 1) ® 0(2) are, however, not SO well 
known. It is the purpose of this paper to develop 
these properties and indicate some possible uses. 
The content of the paper is arranged as follows. In 
Sec. 1 we collect the pertinent facts concerning 
SL(2, C) [the covering group of 0(3,1)], its Lie alge­
bra and UIR·s. In Sec. 2 we carry out the reduction of 
the principal series of SL(2, C) with respect to 
D(l, 1) ® D(2) (see Sec. 2) the universal covering 
group of 0(1,1) ® 0(2). The action of the infinitesi­
mal generators of the Lie algebra in such a basis is 
also determined. In Sec. 3 we develop the expansion 
of a single particle helicity state in terms of mixed 
basis matrix elements. An explicit expression for 
these matrix elements is obtained for the first time. 
In Sec. 4 we derive recurrence relations for these 
mixed basis matrix elements, which are used in Sec. 
5 to develop invariant expansions of solutions of the 
free field Proca and Dirac equations. Finally in Sec. 
6 the nonrelativistic limit of these solutions is ob­
tained. 
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1. RESUME OF SL(2, C) AND ITS urn'S 

The group SL(2, C)5 is the universal covering group 
of the homogeneous Lorentz group 0(3, 1). The ele­
ments of SL (2, C) are the unimodular complex mat­
rices in two dimensions 

a.O - f3y = 1. (1. 1) 

The subgroup S U(2) consists of all unitary unimodular 
matrices of the form 

(_ ~ ~), I a. 12 + I f312 = 1. (1. 2) 

S U(2) is of course the covering group of 0(3) the real 
orthogonal group in three dimensions. The covering 
group of 0(1,1) ® 0(2) is denoted by D(l, 1) ® D(2) 
and consists of all diagonal unimodular matrices: 

o{3 = 1. (1. 3) 

[Note: D(2) is the set of all diagonal matrices of the 
form 

(
e i

>i'
/2 0 ) 

R(l{;) = 0 e-£lj/2' 

such that to each rotation in the plane of the group 
0(2) there corresponds the matrices ± R(l{;). This is 
just the usual two to one homomorphism between an 
orthogonal group and its spinor group. Similar re­
marks apply to D(l, 1) the set of matrices 
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± (
eaI2-0 ) ] o e-a/2' - 00 < a < + 00 • 

The Lie algebra of SL(2, C) is six dimensional, being 
spanned by the generators Mi,Ni(i = 1,2,3) which 
satisfy the commutation relations 

[MpNj ] = EijkNk , 

[Ni,Aj] = - EijkMk • (1.4) 

There are two independent Casimir invariants of 
SL(2, C) which label each irreducible representation. 
They are 

(1. 5) 

The Casimir invariant of SU(2) is well known to be 
M2. Each inequivalent UIR of S U(2) is labeled by the 
eigenvalue j, where 

M2 = - j(j + 1), j = 0, ~, 1, L .. . . (1. 6) 

Each UIR for given j is (2j + I)-dimensional and the 
Spedl.lIL of ;:13 in it is 

M3 = - j, - j + 1, ''', j - 1, j. (1. 7) 

A UIR of D(l, 1) lSi D(2) is labeled by the two eigen­
values of M3 and N 3' {nz, T} where 

- 00< T< + 00, m = 0, ± ~,± 1,±~,···. (1. 8) 

It is easy to see that each such UIR is one­
dimensional. 

We now give the spectrum of the Casimir operators 
K v K q corresponding to the principal series {j 0' p} 
of SL(2, C) together with the spectrum of j values of 
the UIR's of S U(2) that appear in each such UIR of 
SL(2, C). For the principal series 

. 0 1 1 3 Jo = ,"2, ,"2, ... , - 00 < p < + 00, (1. 9) 

and the spectrum of j values is 

j = jo,jo + 1···. 

The other set of UIR's of SL (2, C) belong to the com­
plementary series which we write as {O, i p}. where 

Kl = 1 - p2, K2 = 0, 0< p < 1, 

jo = 0, 1,2, ...• 

This set of UIR's does not figure in the completeness 
relation5 of SL(2, C) and so will not be considered 
subsequently. 

Finally in this section we give the formulas for the 
action of the generators M i, Ni on an SU(2) basis of 
the principal series 

M3 Ij,m) = m Ij,m), 

M+ Jj, m) = - ia{+1Jj, m + 1), 

MJ j, m) = - ia{ IJ, m - 1), 

N 3 I j, m) = - iv'[j2 - m 2] Cj I j - 1, m) 

+iAjmJj,m) 

+ i Cj +1 v'[(j + 1)2 - m 2 ] Jj + 1, m), (1.10) 

N+Ij,m) = -iCj-J[(j-m)(j-m -1)] Ij-l,m + 1) 

+iAj-J[(j-m)(j +m + 1)][j,m + 1) 

- i Cj +1 v'[U + m + 1)(j + m + 2)]lj + 1, m + 1), 

N _ Ij, m) = i C j v' [(j + m) (j + m - 1)] I j - 1, m - 1) 

+iAjv'[(j +m)(j-m + 1)] Ij,m -1) 

+ iCj+1.J[(j - m + 1)(j - m + 2)] Ij + 1, m - 1), 

where 

- joP 
Aj = j(j + 1)' 

_ ~ (U2 - j6)(j2 + P2))1/2 
C- , 

J j 4j2 - 1 

m=-j,-j+l, •••• ,j, j=jo,jo+l, ••• , 

and I j, m) is an abbreviation for I pjo; jm): 

a{ == -J[(j(j + 1) - A(A - 1) 1. 

2. REDUCTION OF THE PRINCIPAL SERIES OF 
SL(2, C) UNDER 0(1, 1) lSi 0(2) 

As is well known5 the principal series of SL(2, C) is 
realized via unitary transformations in a Hilbert 
space H of square integrable functions in a certain 
domain. The elements of H are specified by functions 
fez) of a single complex variable z varying over the 
entire complex plane. (This specification is only pos­
sible up to sets of measure zero.) The scalar product 
and norm are given by 

(f, h) == J 00 dx Joo dy f(z)h(z), z == x + iy, 
- 00 -00 

IIfll == (f,f)1I2 < 00. (2.1) 

In the UIR {jo' p} of the principal series, the unitary 
operator U(g) representing the group element g acts 
on f(z) in the following way: 

[U(g)f](z) == (Ii + (3z)io- 1 +iP(5 + (3zfio-l+ iP 

x f[(az + y)/«(3z + Ii)] (2.2) 

This realization is not the most convenient one for 
our purposes. In order to realize the principal series 
in a D(I, 1) lSi D(2) baSis, we make the following trans­
formation: 

e a == (x2 + y2)1/2, tan¢ = y/x, 

-oosas+ oo, Os¢s211. (2.3) 

Instead of specifying an element of H by fez) we speci­
fy it by the new function 

lea, ¢) = e -ijo¢ e a( hPj (z). (2.4) 

With this indentification the scalar product can be 
written 

(2.5) 

The generators Mi' Ni acting on the j(a, ¢) functions 
can be expressed as differential operators acting on 
a and ¢ as 
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Ml = jo cosha cos¢ - (p + i) sinh a sin¢ 

+ i (Sinha cos¢ o~ - cosha sin¢ eOa) , 

M3 = - i ea¢, (2.6) 

Nl = jo sinha sin¢ + (p + i) cosha cos¢ 

+ i (cosha sin¢ OO¢ + sinha cos¢ oOa) , 

N 
. a 

3 =-laa' 

The operators M 2, N2 can be obtained from the ex­
pressions for Ml and Nl , respectively, via the substitu­
tion ¢ -7 - 111 + ¢. The principal series of SL (2, C) 
is now realized as the set of functions f(a, ¢) on the 
domain (- <Xl, + <Xl) @ [0,211] which satisfy 

(f,1) = J2 TI 

d¢Jco dalf(a, ¢)12 < <Xl. (2.7) o -co 

The two Casimir invariants of 0(1, 1) @ 0(2) are N3 
and M3, so that the simultaneous eigenfunctions of N3 
and M3 in this realization are 

1'rm = [1/(211)]eiraeimQ;, (2.8) 

where 

N3'f1rm = T'fIrm' M3'f1rm = m'flr1i" 

('fIT,mt' 'finn) = I5 wm o(T' - T); (2.9) 

so together with the completeness relations 6 

~ Jco ei(a'-ah dT = l5(a t 
- a) (2.10a) 

211' -co 

~ i5 eiP(¢-q;t) = i5 15(¢ - ¢t - 211n), (2. lOb) 
27T p~-co n ~-co 

we get the following result. 

Each UIR {jo, p} of the principal series of SL (2, C) 
contains each UIR {m, T} of D (1, 1) @ D (2) exactly 
once,provided 

m =jo,jo ± 1,jo ± 2,···. (2.11) 

Thus each] E H can be expanded in terms of the 
eigenfunctions 'firm according to 

m ;::-00 

(2.12) 

Finally in this section we calculate the action of the 
generators M±, N± on the 1'r m basis 

M±1'rm = 1(jo ± ip 'f iT 'f 1 - m)>Vr-i,mll 

+ i(jo 'f ip Of iT± 1 + m)1'T+i,m±l' 

N±'fIrm = i(Of ijo + p - T + i ± im)'fIr-i,m±l 

+ i(± ijo + p + T + i ± im)'fIr+ i ,m±1' 

N± = Nl ± iN2,M± = Ml ± iM2; 

(2. 13) 

The action of M3 and N3 already having been given 
in Eq. (2.9). 
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3. CALCULATION OF THE MIXED BASIS 
MATRIX ELEMENTS AND SINGLE PARTICLE 
HELICITY STATES 

In this section we construct relativistic functions 
with helicity for nonvanishing mass which are at the 
same time basis functions of a UIR bo, p} of the 
homogeneous Lorentz group 0(3, 1) realized on the 
upper sheet of a double sheeted hyperboloid. In 
order to do this we use the method of Integral geo­
metry.2,7 In this method7 ,8 a one-particle state of 
spin 5, helicity A, and four velocity u, denoted by 
lu, 5, A), is expressed in terms of a function on the 
light cone <P. pm via the relation 

10 

1 S co 
lu, 5,A) = -- 6 J dp(p2 + jij) 

2(211')3 jn=-s -co 

X f [u ~]-l-ip DS. (R)<p. (~)d2~ (3.1) 
r' Alo loP , 

where r is the integration path on the light cone, 
d2~ the invariant measure on the cone, and [u, ~] the 
usual Lorentz scalar product 

(3.2) 

The rotation specified by D Aj (R) is the rotation 
necessary to account for the ore quantization of the 
helicity component from the direction ~ to that of u. 
The parametrization of the four velocity u in the 
coordinate system of interest (the C system or 
cylindrical system2) is 

u = (cosha coshb, sinha coS1/!, Sinha sintt;, cosha sinhb), 
(3.3) 

and the 4-vector ~ is parametrized by 

~ = eC (cosh,B, cos¢, sin<j> , sinh{:l). (3.4) 

The choice of r for the C system is ~5 - q = 1, and 
the consequent invariant measure is d2~ = d<j>d{3. 

In the realization on the cone the generators of the 
Lorentz group corresponding to a "photon" of dis­
crete helicity A are9 

Ml =- i(~,\7)l + A [~tI(~o + ~3)]' 

M2 = - i(~, \7)2 + A [~2/(~O + ~3)]' 
M3 = - i(~, \7)3 + A, 

,0 ~2 
N 1 =- Z~o O~l - A ~o + ~3 ' 

. a ~l 
N 2 =- z~o a ~2 + A ~o + ~3 ' 

N 3 =- i~o oil~3 • 

For the parametrization (3.4) of ~,the Casimir 
invariants have the form 

(3.5) 

M2 - N2 = £ + 2~ + A 2, M • N = iA (1 + ~). 
de2 de de 

(3.6) 

From (3.4) and (3.6) it is not hard to show that the 
simultaneous eigenfunctions of M2 - N2, M • N, 
M3 and N3 have the form 
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(3.7) 

in particular, on the C system contour 

(3.8) 

The function if>. (~) is now expanded in terms of the 
JoP 

ep A (T, p) functions according to 

if>. (~)=~aiO(T,p)epj (T,p). (3.9) 
JoP p, T 0 

For evaluation of the integral over d2~ in (3.1), it is 
most convenient to assume u in the form 

u = Uo = (cosha, sinha, 0, 0); (3. 10) 

the required expansion for the more general form of 
u can be obtained by using the simple group proper­
ties of the 0(1, 1) 0 0(2) matrix elements. So com­
bining (3.9) and (3.1) requires the calculation of the 
following integral: 

1= 1. 21f d¢ 100 
d{3 (cosha cosh{3 - sinha coS¢)-l-ip o -00 

x D,s. (R)ep ' (T,p). (3.11) 
"Jo Jo 

We now turn our attention to the explicit form of 
Dt· (R). For this it is convenient to write 

Jo 

D = «cos¢/cosh{3), (sin¢/cosh{3), tanh{3), (3.12) 

the direction vector of the photon 3-momentum. Now 
if n is rotated by - ¢ about the z axis, n becomes 

n~ no = ((1/cosh{3), 0, tanh{3). (3.13) 

According to the prescription of Ref. 7, the remaining 
rotation is a rotation in the x z plane by an amount 
TJ given by 

U o cose - lui 
cos1] = u - u • n ' o 

(3.14) 

where e is the angle between DO and u = (sha, 0, 0), 
In our case 

and 

cose = 1/ cosh{3 

cosha - cosh/3 sinha 
COS1] = cosha cosh{3 - sinha ' 

so that we finally have 

(3.15) 

(3.16) 

The integral I can now be evaluated. It is found to 
be given by 

1= e
i1f

(A.-
j
o) ~ r(1 + 2r1 + ip) 

r(1 + ip) r i r(r1 + 1 - tp)r(r1 + 1 + tp) 

(2r1 + 1 + iP)r (- iT)r (- iT + t)r3 
X A . 2 3 

sr4 ,A.Jo (~)r3r2!r3! (3.17) 

r(s)r(e - b) a("A-j +2r ) 
X e 0 4 

r(e) 

x (~ tanha)2r1 (cosha)-l-ip zF 1 (S, b; e; - e 2a ), 

where 

b = t(~ - jo) + r 2 + r3 + r 4 + t, 
c = 2rl + ip - iT + t(~ - jo) + r 2 + r3 + '14 + ~, 

A A' = [res + ~ + l)r(s - ~ + l)r(s + jo + 1) sr4 r I n 

X reS - io + 1)]1/2 [res - ~ - jo + 1) 

x res + jo - r 4 + l)r(r4 + ~ - jo + 1) 

x r(r 4 + 1) ]-1 

(d)n = red + n)/r(d), P = p -~. 

We now identify I with the mixed basis matrix ele­
ment in the following way: 

(3.18) 

The expansion of a single particle helicity state in 
terms of C system matrix elements is then 

1 
Iu;s,~> =--

2(27T)3 

(3.19) 

4. RECURRENCE RELATIONS FOR THE MIXED 
BASIS MATRIX ELEMENTS 

In this section we use the infinitesmal operator 
method 10,11 to establish recurrence relations and 
differential equations for the mixed basis matrix 
elements. For this method we use a fixed column of 
the mixed basis matrix element (pjQ; JM I L I pjo; TP) 
(Le., T and p fixed) as a set of SU(2J baSis vectors 
spanning the UIR{ jo' p} of SL (2, C). L is a general 
lorentz transformation. The generators M, ,Ni are 
then differential operators acting on the six para­
meters needed to specify L. Now using Eqs. (1. 10) 
and (1. 9) and making a particular choice for L we 
can derive the relations we need. For the C system 
we parametrize L as follows 

so that the mixed basis matrix element is 

(pjo;JMILlpjo;Tp) = Cj~'TP 
'" D J (m e )Cpjo () iTb ip~ == LJ MA 'f/, ,a JA TP a e e . A • 

(4.2) 

The generators M i , Ni corresponding to the paramet­
rization (4. 1) are 

. a a sin¢ a 
Ml = - cote sm¢ o¢ + cos¢ o¢ + sine oa' 

a 
M3 = 3¢ , 

Nl = - sin¢ cosa tanha }¢ + tanha sin¢ sine sina oOe 

- .nh 1 h (sin¢ cose cosa + cos¢ sina cosh 2a) Sl a cos a 

a ..) a sin</> sine 
x oa + (cos</> cosa - sm</> SIlla cose oa + cosha 

x a~ + si;ha (cos¢ sina + sin¢ cosa case) ;1/1 ' 

N3 = - cote cosa tanha o~ + tanha cose sina aa
e 

+ COSCi (tanha cote case + sine cotha) a~ 
+ . e. a sm sma oa . (4.3) 
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M2 and N2 can be obtained from M 1 and Nt> respec­
tively, via the transformation ¢ ---7 - irr + ¢. 

In the SU(2) basis we have chosen, the Casimir in­
variant equations have the form 

(M 2-N2)tPio =(1+p2-J'2) tPio JM,Tp 0 JM.TP' 
M • N C-pio - pI)' C-pio (4.4) JM,Tp - 0 JM.TP· 

The explicit expression of the Casimir invariants in 
terms of differential operators is found from (4.3) 
to be 

a 2 a 1 a2 
N2 - M2 = - + (tanha + cotha) - + --- --

aa 2 aa cosh2a ab 2 

+ _1_ £ _ 2 cotha ~ tanh2a M2 
sinh2a at/l2 sinha aO!at/l 2 

tanha - a a 2 
- M2 + 2 -- M 2 - + coth2a --

cosha ab aO! 2 

- (a M • N = Ml aa 

(4.5) 

+ tanha) + M2 (tanha - cotha) a: 

+_1_~) +_1_ ~ (4 6) 
sinha at/l cotha abaO!' • 

where 
- a. a cosO! a 
M2 = cote cosO! aO! + SIllO! ae - sine a¢' 

- . a a sinO! a 
Ml = - cote SIllO! aO! + cosO! a e + sine a¢' 

~o .applying the Casimir invariants (4.5) to the 
C!~,TP functions and separating out all but the a 
dependence, using known recurrence relations of the 
SU(2) matrix elements12 and the orthogonality pro­
perties of the 0(1, 1) @ 0(2) matrix elements, we get 
the relations 

O!; (d~ +X tanha + (l-X)cotha + Si~ha) C!;f+l;TP 

+ 0!~+1 (d~ - Hanha + (1 + X) cotha - s~) 

x CPio + . (2AT + . \ CPio 0 
J,A-l:11> l cosha PJo) JA; TP = , 

(~ + (tanha + cotha)~ -~ -~ 
da 2 da cosh2a sinh2a 

+ 2XP cotha + J(J + 1) + i tanh 2a[J(J + 1) 
sinha 

- X2 coth2a + (1 -J' 2 + p2)~ CPio o ') JA;TP 
+ 1 t nh2 [J J CPio + J J CPio ] 

4" a a O!A+IO!A+2 J,A+2;TP O!A O!A-1 J,A-2~TP 

(4.7) 

+ iT (tanha/cosha) (O!: Cj,{o_l;TP - O!t+l Cj,{~l~TP) = O. 

(4.8) 
The remaining recurrence relations are determined 
from the known action of the generators N in an 
SU(2) basis [Eqs. (1, 10)]. They are ± 

[(J + X)(J + X + 1)]1/2 (d~ + Si~ha + (1 - X) cotha + (J - X + 1) tanha) C!;f-1 ;TP 

- [(J - X)(J - X + 1)]1/2(dd - .Pnh + (1 + X) cotha + (J + X + 1) tanha\ CJPi!.J l' 
~ a SI a '} ,"+ ,TP 

- (2iT/COsha) [(J + 1)2 - X2]1/2 C~~TP (4.9) 

= 2{[(J + 1)2 - j2] [(J + 1)2 + p2][(2J + 1)/(2J + 3)]} 1/2 CPio • o J+l,A,Tp 

- [(J - X)(J - X + 1)]1/2 (:a + sinha + (1 - X) cotha + (J + X) tanhd) C:;~~-l:TP + [(J + X)(J + X + 1)]1/2 

x (dd - -f!.-h + (1 + X) cotha + (J - X}tanha) CJPi!.J l' P + (J2 - X2}1/2 (2iT/cosha) Cj{2 TP a SIn a ,,,+ ,T ' 

= 2{(J2 - j6)(J2 + p2)[(2J + 1)/(2J - I)]} 1/2 C;;'~OI: A ,T P' (4.10) 

These relations we have developed here are the ones 
we will use in the next section in our analysis of the 
Proca and Dirac fields. 

5. SOLUTION OF THE DmAC AND PROCA FREE 
FIELD EQUATIONS IN THE C SYSTEM 

As an application of the previous three sections we 
derive invariant expansions of solutions of the Dirac 
and Proca equations in terms of the functions 

Dpjo (a b m) - CPio (a) eiTbeiP<p (5.1) JA;Tp , ,'Y - JA',TP • 

This has already been done in the S system for these 
equations13 and more general ones. 14 ,15 

An outline of the general method is as follows. In 
order to achieve an invariant expansion of an 
arbitrary field FJ~O(x), it is convenient to go over 
into a coordinate system in which each component 
tr<l:nsforms independently. The components of 
FjIJ (x) in this new coordinate system are 
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Fj~(g} = U(g}F:;~ (x) = Dj1'M',JM(g)Fj!if,(g-lx ). (5.2) 

From this definition it follows that each component 
does indeed transform independently; 

(5.3) 

so that each component of Fj~o (g) constitutes a 
representation space for the Lorentz group and can, 
therefore, be expanded in terms of matrix elements 
of that group. 

We now turn our attention to the Proca field AK(x) of 
mass /l, i. e., 

( 
a2 

(0 - 112)A (x) = -
K a 2 Xl 

We seek a solution for this equation inside the light 
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cone, so in the C system we choose x to be para­
metrized by 

x = (5 cosha coshb, 5 sinha cos1> , 5 sinha sin1>, 
5 cosha sinhb). (5.5) 

The operators a/axi have the form 

a a sinha coshb a sinhb a 
axe = cosha coshb a5 - 5 aa 5 cosha ab' 

a 0 0 1 a ---- -, , 
axe a5 aXl 5 aa 

a 1 a a 1 a 
aX2 a1>' aX3 

-
5 cosha ab' 5 sinha 

The transformed Proca equation now becomes 

- _ aAk(x) 
(0 - 1l 2 )Ak (x) - Di ---;=-- - 0kl 

uXi 

1309 

(5.9) 

a . a cosha cos1> a sin1> a 
aX

l 
= - smha cos1> a5 + 5 aa - 5 sinha 01>' ( 

an-I ao- l a a 20- 1 ) 
X D. ----.!:.!!. + 2_l_V - + __ l_v A (x) = ° 

'ax. ax. ax. ax2 v , 

a . ha . A, 0 + cosha sin1> 0 + cos1> ~ 
, I' i (5. 10) 

aX2 = - sm sm,!, as 5 aa 5 cosha ab 

a . nhb h a + sinha sinhb a 
oX

3 
= - S1 cos a as 5 oa 

+ coshb a ( ) 
5 cosha ab' 5. 6 

The transformation to the independent variables 
changes the 4- vector x as if at the point (a, b, 1» the 
space has been subjected to the Lorentz transforma­
tion 

(5.7) 

Under this transformation a/ox K and AK (x) are trans­
formed according to 

(5.8) 

aAi<X) - _ 
-a - + DtAi(x) = 0, 

Xi 

where 
an. 

Di=~ n;l 
aXk 

passing to the canonical basis 

and expandinglo.fl andl± according to 

10 = L; Xo(P·jo)(5)C~8:TpeiTb eW ", 

1 "(P,io)( )CpiO e iTb ip¢ 
± = L.J X ± 5 1,± l;TP e, 

" (p ')0) i rb iP¢ 11 = L.J Xl (5)C1.0; rp e e , 

(5.11) 

(5.12) 

where 
where the summation is over jo,P, T, p, the system of 
equations (5.10) becomes 

(
OXO 3) 1 [(OC - + - Xo Co + .,;- -- + (tanha + cotha) C_ 
05 5 25 oa 

+ _P- c_)x­
sinha 

(
ac+ P ) '/2iT ] 

- - + (tanha + cotha) C+ - -.-- C+ X+ + -- Xl Cl = 0, 
a a smha cosha 

(
a 2XO 3 aXe 3xo ) 1 [(a 2Co aco -- + - - - - + u2x C - - -- + (tanha + cotha) 
a 5 5 a 5 52 0 0 52 a a2 a a 

T2 CO - -f!!-- Co\ Xo + J2(i3C- + (tanha + cotha) C_ + -.-p- c) X-
cosh2a smh2a Y aa sInha 

- {2 (a C+ + (tanha + cotha) C+ - -.-p- C+) X+ + ~ x C l = 0, 
a a smha cosha 1 ~ 

(
a2Xl 3 aXl ) 1 [(a 2Cl aCl T2 -_- + - - + f.l2Xl Cl - - -- + (tanha + cotha) --. - --- Cl 
d52 5 as 52 aa2 aa coth2a 

- -.--Cl + --Cl Xl + iTJ2 -- (X-C- - X+C+) + -- XoCo = 0, 
p2 1) tanha 2iT J 

smh2a cosh2a cosha cosha 

(
a2X 3 aX± ) 1 ~(a2C± ac± T2 P 1 
--± + - - + f.l2x± C± - - -- + (tanha + cotha) - - ---C± - ---C± - ---C 
a52 5 as 52 i3a2 aa cosh2 a sinh2 a sinh2a ± 
1 cotha ) tanha 1 ( 

- - tanh2 a C± ± 2P -. - C± X± ± iTi2 -- Xl Cl + - tanh 2 a X C + 2 'f 
2 smha cosha 2 T " 

aco _ _ ._p_ Co\ xo] = 0, 
aa SInh a I} 

where we have used the shorthand X+ = x- = - Xl' 

(5.13) 

(5.14) 

C C Pjo 
0= OO;TP' C C pjo 

± = 1,± l;TP' C - C Pi o 
1 - 1.0;rp· We then arrive at the same system of equations as in 

Ref. 13 viz. 
From the recurrence relations (4.7)-(4.10) we see 
that the variables separate if (-'.!... + ~)x~,O)(S) + [3(1 + p2)]l/2 xip,O)(s) = 0, 

ds s s 
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C~2 
( 

d2 

ds2 

5 d +-­
S ds 

3 d +- -
s ds 

+ 4 + p2 + fl2) x~P'O) = 0, 
s2 

+ 1 + p2 + 1l2)xiP ±1)(S) = ° 
s2 

(5.15) 

(remember the summation on jo consists of j 0 = ° 
only, for fo). These equations have the solution 

(p.il) / [(2) (2)] 
Xl (s) = (1 Ils) C 1Hip (flS) + C 2 H ~ip (Ils ) , 

x~'O)(s) == [1/(J.lS)2][C3H~:)(IlS) + c4H!rZ(llsl]. 
(5.16) 

So the solutions to the Proca equation have the form 

1. = f, Joo dT Joo dpx(P.o)(s)C po eiTbeiP¢ 
o p=-ao -00 0 0 OO.TP , 

+1 +00 

h = L:; L:; JoodTJoodpx(P.io)(S)Cpio. eiTbeiPrp, 
A __ 0 0 1 l,A,TP 

Jo-1 po-oo (5.17) 

where h±l = -f±,ho = fl' 
This then completes the derivation of an invariant ex­
pansion of solutions of the Proca equation inside the 
light cone. 

We now turn our attention to the Dirac equation. In 
order to obtain an invariant decomposition of a solu­
tion of the Dirac equation, we write the equation in a 
canonical basis 

(
zyn _a _ _ fl) 1/1 (x) = 0, 

oxn 
(5.18) 

where 

o (0 I) 
y = 10 ' (5.19) 

(0 = 1,2,3), where Ucx are the Pauli spin matrices 
and I the 2 x 2 identity matrix. Under the transforma­
tion {l of (5.7), Eq. (5. 18) changes to 

iyn all/ex) + iyn A aA-1 lJ (x) - Illi/(x) = 0, (5.20) 
ox n axn 

where If/(x) = A1/I(x), i.e., A is the 4 x 4 matrix accord­
ing to which the spinor 1/1 transforms under the 
Lorentz transformation n. 
In the C system we have that 

ilA-1 i 
ynA --=- = - [(tanha + cotha) ')11 - 3y O]. (5.21) 

ax n 2s 

If we now look for solutions of the form 

1/Ii = ~fi(s)Ci(a)eiTbeiP¢, i = 1,3, 

1/I
j 

=:B f/s)C/a)eiTbeiP¢, j = 2,4, 

the system of equations (5.20) becomes 

(
af 1 3) 7 i (OC 2 i-+- C + C --=-----as 2s f1 1 s cosha f1 1 S aa 

PI) + -. -h- C? + -2 (tanh a + cotha) C2 12 - fl13C3 = 0, 
Sln a ~ 

l - + - C - C -- --. (Of2 3) 7 i (aC 1 
as 2sf2 2 scoshaf22 s oa 

P 1 ~ - -. -h- C1 + -2 (tanh a + cotha) C1 11 - fl14C4 = 0, 
Sill a 
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i(al 3 + ~ f)C ___ 7_ f C + i (OC4 
as 2s 3 3 s cosha 3 3 s-----ail 

P 1 \ 
+ sinha C 4 + "2 (tanha + cotha) C 4) f4 - Ilf1 C1 = 0, 

i(a
f 4 +~J)C +_-T_JC (aC 3 P 
as 2s 4 4 s cosha 4 4 + -----ail - sinha C3 

+ ~ (tanha + cotha) C3) f3 - 1l12C2 = 0, (5.22) 

from which we see that the variables separate if we 
take 

Ci(a) = Ci~~.1/2;TP(a), i = 1,3, (5.23) 

C/a) = cij~.-1/2;TP(a), j = 2,4. 

The form of 11 (s) and f3 (s) is now determined by the 
pair of coupled equations 

(dd
S 

+ 23s - 2ijoP)f3 + illf1 = 0, 

(dds + ;S + 2ij oP) f1 + iflf3 = 0, 

which have solutions of the form16 

f 1(s) = (1/ll s )[c1Jv (fl S) + c2Jv (IlS)], 

f 3(s) = (l/fl S)[C2Jv (fl S) - c1J- v (IlS)] 

with v = i + 2ijoP. 

So the solutions of the Dirac equation are 

(5.24) 

(5.25) 

~~ 00 00 00 . 

1/I i = ~ P~--oo roo dTJo dpfi(S)Cij~,l/2;TP(a) 
i o=-1/2 

x eiTbeiPrp . 1 3 
, l = , , 

X iTb iprp e e , j = 2,4. 

This then completes this section on the solution of the 
Proca and Dirac equation in the C system. 

6. DIFFERENTIAL EQUATIONS SATISFIED BY THE 
EXPANSION MATRIX ELEMENTS AND THE 
NONRELATIVISTIC LIMIT 

From the recurrence relations derived in Sec. 4 we 
deduce that the matrix elements used in the expan­
sions of Sec. 5 satisfy the following differential equa­
tions: 

(i) Using the shorthand 

C pio () C pjo 
JA; Tp a = JA' 

we have for jo = J = A = 0 the differential equation 

- + (tanha + cotha) - - ---( 
d2 d 7 2 

da2 da cosh2a 

p2 ~ - -- (1 + p2) Coo = O. (6. 1) 
sinh2a 0 
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C~ A may be calculated from GSo by using 

- iT/cosha C80:::: [1 (1 + p2)_1/2qo' 

± J2(d~ ± si~ha) C80:::: [i(1 + p2)]1/2Q,±1' 
(6.2) 

(ii) jo:::: 1; Cio satisfies the equation 

[ 
d2 + (tanha + cotha) 

da2 
4T ) d + -

T2 - p2 cosh2a da 

T2 p2 _ --- - + 2 + p2 + tanh2a 
cosh2a sinh2a 

4T tanha J + (2T tanha - pp cotha) 
T2 - p2 cosh2a 

Cio:::: 0; 

(6.3) 

the other jo :::: 1 matrix elements may be deduced 
from the relations 

i ('f ~h - p\ q ±1 :::: ·{'iJdd + tanha ± -I!--h ) qo' cos a ), ~ a sm a 
(6.4) 

( ••• ). 1 c1/2 t· f' th t' 111 Jo :::: 2; 112,1/2 sa IS 1es e equa IOn 

[ 
d2 + (tanha + cotha) 

da2 \ 

T tanha ) d T2 
+ T ± p cosha da - cosh2a 

-~ ± p cotha + i (tanh2a - coth2a) 
sinh2a sinha 

+ T (i (tanh a + cotha) 'f _P-) 
T ± p cosha sinha 

1/2 
X C1/2 , "1/2 :::: O. (6.5) 

Similar equatioilS to those of (ii) and (iii) hold for the 
cases jo :::: - 1, jo :::: - i, respectively. 

These equations are useful in the passage to the non­
relativistic limit.13- 17 In this limit we have 

a --) 0, s.t. sa:::: r, (6.6) 

where r is the polar radius in the xy plane in non­
relativistic 3-space 

b --) 0, s.t. sb:::: z. (6.7) 

In addition we must require that 

in such a way that 

T/ s --) T', - a) < T' < a); (6.8) 

finally 

p --) 1 pis. 

In this limit Eq. (6. 1) becomes 

- + - - + 1 P 12 - T'2 - - CO (r) :::: 0; (
d2 1 d P2) 
dr2 r dr r 2 00 

(6.9) 

so taking the regular solution at r :::: 0, we have 

* Work supported by a National Research Council of Canada gradu­
ate scholarship. 

1 A partial list of references is the following: N. Mukunda, J. Math. 

(\'2 :::: 1 p 12 - T'2. 

From relations (6.2) we see that 

(6.10) 

Similar results hold in the j 0 :::: 1 case as q 0 then 
satisfies Eq. (6.9) 

This then gives the correct set of functions in 3-
space corresponding to the expansion of Maxwell's 
equations in cylindrical coordinates,18 viz., 

C (r z A-.) - J (ar)eiT'Z eiP¢ A , ,'t' - P+A , 

It == ± 1, 0, p :::: 0, ± 1, ± 2, ••.. , - IXl < T' < 1Xl. 

(6.11) 
We note that the solution in cylindrical coordinates is 
an expansion invariant with respect to the group 
0(2) lSi T 3' the direct product of rotations about Oz, 
and translations along Oz. So the reduction 0(1, 1) @ 

0(2) C 0 (3, 1) becomes in the nonrelativistic limit 
the reduction 0(2) e T 3 C E(3). 

For the nonrelativistic limit of the functions used in 
the Dirac equation solution we have the following dif­
ferential equations 

(~ + ! !!:.... + 1 12 _ T'2 _ (p ± i )2 )c1/2 == 0 
dr2 r dr p r2 li2,±1/2 , 

(6.12) 
so that this corresponds to a nonrelativistic solutiop. 
of the Dirac equation in terms of the complete set of 
functions 

(6.13) 

This coincides with the solution in cylindrical co­
ordinates in 3-space. 

7. CONCLUSION 

In this paper we have carried out the reduction of the 
principal series of 0(3, 1) in an 0(1, 1) @ 0(2) basis 
and examined the properties of the 0(3) ~ 0(1, 1) @ 

0(2) mixed basis matrix elements. It was shown that 
the expansion of solutions of the Proca and Dirac 
free fields (inside the light cone) corresponds to the 
relativistic generalization of cylindrical coordinates 
in 3-space. In future developments we propose to 
study the solution of other wave equations (both in­
side and outside the light cone) using these mixed 
basis matrix elements. Other related problems of 
interest include the reduction of the supplementary 
series of 0(3, 1) with respect to 0(1, 1) i& 0(2)19 and 
a study of the matrix elements in an 0(1, 1) @ 0(2) 
basis. 
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The dynamics of semi-infinite and infinite linear chains of identical masses and ideal springs is studied. In 
addition to the harmonic coupling between nearest neighbors, each particle is harmonically bound to ts equili­
brium poSition and is subject to friction and time-dependent applied forces. The Laplace transform method is 
used to express the motion of all the particles. The exact solutions are found and discussed for four different 
cases: (a) an infinite chain, (b) a semi-infinite chain, (c) a semi-infinite chain with the position of the end par­
ticle speCified as a function of time, and (d) an infinite chain with the pOSition of one particle specified as a 
function of time. By specializing some results of the present work, those of previous calculations on simpler 
systems by other authors are recovered. 

There are two main approaches to the mathematical 
description of physical phenomena. One sometimes 
tries to study as exactly as possible a Simplified 
model with only the main features of a real system, 
while some are more interested in an approximate 
solution of a realistic model. The one-dimensional 
systems have been favorite models for the first 
approach. 1 One such system extensively studied is 
the infinite chain of point masses and ideal massless 
springs 1,2 because it is one of the very few many­
body systems in which exact calculations are pos­
sible. However, there has not been much study of an 
exact treatment of a semi-infinite chain. Although 
there have been many calculations treating semi­
infinite lattices in conjunction with studies on surface 
phenomena, 3 most of them can be classified under the 
second approach above. 

The present work studies the exact dynamics of 
semi -infinite and infinite linear chains of identical 
masses and ideal massless springs with identical 
force constants. In addition to the harmonic coupling 
between nearest neighbors, each mass is harmonical­
ly bound to its equilibrium position and is subject to 
friction and time-dependent applied forces. The mo­
tion of each of the particles is expressed exactly in 
terms of the given quantities and initial conditions. 
Four different systems are studied: (a) an infinite 
chain, (b) a semi-infinite chain, (c) a semi-infini~e 
chain with the position of the end particle specifled 
as a function of time, and (d) an infinite chain with 
the position of one particle specified as a function 
of time. By specializing some of the results, those 
of previous calculations on simpler systems by 
other authors are recovered. 

Let xn (t) represent the displacement of the nth 
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particle measured from its equilibrium position. 
The integer n is restricted to n 2: 0 for the semi­
infinite systems (b) and (c). The coupled equations 
for the system are 

mXn = - k(xn - x n + 1 ) 

-k(xn -xn-1 ) [ 1 )] -Kxn -f3xn + ¢1I' 
(1 - 0nO 

(la,ld) 

(lb,lc) 

where m is the particle mass, k and K are the spring 
constants, f3 is the friction coefficient, 6 is the Kro­
necker delta, ¢n (t) represents the external force 
applied to the nth particle and is assumed to be a 
known function of time. This system of equations is 
to be solved for xn (t) subject to the initial conditions 

(2) 

For cases (c) and (d), in which Xo(t) is specified, Eq. 
(1) for n 0 determines the applied force ¢o(t) re­
quired to achieve such a specified motion for the par­
ticle n == O. 

If one assumes that xn and ¢n have the Laplace trans­
forms 

X (s) = L{x (t}} EX,dtxn (t) exp(-st), (3) 
n n 0 

<1>n(s) =: L{¢n(t)/k}, (4) 

then Eqs. (1) and (2) lead to an inhomogeneous linear 
difference equation of second order 

Xn+l - 2(20'2 + 4j.J.0' + 2a 2 - (1/2) [6:J )Xn 

+ X [ 1 ] =-H 
n-1 (l-ono ) n' 

(5a,5d) 

(5b,5c) 
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There are two main approaches to the mathematical 
description of physical phenomena. One sometimes 
tries to study as exactly as possible a Simplified 
model with only the main features of a real system, 
while some are more interested in an approximate 
solution of a realistic model. The one-dimensional 
systems have been favorite models for the first 
approach. 1 One such system extensively studied is 
the infinite chain of point masses and ideal massless 
springs 1,2 because it is one of the very few many­
body systems in which exact calculations are pos­
sible. However, there has not been much study of an 
exact treatment of a semi-infinite chain. Although 
there have been many calculations treating semi­
infinite lattices in conjunction with studies on surface 
phenomena, 3 most of them can be classified under the 
second approach above. 

The present work studies the exact dynamics of 
semi -infinite and infinite linear chains of identical 
masses and ideal massless springs with identical 
force constants. In addition to the harmonic coupling 
between nearest neighbors, each mass is harmonical­
ly bound to its equilibrium position and is subject to 
friction and time-dependent applied forces. The mo­
tion of each of the particles is expressed exactly in 
terms of the given quantities and initial conditions. 
Four different systems are studied: (a) an infinite 
chain, (b) a semi-infinite chain, (c) a semi-infini~e 
chain with the position of the end particle specifled 
as a function of time, and (d) an infinite chain with 
the position of one particle specified as a function 
of time. By specializing some of the results, those 
of previous calculations on simpler systems by 
other authors are recovered. 

Let xn (t) represent the displacement of the nth 
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particle measured from its equilibrium position. 
The integer n is restricted to n 2: 0 for the semi­
infinite systems (b) and (c). The coupled equations 
for the system are 

mXn = - k(xn - x n + 1 ) 

-k(xn -xn-1 ) [ 1 )] -Kxn -f3xn + ¢1I' 
(1 - 0nO 
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where m is the particle mass, k and K are the spring 
constants, f3 is the friction coefficient, 6 is the Kro­
necker delta, ¢n (t) represents the external force 
applied to the nth particle and is assumed to be a 
known function of time. This system of equations is 
to be solved for xn (t) subject to the initial conditions 

(2) 

For cases (c) and (d), in which Xo(t) is specified, Eq. 
(1) for n 0 determines the applied force ¢o(t) re­
quired to achieve such a specified motion for the par­
ticle n == O. 

If one assumes that xn and ¢n have the Laplace trans­
forms 

X (s) = L{x (t}} EX,dtxn (t) exp(-st), (3) 
n n 0 

<1>n(s) =: L{¢n(t)/k}, (4) 

then Eqs. (1) and (2) lead to an inhomogeneous linear 
difference equation of second order 
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n-1 (l-ono ) n' 

(5a,5d) 

(5b,5c) 



                                                                                                                                    

DYNAMICS OF HARMONICALLY BOUND CHAINS 1313 

where 

a = (s/2w), w = (k/m)1/2, (6) 

j.J. = {3(16km )-112, (7) 

O! = [2 + (K/k)]1/2/2, (8) 

Hn = (a + 2j.J.)Dn + v,. + ci>n, Dn = (2dn/w), 

v,. = (vn /w 2 ). (9) 

One can show (Appendix A) that Eq. (5) has the fol­
lowing solutions: 

X = 1. i3 H ~2In-YI (lOa) n D -00 -y , 

Xn = ~ i3 Hy[~2In-YI + ~2(n+y+1)], (lOb) 
o 

X = X ~2n + 1. 'i5 Hy[~2In-YI - ~2(n+y)], (10c) 
nOD 1 

Xn = XO~12nl 
+ .!.(i3 or i) Hy[~2In-YI - ~2In+YI], 

D 1 -1 
(rL?0) \n~O) (10d) 

where 

D = 4[(a2 + 2j.J.a + 0!2)2 - (~)2]1/2, (11) 

~ = (a2 + 2j.J.a + 0!2 + ~)1/2 - (a 2 + 2j.J.a + 0!2 - ~)1!2. 
(12) 

It can be shown (Appendix B) that the inverse trans­
forms of Xn are 

00 

xn(t) = 6 {Ky}Gn-y(t), (13a) 
-00 

(13b) 

00 

+ 6 {Ky}[Gn-y(t) -Gn+y(t)], (13c) 
1 

Xn(t) = OnOXO(t) + w2Xo(t)*[Glnl-1(t) -G 1nl + 1 (t)] 

+ (i3 or i){ Ky}[G n--y(t) - G n+-y(t)], (13d) 
1 -1 

(n~O) (nSO) 

where 

{KJ = dy(d/dt) + (4j.J.wd-y + v-y) + (l/m)cf>-y(t)*, (14) 

Gn(t) = G-n(t) 

= exp(-2j.J.wt) 1 tdt 'Jo[2bw(t2 - t'2)1!2] 
o 

X J 2n (2wt'), (15) 

(16) 

The J 's are the ordinary Bessel functions with the 
property J_ 2n = J 2n and * stands for the convolution. 
It is to be noted that the inverse Laplace transforms 
for the case 

0!2 - j.J.2 - ~ < 0, b' = (- 0!2 + j.J.2 + t)1/2 (17) 

lead to 

t 
Gn(t) = exp(-2j.J.wt)1 df'lo[2b'w(t2 - f'2)1/2] 

o 
X J 2n (2wf') (18) 

with the modified Bessel function lo, a result con­
tained in Eqs.(15) and (16) because Jo(iz) = lo(z). 

Study of the results given in Eq. (13) can be made 
most naturally by examining the properties of G n' To 
this end, one defines 

(19) 

gn(t) = exp(2j.J.wt)Gn (t) =g-n(t) = -gn(-f), (20) 

fn(t) =gn(t) =f-n(t) =fn(-t), (21) 

reducing the problem to the study of gn' It can be 
shown (Appendix C) that 

gn(t) =t df'Jo[2bw(t2 -f'2)1!2]J2n (2wf') (22) 
o 

= ! t dcjJ cos(ncjJ) (Sin{2wt[b
2 + Sin2(cjJ/2)]1!2}) (23) 

1f 0 2w[b2 + sin2(cjJ/2)]1I2 ' 

fn(t) = J 2n (2wf) - t(2bw)2[gn(t) + gn1 (t)]/2 (24) 

= l. t dcjJ cos(ncjJ) cos {2wt [b 2 + sin2( cjJ/2) ]112} , (25) 
1f 0 

(26) 

in = fn/t + (tw 2/2n)(fn_1 - f n+ 1 ), n 7:- 0, (27) 

iin = - 4w 2(b 2 + 1/2)hn + w2(kn_1 + hn+1), 

h =g or f, 

gn(O) =gn(O) =in(o) = 0, 

gn(O) =fn(O) = 0nO' 

gn(ex;!) = 0bo/(2w), 

g n (ex;!) =.it n (ex;!) = fn (ex;!) = fn (ex;!) = 0, 

(28) 

(29) 

(30) 

(31) 

(32) 

where gn1 in Eq. (24) is an integral of the form (22) 
with J 2 instead of J o. It is straightforward to write 
expressions similar to Eqs. (22)-(32) for G and F. 
For example, one obtains 

Gn (0) = Fn (0) = 0nO' 

G n (0) =Fn (0) = - 4j.J.wo nO ' 

Gn(ex;!) = ObOOIl0/(2w). 

(34) 

(35) 

(36) 

By use of the properties (33)-(35), one easily verifies 
that the solutions (13a)-(13d) satisfy the initial and 
boundary conditions. 

Eqs. (13) and (14) provide the physical interpretation 
of G and F as "propagators." For example, one ob­
serves that [Fn-y(t) + 4j.J.wG n-r(t)]dr and Gn-r(t)vr 
represent the displacement components in xn (t) due 
to dr = Xy(O) and vr = Xy(O). It is to be noted that the 
second propagators in Eqs. (13b)-(13d) represent the 
following reflections: (13b) a stiff-to-soft reflection 
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without phase reversal, (13c) and (13d) a soft-to-stiff 
reflection with phase reversal. The second terms of 
Eqs. (13c) and (13d) combined with the last term of 
Eq. (14) imply that the effect of specifying xo(t) is 
equivalent to an effective force mw 2xo(t) = kxo(t) 
applied to the particle I n I = 1, an expected result. 

Special cases of (a) and (c) have been studied, 4,5 and 
those results can be recovered very easily by special­
izing the present results. For systems without fric­
tion and applied forces, one sets 

(37) 

for all n, whence 

b = (a 2 - 1/2)1/2. (38) 

Then Eq. (25) reduces to 

in (t) = } J; d¢ cos(n¢) cos[nt (1 - 2y cos¢)1/2], (39) 

where 

n = 2aw = [(K + 2k)/m F/2, y = (w/n)2. (40) 

Huetra et al. 4 obtained Eq. (39) for this special case 
of (a), and their g n (t )/n is identical to g n (t) of the 
present work with (38). For a special case of (c), 
namely the simple semi -infinite chain, one sets 

K=f3=¢n(t)=o 

to get 

fl = 0, a = 1//2, 

( 41) 

b = O. ( 42) 

Morse and Ingard5 studied the propagation of a dis­
turbance along such a chain. Their initial and boun­
dary conditions were 

dn = xn (0) = 0, 

xo(t) = vot. 

For these conditions, Eq. (13c) becomes 

xn(t) = 0novot + w2(vo t)* (Jot dt'[J2n-2(2wt') 

-J2n +2 (2wt')]) 

( 43) 

(44) 

Vo ~ 
= 0novot + - L.J (2r + l)J2n+2r+1(2wt), (45) 

w reO 

which is the result of Morse and Ingard. 

APPENDIX A 

The highlights of the procedure for (c) are sketched 
below. The other cases can be treated similarly. 
Write the solution of Eq. (5c) as 

1 See, for example. E. H. Lieb and D. C. Mattis, Mathemalical 
Physics in One Dimension (Academic, New York, 1966). 

2 See, for example, the reviews and references in J. Hori, Speclral 
Properties of Disordered Chains and Lattices (Pergamon, Oxford, 
1968) and A. A. Maradudin, E. W. Montroll, G. H. Weiss, and 1. P. 
Ipatova, Theory of Lattice Dynamics in the Harmonic Approxima­
lion (Academic, New York, 1971), 2nd ed., Chap. 10. M. A. Huetra 
and H. S. Robertson, J. Stat. Phys. 1,393 (1969) contains a short 
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(AI) 

=An~~n + Bn~'2n, (A2) 

where ~~ are the solutions of the homogeneous equa­
tion and 

~± = (a2 + 2fla + a 2 + 1/2)1/2 ± (a2 + 2fla + a 2 

- 1/2) 1/2. (A3) 

Using the variation of parameter method for the dif­
ference equation. 6 one finds 

Xn = 00 -~ ~ Hr~!) ~~ + ~o + i ~ Hr~~)~'!' 
(A4) 

where Ao and Bo are independent of n but dependent 
on ~ and are to be determined by the boundary con­
ditions. Since ~;n and ~;n /D for In > 0 are unaccept­
able solutions7 and ~+L = 1, the choice of 

1 00 

Ao = J5 ~ Hr~! (A5) 
1 

is made. Imposing the boundary condition, namely the 
specified X 0' one gets 

1 00 

Bo = Xo - J5 ~ Hr~! (/.6) 
1 

and the final result, Eq. (lOc) with ~ = C. 

APPENDIX B 

If one writes 

p = (a2 + 2fla + a 2 - 1/2)1/2 

= [(a + fl)2 + b2]1/2, (El) 

with b given in Eq. (16), it follows from Eqs. (11) and 
(12) that 

~ = (p2 + 1)1/2 _ p, 

D = 4p(p2 + 1)1/2. 

(B2) 

(B3) 

With these, all the terms in Eq. (10) become easily 
recognizable from tables. 8 

APPENDIX C 

In Eq. (22) use the integral representation 

1 fIT J 2n (2wt') = - d¢cos(n¢) cos[2wt' sin(¢/2)] 
1T 0 

(Cl) 

for J 2n and make the power series expansions for J 0 

and for the second factor of the above integrand. The 
resulting series after the t' integration reduces to 
the second factor of the integrand in Eq. (23). For (31) 
and (32), use the relationship 

lim y(t) = lim [sY(s)], 
t-700 s~ 0 

historical note. 

where Y(s)=L{y(t)}. 
(C2) 

3 See, for example, A. A. Maradudin et aI., see Ref. 2, Chap. 9. 
4 M. A. Huetra, H. S. Robertson, and J. C. Nearing, J. Math. Phys. 

12,2305 (1971) and the papers quoted therein. 
5 P. M. Morse and K. U. Ingard, Theoretical Acoustics (McGraw­

Hill, New York, 1968), pp. 80-91. 
6 F. B. Hildebrand, Finite-Difference Equations and Simulations 

(Prentice Hall, Englewood Cliffs, N.J., 1968), p. 33. 
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7 R. V. Churchill, Operational Mathematics (McGraw-Hill, New 
York,1958),p.178. 

8 A. Erdelyi et al.. Tables of Integral Transforms (McGraw-Hill, 

New York, 1954), Vol. I [po 227-(6), p. 237-(43), p. 240-(23), 
p. 228-(13) instead of p. 227-(6) when b 2 < 0, etc.]. 

lattice Wind-Tree Models. II. Analytic Property 
D.J.Gates* 

Mathematics Department, Rockefeller University, New York. New York 10021 
(Received 10 March 1972) 

Three lattice versions of the wind-tree model of Ehrenfest are studied. It is shown that various moments, in­
cluding the recurrence time and the Cesaro limits limT~oo (liT) '6rl Ll.(t) of the mean-square displacement 
Ll.(t) and of the one-particle distribution p(t, x) at time t, are analytic functions of the reciprocal of the fugacity 
of the trees, or equivalently of the deviation 1-p of the density p of the trees from their close packing density 1, 
in certain disks in the complex plane. Two of the models were considered in Paper I, but the third is new. 

1. INTRODUCTION 

In Paper J1 we introduced four lattice versions of the 
wind-tree model of Ehrenfest, and showed that various 
moments, including the mean-square displacement 
and the recurrence time, are bounded above if the 
density of the trees is sufficiently high. We begin by 
introducing another model (V) and prove the analo­
gous results. We shall then prove a new analytic 
property of models I, II, and V. 

We consider a system of square particles, called 
trees, with diagonal of length 1, centered on the points 
(Z2) of a simple square lattice with unit spacing. A 
typical configuration is illustrated in Fig. 1. We sup­
pose that a particle, called a wind particle, starts at 
some point with unit velocity to the right, and is de­
flected through a right angle whenever it strikes a 
tree while the tree remains fixed, as shown in Fig. 1. 
It is clear that in this model a wind particle is de­
flected always in the same direction by a tree, the 
actual direction depending on the starting point. It is 
therefore essentially equivalent to a mode12 (Fig. 2) 
in which the wind particles move only on the lattice 

FIG.1. A typical trajectory in model V. Note that trajectories 
bend always in the same direction; in the case shown, to the left. 

• • • • • • • • • • • 
• • 

• r I • 
• 0 

• • • • 
• • • • 
• • • • • • • • • • • 

FIG. 2. The model, which is essentially model V, in 
which trajectories are confined to the lattice bonds. 

lines and are deflected always to the left by point 
trees. We henceforth confine our attention to this 
latter model, and suppose for definiteness that the 
wind particle starts at the origin. 

Only a certain set R(t) of trees can be reached in 
time t. The position qt(C) and velocity p/C) at time 
t depend only on t and the set C C R(t) of sites occu­
pied by trees. The probability of a set C in R(t) is 
taken to be (II indicates number of points) 

ZICI(1 +z)-IR(t)l. (1.1) 

This means that the probability of finding a tree on 
any site (Le., the density of the trees) is just z/(1 + z). 
We define the moment ma(t) as the average with res­
pect to tree configurations of I qt(C) I a, viz. 

m
a
(t)=(1+z)-IR(t)16 zICllqt(c)la. (1.2) 

eCR(t) 

If the system is enclosed in a box, formed by a close­
packed array of trees, there will be a set A of sites 
available to trees. We define a trajectory J as the 
complete continuation of the path of the wind particle 
for all t. It is clear that all J in A are closed. The 
probability P A (J) of a traj ectory is just the total prob­
ability of all sets C which result in J (see Paper I 
for details). The recurrence time T(A) is defined as 
the average time taken for the particle to return to 
the origin with its initial velocity, namely 

T(A) = 6 PA(J)IJI, (1. 3) 
JE:[O) 

where IJI is the length of J and [0] is the set of J' S 

which pass through 0 in the horizontal direction. We 
also define the moments 

Ma(A) = 6 PA(J)IJI a. (1.4) 
JE [0) 

The PA(J) are independent of A if J does not touch the 
boundary trees: They therefore have well-defined 
limits P(J) as A -) co, given by 

P(J) = zF(J)(1 + Z)-F(J)-E(J), (1. 5) 

where F(J) is the number of occupied (i.e., filled) lat­
tice sites which J meets and E(J) is the number of 
empty sites through J passes. 

2. MODEL V: ABSENCE OF DIFFUSION 

Our first result is 

Theorem 1: If z > 216 - 1 in model V, then the 
ma(t) are bounded uniformly in t, and the limits 
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density of the trees is sufficiently high. We begin by 
introducing another model (V) and prove the analo­
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lines and are deflected always to the left by point 
trees. We henceforth confine our attention to this 
latter model, and suppose for definiteness that the 
wind particle starts at the origin. 

Only a certain set R(t) of trees can be reached in 
time t. The position qt(C) and velocity p/C) at time 
t depend only on t and the set C C R(t) of sites occu­
pied by trees. The probability of a set C in R(t) is 
taken to be (II indicates number of points) 

ZICI(1 +z)-IR(t)l. (1.1) 

This means that the probability of finding a tree on 
any site (Le., the density of the trees) is just z/(1 + z). 
We define the moment ma(t) as the average with res­
pect to tree configurations of I qt(C) I a, viz. 

m
a
(t)=(1+z)-IR(t)16 zICllqt(c)la. (1.2) 

eCR(t) 

If the system is enclosed in a box, formed by a close­
packed array of trees, there will be a set A of sites 
available to trees. We define a trajectory J as the 
complete continuation of the path of the wind particle 
for all t. It is clear that all J in A are closed. The 
probability P A (J) of a traj ectory is just the total prob­
ability of all sets C which result in J (see Paper I 
for details). The recurrence time T(A) is defined as 
the average time taken for the particle to return to 
the origin with its initial velocity, namely 

T(A) = 6 PA(J)IJI, (1. 3) 
JE:[O) 

where IJI is the length of J and [0] is the set of J' S 

which pass through 0 in the horizontal direction. We 
also define the moments 

Ma(A) = 6 PA(J)IJI a. (1.4) 
JE [0) 

The PA(J) are independent of A if J does not touch the 
boundary trees: They therefore have well-defined 
limits P(J) as A -) co, given by 

P(J) = zF(J)(1 + Z)-F(J)-E(J), (1. 5) 

where F(J) is the number of occupied (i.e., filled) lat­
tice sites which J meets and E(J) is the number of 
empty sites through J passes. 

2. MODEL V: ABSENCE OF DIFFUSION 

Our first result is 

Theorem 1: If z > 216 - 1 in model V, then the 
ma(t) are bounded uniformly in t, and the limits 
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Ma == lim Ma(A) 
/1.->00 

(2.1) 

and 
T 

rna == lim -T
1 6 m()(t) 

T->OO t =1 
(2.2) 

exist and are given by 

M = 6 p(J)IJI a 
a JE[O] 

(2.3) 

and 
_ 1 IJI I a 
ma = 6 P(J) -IJI 6 IqP)1 , 

JE[O] t=1 
(2.4) 

where qt(J) is the position at time of a particle mov­
ing on J. 

One can also replace the sums over t in (2.2) and 
(2.4) by integrals. The theorem implies in particular 
a finite recurrence time, absence of diffusion, and 
randomization of the initial velocity as described in 
Paper 1. Note that only closed J's appear in (2.3) and 
(2.4) even though the box is infinitely large. 

To prove the theorem, we first need an upper bound 
on P/I.(J). We note that a trajectory of lengthj > 4 
cannot meet trees on more than three successive 
sites, since it cannot have more than three successive 
bends. If we call the absence of a bend a continuation, 
we deduce that there must be at leastj/4 continua­
tions in a trajectory of lengthj > 4. However, at most 
four different continuations in the same trajectory 
may occur at the same lattice site, as illustrated in 
Fig.3. There are therefore at leastj/16 different 
empty lattice sites traversed by the traj ectory. This 
implies (see Paper I) that 

(2.5) 

Next we note that the number of trajectories of length 
j is less than 2j-1 because a trajectory has only two 
possibilities at each lattice point: a bend to the left 
or a continuation. The probability of the trajectory 
of length 4 is just z4/(1 + z)4. It follows that 

M (A) < 6 2j-1(1 + z)-j/16ja + z4(1 + z)-44a. (2.6) 
a j>4 

If we let the sum extend to infinity, we have a bound 
for all A, and this bound is finite for 2(1 + z)-1/16< 1. 
The boundedness of ma(t) follows from the inequality 

ma(t) < 2-aMa, 

which follows in turn from Sec. 2 of Paper I. The 
existence of Ma and rna and the formulas (2.3) and 
(2.4) follow from the arguments of Sec. 6 in Paper I. 
These arguments also prove the existence of the 
Cesaro limit 

. 1 T 
p(x) == 11m -T 6 p(t,x) 

T-+oO t=1 
(2.7) 

.'.--_--,'.'.-__+--;. 

FIG.3. A trajectory in model V for 
.I~:::::;;::::=#:=::::~. which empty and occupied sites are 

traversed more than once. 

•• '---+----l •. '------l. 
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of the one-particle distribution function p(t,x) defined 
in I. 

3. MODEL V: ANALYTICITY 

The denSity p of the trees is related to their fugacity 
z by p = z/(1 + z) so that z = CI) corresponds to the 
close-packing denSity p = 1. The natural variables 
for a series expansion of the moments Ma and rna at 
high denSity are therefore 

~==I-p=I/(1+z) and ~==I/z. (3.1) 

The purpose of this section is to show that the mo­
ments are analytic functions of these variables in a 
certain disk in the complex plane, so that such series 
expansions are possible and, hopefully, may be useful 
for extrapolation to lower densities. We shall prove 

Theorem 2: The moments Ma and rna for model V 
exist as functions of the complex variables ~ or ~, 
and are analytic in the disks 

(3.2) 
or 

I ~ 1< 2-16(1 + 2-16)-15/[1 - 2-16(1 + 2-16)-15]. (3.3) 

To prove the theorem, we note from (1. 5) and (3.1) 
that 

P(J) = ~ E(1 - ~)F, (3.4) 

which is an entire function of ~ in the complex plane. 
If J has length j > 4, thEm E > j /16 as before, and also 

F . E < 15 . ~J- -J. 16 

These yield, provided I ~ I < 1, 

I P(J) I ~ I ~ I Ell - ~ I F 

~ I ~ I E(1 + I ~ I )F 

< I ~ I j/16(1 + I ~ I )15jI16. 

Now (2.3) can be written 

Ma = 6 p(j)ja, 
j 

where 

p(j) == 6 P(J) 
JE[O]:IJI=j 

(3.5) 

(3.6) 

(3.7) 

is the probability of a trajectory in [0] of lengthj. 
We deduce that for j > 4 

Ip(j)I< 2j-11~lj/16(1 + 1~1)15j/16. (3.8) 

It follows from the Weierstrass M-test that (2.3) 
converges uniformly in ~ provided 

(3.9) 

It is clearly necessary that I ~ I < 2-16. This is not 
sufficient, but substituting it in (3.9) yields the suffi­
cient condition 

21 ~ 11/16(1 + 2-16)15/16 < 1, 

which is just (3.2). Every term in (2.3) is analytic, 
so that the uniform convergence in the disk (3.2) im­
plies that Ma is analytic in this disk. The same argu-
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ment applied to (2.4) proves the analyticity of the 
ma' Finally we use (3.1) to obtain 

I ~ I = I ~ I /11 - ~ I ~ r ~ I /(1 - I ~ I), 

which in combination with (3.2) yields (3.3). 

The same argument can be used to prove the analy­
ticity of p(x) defined by (2.7). 

4. ANALYTICITY IN MODEL I 

For a description of model I we refer the reader to 
Paper I. It too has only closed trajectories. The 
analog of Theorem 1 was proved in Secs. 2 and 6 of I. 
Formula (1. 5) for P(J) also holds if we reinterpret 
F(J) and E(J) as the numbers of occupied and empty 
squares respectively, of one sublattice of Z2, which 
are contained in a "sausage" formed by the squares 
which border j (see Fig. 4). Now E ? j /4 as shown in 
Sec. 2 of I. Also we can have at most one tree per 
unit length of J, so that F ~ j. This yields by the argu­
ment of the previous section 

~ ~; 
. 

/; · . . ~:'! /1 
. ~ . · 

~ · . 
· 

· 
. . · 

~ . . V; 
FIG.4. The "sausage" formed by the squares which border a trajec­
tory in model I. Only the sublattice of squares containing dots are 
possible sites for trees. Trees are shown by shaded squares. The 
number of occupied sites in the sausage is F(J) = 8, and the num­
ber of empty sites is E(J) = 18. 

• Supported by the U.S. Air Force under grant AFOSR 72-2187 
1 D.J.Gates,J. Math. Phys.13, 1005 (1972). 

(4.1) 

for I ~ I < 1, which in turn leads to 

Theorem 3: The moments Ma and rna for model I 
exist as functions of the complex variables ~ and ~, 
and are analytic in the disks 

(4.2) 

or 

5. ANALYTICITY IN MODEL II 

Model II is described fully in Paper I. It differs from 
model I in that all squares of the lattice may contain 
trees. Again formula (1. 5) for P(J) holds with the 
same definition of F(J) and E(J) as for model I. Now 
we find instead that E ? j /2, while again F ~ j. Thus 
the argument of Sec. 3 yields 

(5.1) 

which in turn leads to 

Theorem 4: The moments Ma and rna for model II 
exist as complex functions of the variables ~ or ~ and 
are analytic in the disks 

I ~ I < 1 (1 + 10)-2 
9 9 (5.2) 

or 

(5.3) 

Again the function p(x) defined by (2.7) is analytic for 
models I and II in the appropriate disks. An open 
problem is to extend the results of this paper to the 
models III and IV defined in Paper I. 
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Exact Nearest Neighbor Statistics for One-Dimensional Lattice Spaces 
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It is shown that A(n", q, N), the number of ways of arranging q indistinguishable particles on a one-dimensional 
lattice space of N compartments in such a way as to create n

" 
nearest neighbor pairs is A(nll' q,N) = (~--:t:,') 

x (~;~). A similar expression is also derived for noo, the number of pairs of vacant nearest neighbors. The 
normalization, first moment, and most probable value of these statistics are also discussed. 

1. INTRODUCTION 
A complete statistical mechanical treatment of co­
operative phenomena based on the nearest neighbor 
approximation requires knowledge of the degeneracy 
associated with pairs of nearest neighbors which have 

(1) both sites vacant (0-0), 
(2) one site vacant and one occupied (0-1), 
(3) both sites occupied (1-1). 

If nOD' nOl ' and n ll are the numbers of these pairs, 
respectively, in an arrangement, then they are related 
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byl 

(1) 

2(N - q) = 2noo + nOl' (2) 

where N is the number of sites and q the number of 
particles. 

The degeneracy associated with 0-1 pairs has been 
considered in connection with the statistical mechani­
cal treatment of the one-dimensional Ising model of 
magnetism. 2 The present paper is concerned with a 
determination of the exact degeneracy of 0-0 and 1-1 
nearest neighbor pairs. Specifically, we first wish to 
calculate A(n ll , q, N), the number of arrangements 
containing nll occupied nearest neighbor pairs, creat­
ed when q indistinguishable particles are arranged on 
a one-dimensional lattice space of N sites. 

In previous papers the exact statistics of one-dimen­
sional random arrays of dumbbells,3 A-bells,4 and 
the exact ensemble average 5 of the number of nearest, 
next nearest and third nearest occupied neighbor 
pairs for simple particles on a two-dimensional 
lattice space have been treated. To a considerable 
degree these papers serve as a point of departure for 
the present calculation. 

II. DETERMINATION OF A(n l l' q,N) 

If we consider the number of arrangements possible 
when q indistinguishable particles are arranged in all 
possible ways on a one-dimensional lattice space 
having N sites and select those which contain nIl 
occupied nearest neighbor pairs, we find that the se­
lected arrangements always contain q - n11 "units" 
(see Fig. 1). These "units" consist of one or more 
contiguous occupied sites together with a vacancy if 

110f0 I I~ C+E I lwal CfO I I~G~ 

II (}f? I 1r?Ja10f0 I III if? I I~[EEJ-
110fifif0 I I~GJJII + I I~B~ 
18]11++++ I I~GJJ~G~ 

IIC+E I ~GIJIC4+ I ~BI 
FIG.1. Eight indistinguishable particles are arranged on a one­
dimensional lattice space of N = 15 sites to yield four nearest 
neighbor pairs. Regardless of the configuration, there are alw~ys 

- n = 4 "units". (The "units" are shown as the unshaded SItes). 
~ach ~1 these "units" is separated from other "units" by q - nl1 - 1 
vacancies which cannot be permuted, i.e., the occupIed nearest 
neighbor groups and their terminating vacancy (if needed) form an 
indistinguishable unit. There are N - q -(q - nll - 1) = N - 2q + 
n + 1 = 4 permutable vacancies (shaded). Thus there are (~) ways 
ot'irranging the four "units" (including their separating. vacancI.es) 
and the four permutable vacancies. This figure shows five pOSSIble 
arrangements in which the indistinguishable :'units" are composed of 
all the possible various groups of nearest neIghbor paIrs. 
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FIG. 2. The eight particles illustrated in Fig. 1 have q - 1 = 7 par­
tition between them. Of the seven partitions nll = 4 separate occu­
pied nearest neighbor pairs (short horizontal lines) and q - n l1 -

1 = 3 (the jagged lines) do not. Thus there are (~) ways of arranging 
the separating partitions to form the q - n ll = 4 indistinguishable 
"units" discussed in Fig. 1. 

one is needed to isolate a "unit" from other particles 
or other vacancies. Thus, the number of separating 
vacancy is one less than the number of "units." 

There are N - q vacancies, but not all of these are 
permutable, i.e., not all of the N - q vacancies can be 
interchanged to form additional arrangements. There 
are q - n11 - 1 vacancies which must be utilized to 
separate the q - n 11 "units." Thus the number of in­
distinguishable, permutable vacancies is N - q -(q -
n11 - 1) = N - 2q + n11 + 1. 

It follows then that the total number of individual 
things to be permuted is the sum of the "units" and 
permutable vacancies, (q - n 11 ) + (N - 2q + n 11 + 1) = 
N - q + 1. The number of ways of arranging N -q + 1 
things of which q - n 11 are one kind and N - 2q + nll 
are another is 

(
N - q + 1) ( N - q + 1 ) 
q - n11 = N - 2q + n l1 + 1 . (3) 

Equation (3) describes the number of ways the "units" 
and permutable vacancies may be arranged. To de­
termine A(n11 , q, N), we must multiply Eq. (3) by.th~ 
number of ways the particles can be arranged wIthm 
the indistinguishable "units." There are q - 1 parti­
tions separating the q particles in the "units" (see 
Fig. 2); n ll of these partitions separate occupied 
nearest neighbor pairs and q - n 11 - 1 do not. There 
are 

(
q - 1) _ ( q - 1 ) 
n11 - q - n

l1 
- 1 (4) 

ways of arranging the q - 1 partitions, wh.ere n 11 a.re 
partitions separating occupied nearest neIghbor paIrs 
and q - nIl - 1 are the number of partitions which 
do not. 

ThusA(n 11 ,q,N) is the product of Eqs.(3) and (4), 
Le., 

A(n l1 ,q,N) = (~~:l; 1) (qn~11) 

m. DETERMINATION OF A(noo , q,N) 

(5) 

To determine A(noo , q, N), the number o! arrange.­
ments containing nOD vacant nearest neIghbor paIrs 
which are created when q particles are arranged on 
a one-dimensional array of N sites, we consider the 
"units" to consist of one or more contiguous vacant 
sites together with a filled site if one is needed to 
isolate the "unit" from other particles or vacancies 
(see Fig. 3). There are always N - q -: no.o ':unit.s," 
and they are initially considered to be mdIstingUlsh­
able. 

There are q occupied sites; but not all of these c.an 
be permuted to create additional arrangements, l.e., 
some of the particles are utilized to isolate the 
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"units." More specifically, N - q - noo - 1 occupied 
sites must be used to isolate the N - q - nOD "units." 
Thus the number of indistinguishable, permutable 
occupied sites is 

q - (N - q - nOD - 1) = 2q + nOD - N + 1. 

There are q + 1 things to be permuted, N - q - noo 
"units," and 2q + nOD - N + 1 permutable vacancies. 

These can be arranged in 

(
q+1 )_(q+1 ) 

N - q - nOD - 2q + nOD - N + 1 
(6) 

ways. 

The positions of the vacancies of which the "units" 
are composed can be changed to other units to yield 
additional arrangements. There are N - q - 1 parti­
tions separating these vacancies (see Fig. 4); of these 
partitions nOD separate vacant nearest neighbors and 
N - q - 1 - nOD do not. These partitions may be per­
muted in 

(N - q - 1) = (N - q - 1 ) 
nOD N - q - nOD - 1 

(7) 

independent ways. 

A(noo , q,N), the total number of arrangements each 
containing nOD vacant nearest neighbor pairs created 
when q particles are arranged on a one-dimensional 
lattice space of N sites, is the product of Eq. (6) with 
Eq. (7), i.e., 

FIG. 3. For noo = 3, q = 8, and N = 15, the number of "units" is 
N - q - noo = 4 (the unshaded sites) and the number of permutable 
vacancies (shaded) is q -(N - q - noo - 1) = 2q + nOD - N + 1 = 5. 
There are (~) = 126 ways of arranging the "units" and the per­
mutable vacancies. 

11111! I 
FIG. 4. The seven vacancies shown in Fig. 3 have N - q - 1 = 6 
partitions between them. noo = 3 of these partitions separate vacant 
nearest neighbor pairs (short horizontal lines) and three do not 
(jagged lines). There are (~) = 20 ways of arranging the separating 
partitions to form the N - q - noo = 4 "units" illustrated in Fig. 3. 

K. Huang, Statistical Mechanics (Wiley, New York, 1963). 
E. Ising, Z. Physik 31,253 (1925). 

3 D. Lichtman and R. B. McQuistan, J. Math Phys. 8, 2441 (1967). 

(
q + 1 ) (N - q - 1) 

A(noo , q, N) = N - q - noo nOD . 
(8) 

IV. NORMALIZATION 

The zeroth moment of the statistics characterized by 
A(n11 ,q,N) is obtained by summingA(n11 ,q,N) over 
all possible values of n11 , i.e., for n11 = 0 up to n

ll 
= 

q - 1. The Vandermonde theorem 6 shows this sum 
to be 

q-l 

I; 
n=O 

(9) (N -=-q + 1) (q - 1) = (N). 
q n11 nIl q 

The result explicitly stated in Eq. (9) is to be expect­
ed because (~), the totality of all arrangements is 
composed of those arrangements having no nearest 
neighbor pairs (nnp's), one nnp, two nnp's, etc. 

A similar result for A(noo , q, N) is obtained, Le., 

(10) 

V. FIRST MOMENT AND MOST PROBABLE VALUE 

The mean value of these statistics, i.e., the ensemble 
average number of occupied nearest neighbor pairs 
per arrangement is 

(n
11

) = q£ n
11 

(N ~ q + 1) (q - 1) (N) 
nll=O q nIl nIl q 

= (q _ 1) 'Ii (N ~ q + 1) (q -! ) (N) (11) 
nu=O q n11 n11 1 q 

(N - 1) (~ ~ ;) (~) 
q(q - 1) 

N 

a relationship consistent with previously published 
results 5 which indicate that the average number of 
nearest neighbors that a particle has varies as the 
coverage, e == q/N,for a one-dimensional lattice 
space. A similar result, 

nOD = (N - q)(N - q - l)/N, (12) 

is obtained for the average number of vacant nearest 
neighbor pairs per arrangement. 

The most probable value of A(n l l' q, N), i.e., the value 
of nll at which A (n ll , q, N) is a maximum, can be de­
termined by using the Stirling approximation. It is 
found to be q(q - 1)/N, so that the most probable 
value and the average value are the same. 

ACKNOWLEDGMENTS 

The author wishes to thank S. J. Lichtman for many 
helpful discussions and D. Bork for doing the draw­
ings. 

R. B. McQuistan, Nuovo Cimento 58,86 (1968). 
R. B. McQuistan,J.Math. Phys.12, 2113 (1971). 

6 J. Riordan, Combinational Identities (Wiley, New York, 1968). 

J. Math. Phys., Vol. 13, No.9, September 1972 



                                                                                                                                    

Anharmonic Oscillator with Polynomial Self-Interaction 
Thomas I. Banks* 

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 

and 

Carl M. Bender t 
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 

(Received 7 February 1972; Revised Manuscript Received 18 April 1972) 

A quantum anharmonic oscillator with a polynomial self-interaction is defined in coordinate space by a Hamil­
tonian of the form H = -d2/dx2 + ix2 + g[(h2)N + a(h2)N-l + b(h2)N-2 + ... J. Using WKB techniques we 
derive a secular equation which determines the eigenvalues of H for small 1 g I. We find that the qualitative 
analytic structure of these eigenvalues as functions of complex g remains unchanged for all fixed values of a 
b, ... , including a = b = " . = O. The secular equation also implies an elegant theorem which predicts how the 
a, b, ... terms in H affect the large-order growth of perturbation theory. We use this theorem to compare the 
perturbative behavior of non-Wick-ordered and Wick-ordered field theories in one-dimensional space-time. 
In particular, we show that the perturbation series 6 A g" and 6 B gn for the energy levels of the (g1/I2N) 
and (:gt/l2N:)1 field theories differ in large order by an"over-all muitiplicative constant lim ~ A /B = 1 
exp[N(2N _ 1)/(2N _ 2) J. noon n 

I. INTRODUCTION 

This study was originally motivated by some remark­
able computer output. We compared the first 100 
Rayleigh-Schrodinger coefficientsl in the perturba­
tion series for the ground- state energy of two very 
different theories, the non-Wick-ordered and the 
Wick-ordered x 6 anharmonic oscillators. We obser­
ved that as n, the order of perturbation theory, gets 
large, the ratio of the nth coefficients for each oscil­
lator approaches a constant. Numerical analysis of 
successive ratios 2 determined that the value of this 
constant is 42.521082 .. '. We then recognized that 
this number was probably equal to e l5 !4. A subse­
quent search for a theoretical explanation of this re­
sult led us to formulate a completely general proce­
dure for analyzing anharmonic oscillators with poly­
nomial self-interactions. (The Wick-ordered x 6 os­
cillator is one such example). 

A quantum anharmonic oscillator with a polynomial 
self-interaction is defined by the differential equation 

~- ::2 + :2 + g[( ~2r + a(~2r-l + b(~2r-2 + .. J 
- E (g, a, b, ... )~ lP(x) = 0 (1) 

and the boundary condition 

lim lP(x) = o. (2) 
1 x 1-+00 

The special case of an anharmonic oscillator with a 
monomial self-interaction (a = b = ... = 0) has al­
ready been investigated. 3 It was shown that WKB 
techniques lead to an approximate relation (secular 
equation) between the eigenvalues E and the coupling 
constant g for small I g I. 
In Sec. II we extend the WKB techniques of Ref. 3 and 
derive Eq. (32), the corresponding secular equation 
for the general problem (a, b , • •. ~ 0). Then, follow­
ing the approach of Ref. 3, we use the general secular 
equation to ascertain the analytiC structure of E as a 
function of complex g. We find that for fixed a,b, ... , 
the array of Singularities that E(g) exhibits (an infi­
nite sequence of square-root-type branch pOints with 
a limit point at g = 0) is qualitatively independent of 
the choice (zero or nonzero) of a.b,···. As a,b,'" 
vary, the locations of the singularities shift but the 
number and nature of the singularities remain con­
stant. This result strongly supports the conjecture 
made in Ref. 3 that the singularity structure and the 

associated phenomenon of level crossing4 are very 
general and model independent characteristics of sin­
gular perturbation theory. 

In Sec. III we turn our attention to the large-order be­
havior of perturbation theory. Applying some recent­
ly published dispersion techniques5 to the general 
secular equation derived in Sec. II gives the following 
theorem: Let EK.N.a.b. "'(g), the Kth energy eigen­
value of the differential equation (1), have a perturba­
tion expansion of the form 

00 

E K.N.a.b ... · -_ K + -21 + '\' AK Nab L.J n'" ... ·gn. 
n=l 

Then, for large n, 

Ali.N.a.b ... · 1 
A:.N.O.O.... = ea!(N-l) (1 + C l(K, N, a, b)-; 

(3) 

1 1) + C2(K, N, a, b, c) - + C3(K, N, a, b, c,d) - + ... 
n 2 n3 

(4) 

(The leading large-n behavior of Af{,N,O.O ... · is given 
in Ref. 5). 

From Eq. (4) and Ref. 5 we observe that the domi­
nant growth of Af{·N.a.b .. . is controlled by the X2N 

term in the Hamiltonian H in Eq. (1). The X 2N- 2 term 
in H only affects the over-all constant. The X 2N- 4 

term can at most influence the O(1/n) correction to 
the growth; the X 2N - 6 term can only affect the O(1/n 2) 
correction, and so on. Thus, when we consider the 
large-order behavior of perturbation theory. the 
a, b , ... terms in the Hamiltonian may be considered 
"small." In this sense, Eq. (4) tells how to "perturb 
about infinite order" in perturbation theory. 6 

In Sec. IV we show that the quantum anharmonic os­
cillator defined in Eq. (1) is equivalent to a self-in­
teracting Bose quantum field theory in one-dimen­
sional space-time. We then define Wick ordering 
and discuss its effect upon perturbation theory. In 
particular, we show that a Wick-ordered monomial 
(glj;2N)l field theory is equivalent to a non-Wick­
ordered field theory with a Hermite polynomial self­
interaction. We then apply the theorem of Sec. III 
and show that as n ---7 OC; the ratio of the nth Rayleigh­
Schrodinger coefficients for the perturbation expan­
sion of the energy levels of the (glP 2N )l and 
(: g lP 2N :) 1 field theories is exp[N(2N - 1)/ (2N - 2) J. 
When N = 2, this expression attains the value e3 , a 
result already derived in Ref. 5. When N = 3, it re-
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duces to e 1S /4, which is precisely the result of our 
computer calculation. 

U. DERIVATION OF THE SECULAR EQUATION 

In this section we follow Ref. 3 closely. We sum­
marize the techniques needed to obtain the secular 
equation and emphasize the important new difficul­
ties encountered in treating polynomial interactions. 

A. Analytic Continuation of E(g) 

As in Ref. 3 we define E(g) for complex g by Eq. (1) 
and the general boundary condition 

lim 1/I(x) = 0 for 
Ix 1-+ 00 

I arg(±x) + (2N + 2tl argg I < 1I(2N + 2t1. (5) 

[The sector in Eq. (5) is unchanged by the X2N- 2, 
x 2N-4, ... terms in Eq. (1) because for Ix I suffici­
ently large, only the X 2N term determines the size 
and location of the sector.] Equation (5) tells us that 
as g rotates into the complex g plane, the differential 
equation [Eq. (1)] and its associated boundary condi­
tion [Eq. (5)] must be rotated into the complex x plane 

B. The Turning Points 

The turning points for the zeroth-order WKB solu­
tion to Eq. (1) are solutions of the equation 

tx2 + g[(!X 2)N + a(h2)N-1 + b(~x2)N-2 + ... ] 

- E = O. (6) 

Two of the turning pOints lie near the origin at a dis­
tance of order 1: 

x ~ ± (2E) 1/2 • 

The others lie approximately equally spaced on a 
circle of radius g-1I(2N-2): 

x ~ g-H2N-2)eni/(2N-2)2(N-2)/(2N-2)e1fim/(N-1), 

(7) 

m = 0,1, ... ,2N- 3. (8) 

As g rotates into the complex plane, the circle of 
turning points rotates in the same direction as, but 
faster than, the sector in Eq. (5). Thus, turning points 
periodically enter on one side and leave from the 
other side of the rotating sector. The sector is so 
narrow that there is either zero or one, but never 
more than one, turning point lying inside it. 7 

C. The WKB Approach 

There are two methods for solving Eq. (1) approxi­
mately using matched asymptotic expansions, the 
choice of method depending upon whether or not a 
distant turning point lies in the rotating sector. When 
there is no turning point in the sector (for example, 
when g is real and positive), (a) Eq. (1) is solved near 
Ix I ~ 0, where it is approximated by a parabolic cy­
linder (Weber) equation; (b) it is solved again near 
Ix I ~ co using WKB theory; (c) the two solutions are 
matched asymptotically in the intermediate region; 
(d) the matching places a condition on E, which in 
zeroth-order WKB gives the expected result 

E = K + ~ + O(g). (9) 

When a turning point lies in the sector, it interferes 
with the above connection by distorting the approxi­
mations to the function 1/I(x). To treat this configura­
tion (a) Eq. (1) is approximated for Ix I ~ 0 by a para­
bolic cylinder equation as above; (b) the approxima­
tion in part (a) is matched asymptotically to a WKB 
solution valid between the origin and the turning point; 
(c) the WKB solution in part (b) is matched asymp­
totically to the Airy equation solution valid near the 
turning point; (d) the Airy solution from part (c) is 
in turn matched asymptotically to a WKB solution 
valid as Ix I ---- co; (e) the condition for matching is the 
desired secular equation obeyed by g and E. 

D. Derivation of the Secular Equation 

To simplify the derivation of the secular equation we 
introduce new notation 

P = A exp[- ilI(N + 1)/ (2N - 2)], 

r = xe in / 4 2-(N-2)/(2N-2), 

E = iE2N1(N-D, 

In terms of the new notation, Eq. (1) becomes 

[~ + T2(r2 -r2NpN-1_ iar2N-2pN-1 
dr2 T 

(10) 

(11) 

(12) 

(13) 

(14) 

+ /2pN-1r2N-4 + ... - E)] t/J(r) = O. (15) 

Keeping in mind that Ip I is small, we proceed with 
the zeroth-order WKB solution outlined above. We 
will retain terms to lowest order in powers of p. E 

is of order 1. 

The locations of the turning points are 

(16) 
and 

r 1 ~ P-1/2{1 + p/(2N- 2)[-E- (ia/T)] + O(p2)}. (17) 

Note that the first-order correction to r 1 depends 
only on a, the second-order involves a and b, and so 
on. 

Careful analysis shows that when only lowest-order 
powers in p are kept, the parabolic cylinder function 
and Airy solutions do not depend on a, b, .... More­
over, although the WKB solution does depend on a, 
b, ... , the expression for the asymptotic matChing 
between the parabolic cylinder and WKB functions 
does not contain a, b, .... The only dependence on 
a, b, . .. comes from matching the WKB to the Airy 
function, and this is all contained in the WKB function 

1/IwKB(r) ~ [j(r)]-1/4K exp(±iT J~ [J(r)]1/2dr). (18) 

where 

fer) = r2 - r 2NpN-l - (ia/T)r 2N - 2pN-l 

+ (b/T2)pN-l r 2N-4 + ... - E. (19) 

To evaluate the asymptotic behavior of t/JWKB (r) in 
Eq. (18) for r ~ r l' we break the integral in the expo-
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nent into two pieces: 

J~ [j(r)]1/Z dr = A + B(r), (20) 

where 

and 
A = 1:: dr[f(r)]l/Z (21) 

B(r) = - J:l dr[f(r)p/z. (22) 

For r very near r l' we let R = r 1 - r. Then it is 
easy to show that 

which again does not depend on a, b, .. '. Hence, the 
entire a, b, .. , dependence resides in A. 

To approximate A, we introduce an intermediate 
value r, say r = (roY 1) liZ, 8 and decompose A by 

Using Eq. (16), we can appoximate 

A 1 = 1: dr[j(r)] liz 
o 

~ Ji dr(rZ - E) liz 
Vo 

= ~r-Z - ~E log(2i/.fE) - iE. 

To evaluate A z, we let x = r/r 1: 

A z = fl dr[j(r)p/Z 
r 

= rZ t dX(XZ - pN-l yZN-Z x ZN - ~ 
1 Y/r 1 rZ 

1 1 

(24) 

(25) 

(26) 

ia ) l/Z - ipN-IXZN-ZyyN-4 + .... (27) 

The first two terms in the brackets in Eq. (27) are 
large compared with the others, so we expand the 
integrand using the binomial theorem and then Eq. 
(l7): 

1 
A ~ yZ J xdx(1 - x ZN- Z) liZ 

Z 1 r ITI 

rrp J1 d EX ZN + (ia/T)xZN - (ia/T)x ZN- Z - E +--- x------~~~----~~~----~ 
2 i/r1 x(1 - x ZN- Z) l/Z • 

Equation (28) no longer contains b, c, . " because 
those terms contain more and more powers of p 
which we neglect. 

(28) 

To do the first integral in Eq. (28) we use 

riir l yy Jo xdx(l- XZN-Z) liz ~ tyz. 

Subtracting and adding this quantity gives a new inte­
gral which, after one substitutes 

t = x ZN- Z, (29) 

reduces to an Eulerian integral of the first kind. The 
result for the first integral in Eq. (28) is thus 

_liz + ~ r[(N- Itl]rW . (30) 
2 N + 1 r[~ + (N - It1] 
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There are three different integrals to perform in the 
second term of Eq. (28). The first, 

is done by replacing the lower limit with 0 and using 
Eq. (29). The second is an exact differential and may 
be done directly. The third is also an exact differen­
tial. Equation (29) reduces it to an integral of the 

form J dt t- 1{l- i)-liZ which may be done easily. 

Performing all of the indicated integrals and using 
Eq. (17) repeatedly gives a rather complicated ex­
pression which then Simplifies markedly to 

A ~ _ ~ + ia + ~ log (TZ PE) 
4 T(2N - 2) 4 4 

+ 1 r[(N - It1 ]rm 
peN + 1) r[t + (N - It1] 

(31) 

Equation (31) contains no reference to r, which veri­
fies the correctness of the above lengthy sequence of 
approximations. This completes the evaluation of A. 

The expression for A in Eq. (31) is now used to com­
plete the matching of the WKB and Airy functions as 
was done in Ref. 3. The resulting general secular 
equation is 

rei + ~E) (51Ti 
1 = exp - - E 10g(Tp) 

r(4 - ~E) 4 

iTr[(N - l)-l]rW a) 
+ ------------------ +--

(N + l)pr[~ + (N _1)-1] N-l 
(32a) 

for even-parity energy levels and 

r(t + ~E) (51Ti 
3 1 = exp -- -E 10g(Tp) 

r(4 - 2E) 4 

iTr[(N - 1)-l]r(t) ) 
+ -(N-+-l-)p-r-[ --,---~ -+-(N---l )--1-] + N ~ 1 (32b) 

for odd-parity energy levels. 

The parameter a only enters Eq. (32) in an over-all 
multiplicative constant. When we set a = 0, we re­
cover the results of Ref. 3. Had we carried out the 
above analysis using higher-order WKB (following 
the procedure of Appendix F of Ref. 2, for example), 
the parameter b would have appeared as an addition­
al term in the secular equation multiplied by p, c 
would have appeared multiplied by pZ, and so on. 

The implications of the secular equation [Eq. (32)] 
are the same regardless of the choice of a. It pre­
dicts the existence of an infinite sequence of square­
root-type branch pOints in the complex g plane with 
a limit point at g = O. Level crossing occurs at the 
branch pOints. Quantitative descriptions of these 
phenomena may be found in Refs. 2 and 3 and need 
not be repeated here. However, we strongly empha­
size the apparent model independence and universa­
lity of these phenomena. It has now been demon­
strated that these same features are exhibited by an 
extraordinarily wide class of Singular perturbation 
theories. 
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ill. LARGE-ORDER BEHAVIOR OF PERTURBA-
TIONTHEORY 

The perturbation series for the Kth energy eigen­
value for Eq. (1) is given in Eq. (3). To determine 
how Aif,N,a,b, '" behaves for large n, we use the dis­
persion techniques introduced in Ref. 5. There it was 
shown that 

1 fO AK,N,a,b,.,. == - dx x-nDK,N,a,b, ... (x), 
n 2ni -00 

(33) 

where 

DK,N,a,b, .. · (x) == lim [FK,N,a,b, ... (x + iE) 
€ .... o 

- FK,N,a, b,'" (x - iE)] (34) 

and 
FK,N,a,b, .. (x) == x-1[EK,N,a,b, ,,·(x) - K - H (35) 

The discontinuity in Eq. (34) may be computed direct­
ly from the secular equation [Eq. (32)]. We do not 
present the details of this calculation here as it will 
appear elsewhere. 9 However, it is clear that the only 
dependence of DK,N,a,b, ... (x) on the parameter a is 
contained in an over-all multiplicative constant. Spe­
cifically, we find that in zeroth -order WKB 

DK,N,a,b,,,. (x) == ea/(N-l) --2i2K1Tl/2 ~ X)-(K+l/2)/(N-D 

K! 2 

X ( - r 2 (N/N - 1) ) (36) 
exp r(2N/N _ 1)(- ix)l/(N-l) . 

As n ~ 00, we may insert the expression for 
DK,N,a,b," (x) in Eq. (36) into the integral in Eq. (33) 
because for large n the integral is only sensitive to 
the small Ix I behavior of D. (Recall that the WKB 
techniques in Sec. II become accurate in the limit as 
I g I ~ 0). Therefore, using Eq. (33) we establish that 
in lowest-order WKB 

AK,N,a,b, ... 
lim n == ea/(N-l). 
n .... oo Aif,N ,0,0, ... 

(37) 

As was seen in Ref. 5, the corrections to Eq. (37) that 
arise from higher-order WKB calculations of 
DK,N,a,b,'" are of order n- 1,n-2 ,and so on. These 
large-n corrections take the form 

AK,N,a,b, .. , 
n == ea/(N-l)[l + C1{K,N,a,b)n- 1 

AK,N,O,O, .. · 
n 

+C2(K,N, a, b, c)n-2+C 3 {K,N, a,b, c,d)n-3 + .. ,]. 

(38) 

The specific functions C l' C 2' . . • have not been de­
termined because we have not carried out the higher­
order WKB calculations. However, to verify the the­
orem in Eq. (38), it is important to establish that C 1 

just depends on a and b,C2 on a,b,and c,and so on. 
We do this by noticing that b enters the secular equ­
ation multiplied by p, c is multiplied by p2, d by p3, 
and so on. Combining this observation with the ra­
ther complicated arguments given to establish Eq. 
(4) of Ref. 5 proves the above assertions on the struc­
tures of C l' C 2 , ••.. 

This theorem [Eq. (38)1 on the large-order behavior 
of the Rayleigh -Schrodinger coeffiCients is most un-

usual. It tells how to "perturb about infinite order" 
in perturbation theory, which is indeed a strange con­
cept. In the next section we present a straightfor­
ward application of this theorem. We ascertain the 
effect of Wick-ordering on one-dimensional field­
theoretic perturbation theory. 

IV. WICK-ORDERING IN ONE-DIMENSIONAL 
FIELD THEORY 

The (ljI2 N) 1 quantum field theory in one -dimensional 
space -time is defined by the Hamiltonian and com­
mutation relation 

(39) 

(40) 

To Wick-order the Hamiltonian, one rewrites it in 
terms of creation and annihilation operators where 
the annihilation operators stand to the right of the 
creation operators. In terms of fields 

:ljI2: == ljI2 - (1/2m), 

:ljI4: == ljI4 - (3/m)ljI2 + (3/4m2), (41) 

The polynomials in Eq. (41) are the Hermite polyno­
mials 10 : 

H2 (ix) == x 2 - 2, 

H 4(ix) == X4 - 12x2 + 12, (42) 

H6(-~X) == x 6 - 30x4 + 180x2 - 120. 

When m = i, the coeffiCients in Eqs. (41) and (42) be­
come identical. 

The Feynman diagrammatic expansion of a one-di­
mensional field theory is topologically identical to 
that of a higher -dimensional theory. (The Feynman 
rules may be found in Ref. 3.) Wick-ordering the per­
turbation expansion removes all Feynman diagrams 
having self-loops (lines with both ends connected to 
the same vertex). The energy levels of a field theory 
are the eigenvalues of the Hamiltonian H: 

HIE)=EIE). (43) 

These eigenvalues may be computed perturbatively in 
terms of diagrams. The Kth energy level is the K­
particle pole of the 2K -pOint Green's function. The 
ground-state energy is the sum of all diagrams with 
no external legs. 

How does Wick-ordering the Hamiltonian in Eq. (39) 
affect the large-order behavior of the perturbation 
expansions of the energy levels? To answer this ques­
tion we transform from a creation-annihilation oper­
ator to a coordinate space representation of H: 

ljI ~ 2- 1/2X, ~ ~ - i21/2 dd
x

' (44) 

and we set m == 1. Then Eq. (43) becomes 

[ 
d2 x

2 
(x2)N J - - + - + g - - E ljI(x) = O. 

dx2 4 2 
(45) 

If H is Wick-ordered before using Eq. (44), we have 
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1_ E + x2 _!. + g!J(X2)N N(2N - 1) (X2)N-1 
) dx 2 4 2 ~ 2 2 2 

+ ... J - E~ l/I(x) = 0, (46) 

using the formula for the coeffiCients of a Hermite 
polynomial. 

If we define the perturbation expansions of the eigen­
values of Eqs. (45) and (46) to be L;Angn and L;Bngn, 

* This work is supported in part through funds provided by the 
Atomic Energy Commission under contract At(11-1) 3069. NDEA 
Predoctoral Fellow. 

t Supported in part by National Science Foundation Grant GP29463. 
A Sloan Fellow. • 

1 The nth Rayleigh -Schriidinger coefficient is the coefficient of g" 
in the perturbation series. 

2 A discussion of the numerical methods used may be found in 
C.M.Bender and T.T.Wu,Phys.Rev.184,1231 (1969),Appendix E. 

3 C. M. Bender, J. Math. Phys.ll, 796 (1970). 
4 For a complete description of level crossing in the anharmoniC 

OSCillator see Ref. 2. Sec. VI. For a numerical study of level 
crossing in other models see Th. W. Ruijgrok, Ref. TH.1393-
CERN (August, 1971). 

5 C. M. Bender and T. T. Wu, Phys. Rev. Letters 27,461 (1971). 
These dispersion techniques were discovered independently by 

then for large n the ratio An/Bn is given by the the­
orem in Eq. (38): 

An N(2N -1) 
lim - = exp . 
n-+ooBn 2N-2 

(47) 

When N = 3, the right-hand side of Eq. (47) reduces 
to e 15/ 4 ,in spectacular agreement with the computer 
result mentioned at the beginning of this paper. 

B.Simon,Ann. Phys. (N.Y.) 58,79 (1970). 
6 Although the x 2N term in Eq. (1) is a singular perturbation of the 

harmoniC oscillator (the reason for the divergence of perturba­
tion theory), the X 2N- 2 , X 2N- 4 , ••• , terms are regular perturbations 
of the x2N term and, therefore, cause only small changes in large­
order growth of the Rayleigh-Schriidinger coefficients. 

7 For a schematic representation of this phenomenon, see Ref. 3. 
8 The particular choice of f is not significant. What is important 

is that f must be very far from both r 0 and r l' The geometric 
mean between r 0 and r 1 is a satisfactory choice for r. 

9 C. M. Bender and T. T. Wu, "Anharmonic Oscillator. II" and 
"Generalized Anharmonic Oscillator. II" (submitted to Phys. 
Rev.). 

10 M. Abramowitz and I. A. Stegun, Handbook of MathematictIl Func­
tions (Nat. BUr. Stds., Washington, D.C., 1964) ,p. 801. 
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The quantum zero-point energy of a conducting spherical shell was first calculated by Boyer [Phys. Rev. 174, 
1764 (1968)]. Because of the importance of this calculation and also of Boyer'S uncertainty about the analytical 
dependence of the energy on the cutoff function, we have checked the calculation independently. We determine an 
analytiC continuation of the energy function using the Mellin transform, and thereby show how an exact value of 
the self-energy can be obtained from the divergent series. We also compute an approximate value of the self­
energy by extrapolating a direct numerical evaluation of the cutoff integrals. These calculations confirm 
Boyer'S result. 

1. INTRODUCTION 

Recently there has been a considerable amount of 
interest in calculating the quantum zero-point energy 
of various objects,l-3 In particular, the calculation 
of quantum electromagnetic zero-point energies has 
turned out to be a useful way of evaluating long range 
electromagnetic forces in some cases of interest. 3 
Casimir evaluated the attractive force between two 
conducting parallel plates separated by vacuum more 
than twenty years ago,4 and went on to suggest an 
intriguing model for a charged particle on the basis 
of this result.5 The idea is that the electron is a 
charged, perfectly conducting sphere, and that its 
Coulomb self-energy is balanced by the quantum 
electromagnetic zero-point energy, which Casimir 
considered would be negative. Since the electrostatic 
energy is proportional to e2 , and the quantum zero­
point energy to fie, this raises the exciting possibility 
of being able to calculate a rough value for the fine 
structure constant and of gaining some insight into 
the structure of the electron. The calculation of the 
zero-point energy was performed by Boyer,1 who 
found that it is in fact positive, so that Casimir's 
model cannot account for the stability of a charged 
particle. Since Boyer's evaluation of this self-energy 
involves delicate numerical calculations including a 
limiting procedure which he could not show to be 
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valid (although it appears to be so), we have thought 
it worthwhile to perform the calculation by alternate 
means. It is disappointing to report that the result 
of our calculations is to confirm Boyer's result; 
however, we think that the methods which we have 
applied, and the confirmation of a tricky but impor­
tant calculation, are of some interest in their own 
right. Furthermore, we intend to extend these me­
thods to investigate the quantum zero-point energy 
of other systems which have spherical symmetry. 

In talking about the zero-pOint energy of a conduct­
ing spherical shell of radius a, we mean the differ­
ence between the zero-point energy of the "universe" 
when the sphere is present and when it is absent. In 
order to make the calculation feasible, we take the 
"universe" to be a sphere of radius R » a and the 
two spheres to be concentric. We have three regions 
to consider: the interior of the small sphere (I), the 
concentric shell between the two spheres (IT), and the 
interior of the large sphere when the small one is 
absent (1lI).6 Each of these regions has a set of nor­
mal electromagnetic modes of frequency W k , and the 
zero-point energy of each region is defined by 

E=I:~nwk' (1) 
k 

The zero-point energy of the condUcting shell of 
radius a is then 
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1764 (1968)]. Because of the importance of this calculation and also of Boyer'S uncertainty about the analytical 
dependence of the energy on the cutoff function, we have checked the calculation independently. We determine an 
analytiC continuation of the energy function using the Mellin transform, and thereby show how an exact value of 
the self-energy can be obtained from the divergent series. We also compute an approximate value of the self­
energy by extrapolating a direct numerical evaluation of the cutoff integrals. These calculations confirm 
Boyer'S result. 

1. INTRODUCTION 

Recently there has been a considerable amount of 
interest in calculating the quantum zero-point energy 
of various objects,l-3 In particular, the calculation 
of quantum electromagnetic zero-point energies has 
turned out to be a useful way of evaluating long range 
electromagnetic forces in some cases of interest. 3 
Casimir evaluated the attractive force between two 
conducting parallel plates separated by vacuum more 
than twenty years ago,4 and went on to suggest an 
intriguing model for a charged particle on the basis 
of this result.5 The idea is that the electron is a 
charged, perfectly conducting sphere, and that its 
Coulomb self-energy is balanced by the quantum 
electromagnetic zero-point energy, which Casimir 
considered would be negative. Since the electrostatic 
energy is proportional to e2 , and the quantum zero­
point energy to fie, this raises the exciting possibility 
of being able to calculate a rough value for the fine 
structure constant and of gaining some insight into 
the structure of the electron. The calculation of the 
zero-point energy was performed by Boyer,1 who 
found that it is in fact positive, so that Casimir's 
model cannot account for the stability of a charged 
particle. Since Boyer's evaluation of this self-energy 
involves delicate numerical calculations including a 
limiting procedure which he could not show to be 
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valid (although it appears to be so), we have thought 
it worthwhile to perform the calculation by alternate 
means. It is disappointing to report that the result 
of our calculations is to confirm Boyer's result; 
however, we think that the methods which we have 
applied, and the confirmation of a tricky but impor­
tant calculation, are of some interest in their own 
right. Furthermore, we intend to extend these me­
thods to investigate the quantum zero-point energy 
of other systems which have spherical symmetry. 

In talking about the zero-pOint energy of a conduct­
ing spherical shell of radius a, we mean the differ­
ence between the zero-point energy of the "universe" 
when the sphere is present and when it is absent. In 
order to make the calculation feasible, we take the 
"universe" to be a sphere of radius R » a and the 
two spheres to be concentric. We have three regions 
to consider: the interior of the small sphere (I), the 
concentric shell between the two spheres (IT), and the 
interior of the large sphere when the small one is 
absent (1lI).6 Each of these regions has a set of nor­
mal electromagnetic modes of frequency W k , and the 
zero-point energy of each region is defined by 

E=I:~nwk' (1) 
k 

The zero-point energy of the condUcting shell of 
radius a is then 
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t:.E(a) = lim(EI + EII - EIu)' (2) 
R-OO 

Of course, each of the sums involved in (2) is infinite 
and this represents an aspect of the problem which 
is not yet well understood. In Boyer's calculation, 
this problem is overcome by introducing a cutoff 
function into each of the sums, performing the sub­
traction, and then removing the cut-off functions 
again. By suitable choice of these cutoff functions, 
we could recover any finite or infinite answer that 
we please; but Boyer argues on physical grounds that 
the cutoff functions for each sum must be the same 
function, and that it must depend only on the ratio of 
the frequency to a cutoff frequency. This then makes 
the answer unique for a wide range of cutoff func­
tions. We must emphasize that although the energy 
is unique in this sense, the decision to base the cut­
off on frequency, and to apply the same function to 
each region, is a part of the physical model. 

2. APPLICATION OF THE MELLIN TRANSFORM 

We show in the Appendix how the self-energy (2) may 
be evaluated by contour integrals. The cutoff function 
which we shall use in this section is exp(- 'Ak) and 
we denote the corresponding energy by t:.E(a, 'A). It 
is given by 

00 

t:.E(a, 'A) = 6 l!.E1(a, 'A), 
1 =1 

where 
t:..Ez(a,'A) = ~(e-'\'k) + ~(e-,\.k) 

and the linear functionals ~ and ~l are defined in 

(3) 

(4) 

the Appendix. Numerical evaluations, which are pre­
sented in Sec.3,indicate that t:.E(a,'A) is finite for 
'A > 0, but that the sum diverges for 'A = O. This be­
havior shows that the series is not uniformly con­
vergent around 'A = 0, and also raises the possibility 
that t:.E(a, 0) is infinite. 

This ambiguity in the value of t:.E(a, 0) has led us to 
apply the Mellin transform to investigate more pre­
cisely the analytic behavior of !:ill (a , 'A) around 'A = O. 
The Mellin transform of t:.E(a, 'A) is 

t:.E(a,p) = fo oo
'A P- 1 t:.E(a,'A)d'A 

(5) 

00 

= r(p) L [~(k-P) + ~(k-p)], Re(p) > e ? 0, 
1'1. 

where the constant e should be equal to zero if 
t:.E(a, 0) is finite or + 1 if it di_verges as 'A -1. Now 
the residues at the poles of t:.E(a,p) determine the 
coefficients of various powers of 'A (not necessarily 
integer powers) in an asymptotic expansion of 
l!.E(a, 'A). In particular, r(p) has a pole of unit resi­
due at p = 0, so that we have 

00 _ 

l!.E(a,O) = I; [~(k-O) + ~(k-O)]. (6) 
1=1 

However, each of the terms in the sum (6) is equal to 
t:.E/(a, 0), so that it diverge~. Now this is precisely 
what we should expect if t:.E(a,p) had a pole atp = 1, 
for then we would restrict (5) to Re(p) > 1. What we 
must do, therefore, is to investigate l!.E(a,p) for 
Re(p) > 1, and find an analytiC continuation to p == O. 

Application of (AI0) and (AI2) gives 

t:.~(a p) = r(p)fie(l + ~) (_ cos(1TP/2) 
~ , a1-p 1T 

x -:foo ~-p[(I>z{O + ¢z(md~ 
o 

+ 6fhfZ~-P + (Yz~)1-P] + 6'[Y/~-p + (Yz:)l- P ]), 

(7) 
where the notation is defined in the Appendix. Now 
the integrals in (7) diverge if Re(p) ? 1, so we need 
to proceed carefully. An alternative expression for 
t:.E1(a,p) is given by using (A7) and we see that if we 
use this expreSSion, the factor ~-P, which causes (7) 
to diverge at the origin, gives no trouble for Re(p) < 4. 
Hence to use (7) for Re(p) ? 1, we analytically con­
tinue by treating the divergent part of the integral 
directly. To do this, w~need the following expansions 
of the functions 1>z and 1>z defined in (AI3): 

1>/m = (2l + 1){1 + a2~2 + ()I4~4 + ... }, 
~W = (2l + 1){1 + a2~2 + a4~4 + ... }. 

(8) 

Now we write 

(9) 

and this performs the necessary extension for Re(p) 
< 3. Note that there is no pole atp = 1, as we would 
expect from our comments above on the possible use 
of (A7). Atp = 1, the factor cos(1TP/2) cancels the 
finite integrals in (9), so that (7) becomes 

t:.Ez(a, 1) = ne(l + ~)[- (2l + 1) + ~'2 + ~f2]. (10) 

The two sums are equal to the total number of com­
plex ze..roes of hz

(2 ) and (yhl
C2» '; that is 7 to (2l + 1), so 

that t:.Ez(a, 1) == O. 

We have evaluated (7) numerically using (9) for 
o ~ p ~ 2, and we find that for large l we have the 
asymptotic form 

t:.E/(a,p)/r(p) == f(P)[(2l + l)-p + O(2l + Itr2]. (11) 

We show in Fig. 1 a graph off(P), which is seen to 
have a zero at p == 1, as we have just proved. It is 

2.0 

1.5 

1.0 

f(p} 

0.5 

0.0 .--------------------------.----------------

-0.50+.0----0..,..5-----11.-0 ------,1.-.5------2.0 

FlG.l. Coefficientj(p) in asymptotic expansion (11). 
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TABLE I. Computed values of AE;(a, A) defined by (4). 

A 0 0.1 0.2 0.3 0.4 

I 
1 -0.094542 ~0.093 440 -0.090 233 -0.085173 -0.078603 

-0.093970 -0.091048 -0.082923 -0.071 046 -0.057043 
-0.093852 -0.088286 -0.073 715 -0.054333 -0.034006 
-0.093809 -0.084 863 -0.063032 -0.036975 -0.013110 

5 -0.093 788 -0.080821 -0.051 570 -o.02{) 623 0.003 628 
-0.093777 -0.076 247 -0.039954 -0.006327 0.015 620 
-0.093770 --().071 239 -0.028686 0.005 396 0.023 172 
-0.093 766 -0.065894 -0.018141 0.014 419 0.027 039 
-0.093 762 -0.060307 -0.008575 0.020883 0.028 117 

10 -0.093760 -0.054 563 -0.000139 0.025084 0.027 256 
-0.093 758 -0.048744 0.007096 0.027 389 0.025177 
-0.093757 -0.042921 0.013 125 0.028 182 0.022 441 
-0.093756 -0.037 158 0.017994 0.027 828 0.019455 
-0.093755 -0.031 509 0.021779 0.026 647 0.016494 

15 -0.093 755 -0.026023 0.024 580 0.024 912 0.1l13 728 
-0.093 754 -0.020738 0.026 506 0.022 844 0.011 250 
-0.093754 -0.015685 0.027674 0.020615 0.009097 
-0.093 753 -0.010891 0.028 196 0.018 352 0.007 272 
-0.093753 -0.006374 0.028 181 0.016 149 0.005 754 

20 -0.093 753 -0.002148 0.027730 0.014 068 0.004 513 
-0.093 752 0.001779 0.028 934 0.012 145 0.003 511 
-0.093752 0.005 403 O. Q25 874 0.010 403 0.002 712 
-0.093 752 0.008723 0.024 621 0.008848 0.002 081 
-0.093 752 0.011 743 0.023 234 0.007477 0.001 588 

25 -0.093752 0.014 467 0.021 766 0.0062113 0.001 205 
-0.093752 0.016 904 0.020 258 0.005 251 0.000 910 
-0.093752 0.019 064 0.018 744 0.004368 0.000 684 
-0.093 752 0.020 958 0.017252 0.003617 0.000512 
-0.093752 0.022598 0.015802 0.002 983 0.000382 

30 -0.093752 0.023 998 0.014 411 0.002 451 0.000284 

also possible to evaluate analytically the derivative 
of (11) with respect top atp = 1, to get 

[
a AE1(a,p)] 1 1 (l + t)2) 

ap rIP) p=l = 2nc(l + 2) In l(Z + 1) 

= ilic [(2l + 1)-1 + O(2l + 1)-31, (12) 

which provides added strength to the numerical evi­
dence in support of (11). With the information which 
we now have, we can perform an analytic continuation 
of AE(a,p) to Re(p) ~ 1. For Re(p) > 1, (11) shows 
that the series converges, so that we can rearrange 
the terms to write 

00 

AE(a,p) == r(p)f(p).0 (2l + 1tP 
1= 1 

00 

+.0 [AEI(a,p) - r(p)f(p)(2l + l)-P] 
Z= 1 

= r(p)f(p)[(l - 2-P)~(p) - 1] 
00 

+ 6 [AEz(a,p) - r(p)f(p)(2l + l)-P]. (13) 
1 =1 

The series which now appears in (13) is convergent 
for Re(p) > - 1, so that we have an analytic continua­
tion of AE(a,p) into this region. Note that the con­
junction of a pole in ~(P) and a zero in f(P) at p = 1 
causes AE(a,p) to be finite there, even though each 
term in the series expansion is zero at p = 1. This 
shows why it is necessary to use an analytic con­
tinuation to reach p = 0; the situation is entirely 
analogous to the computation of the series 

00 

6 (p - l)n-P (14) 
n=l 

for p = O. This series defines the function (p -l)~(p), 
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0.5 0.6 0.7 0.8 0.9 

-0.070904 -0.062456 -0.053614 -0.044690 -0.035 946 
-0.042373 -0.028 177 -0.015242 -0.004038 0.005 231 
-().015 434 -0.000092 0.011 505 0.019 480 0.024 309 

0.005 373 0.017 738 0.024 648 0.027342 0.027 130 

0.018 861 0.026 144 0.027 751 0.025936 0.022 445 
0.025 863 0.027844 0.025 233 0.020 746 0.016 007 
0.028 006 0.025 620 0.020443 0.015 005 0.010 409 
0.026 968 0.021 606 0.015371 0.010139 0.006 348 
0.024 143 0.017171 0.010 960 0.006 519 0.003 692 

0.020 545 0.013 064 0.007 507 0.004035 0.002069 
0.016 835 0.009 610 0.004 982 0.002 422 0.001 126 
0.013 393 0.006 882 0.003 223 0.001 419 0.000 598 
0.010404 0.004820 0.002042 0.000 814 0.000 311 
0.007 925 0.003 314 0.001 270 0.000 459 0.000 159 

0.005 937 0.002 243 0.000 778 0.000 255 0.000 080 
0.004 385 0.001 498 0.000 471 0.000 140 0.000040 
0.003 199 0.000988 0.000 281 O.QOO 076 0.000020 
0.002 308 0.000645 0.000 166 0.000041 0.000 010 
0.001650 0.000417 0.000 098 0.000022 0.000005 

0.001169 0.000268 0.000057 0.000 011 0.000002 
0.000 822 0.000171 0.000033 0.000006 0.000 001 
0.000 574 0.000 108 0.000 019 0.000003 0.000001 
0.000 399 0.000068 0.000011 0.000002 0.000000 
0.000275 0.000042 0.000006 0.000001 0.000 000 

0.000 189 0.000026 0.000003 0.000000 0.000000 
0.000129 0.000 016 0.000002 0.000000 0.000 000 
0.000 088 0.000010 0.000001 0.000000 0.000000 
0.000 059 0.000 006 0.000001 0.000 000 0.000000 
0.000 040 0.000004 0.000 001 0.000000 0.000000 

0.000 026 0.000003 0.000 001 0.000 000 0.000 000 

which is analytic in the entire plane, and which has 
the value + 1 atp = 1. Nevertheless, each term is 
zero at p = 1 and the series diverges for Re(p) < 1. 

The upshot of this is that AE(a, X) approaches a finite 
limit as X ---7 0, because (13) defines a function which 
has no poles for 0 < Re(p) ~ 1. At P = 0, there is a 
pole due to the function r(p), and the residue of the 
inverse Mellin transform at this pole gives the value 
of AE(a, 0): It is 

00 

AE(a,O) = - f(O) + 6 {AEz(a, 0) - f(O)}. (15) 
I=l 

It is interesting to note that this formula was sug­
gested by Boyer to be a reasonable approximation to 
the self energy, although not used by him for the 
actual evaluation. However, the steps leading to the 
derivation in Boyer's paper are incorrect, as we 
shall show in the next section. Numerical values of 
the quantities needed in (15) are given in Table I for 
Z up to 30; inserting them into this formula gives the 
result 

AE(a,O) = + 0.092 43. (16) 

3. NUMERICAL EVALUATION OF AE(a, A) 

We have evaluated the quantities AE1(a, x) for various 
values of X and l, and the results are given in Table I. 
Each of these numbers is the difference between the 
value of the integrals and the residues, both of which 
are of order [3 exp(- Al). It is therefore apparent 
that computer round-off errors limit the maximum 
value of 1 for which the error is acceptable. Our 
experience leads us to believe that the values given 
in Table I are correct to within one in the sixth deci­
mal place; but that we could not extend the results to 
higher 1 values or higher accuracy for l = 30, with 
the present computing facilities. Since the series 
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TABLE II. Values of flE(a,'\) obtained by application of summation 
formula (18). 

,\ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

I 
11 -0.5067 0.2721 0.1143 0.0948 0.0894 0.0865 0.0842 

-1.1540 0.1737 0.1034 0.0923 0.0887 0.0863 0.0841 
2.0573 0.1359 0.0979 0.0910 0.0883 0.0862 0.0841 
0.5026 0.1175 0.0949 0.0904 0.0882 0.0862 0.0841 

15 0.2840 0.1075 0.0933 0.0900 0.0881 0.0862 0.0841 
0.2014 0.1017 0.0923 0.0898 0.0880 0.0862 0.0840 
0.1603 0.0982 0.0918 0.0897 0.0880 0.0861 0.0840 
0.1370 0.0960 0.0914 0.0897 0.0880 0.0861 0.0840 
0.1226 0.0946 0.0912 0.0896 0.0880 0.0861 0.0840 

20 0.1133 0.0937 0.0911 0.0896 0.0880 0.0861 0.0840 
0.1072 0.0931 0.0910 0.0896 0.0880 0.0861 0.0840 
0.1030 0.0927 0.0910 0.0896 0.0880 0.0861 0.0840 
0.1000 0.0924 0.0910 0.0896 0.0880 0.0861 0.0840 
0.0980 0.0922 0.0909 0.0896 0.0880 0.0861 0.0840 

25 0.0965 0.0921 0.0909 0.0896 0.0880 0.0861 0.0840 
0.0954 0.0921 0.0909 0.0896 0.0880 0.0861 0.0840 
0.0947 0.0920 0.0909 0.0896 0.0880 0.0861 0.0840 
0.0941 0.0920 0.0909 0.0896 0.0880 0.0861 0.0840 
0.0937 0.0920 0.0909 0.0896 0.0880 0.0861 0.0840 

30 0.0934 0.0919 0.0909 0.0896 0.0880 0.0861 0.0840 

does not converge uniformly, we have to compute 
t:.E(a,.\) for various values of X and extrapolate to 
X = O. We are limited to a maximum value of I = 30 
in forming the infinite sums and we see from Table I 
that as a result of this we will not be able to evaluate 
t:.E(a, X) for values of X smaller than about 0.3. Even 
for this value of .\, there is an appreciable contribu­
tion from terms with I > 30, so that we have to use a 
summation formula to estimate the tail of the series. 
Any such formula depends on an assumed asymptotic 
form for the terms in the series. Boyer has conjec­
tured that this asymptotic form is 

(17) 

but it is obvious from our results that this cannot 
hold for small values of (I + !)X. In fact, if (17) did 
hold, then t:.E(a,.\) would diverge as .\-1 for small .\, 
which is not the case. The trouble with (17) is that it 
appears to be an asymptotic form for large I and 
fixed X and in fact our numerical results show that 
it is ndt too bad if lA ~ 10. However, Boyer uses this 
asymptotic form to sum the series and then takes 
.\ -7 0, which violates the condition for the validity of 
the approximation. Now (17) expresses the fact that 
the terms become close to those of a geometric pro­
gression for large I, and using this fact, we have 
made the approximation 

.95 
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.~ 

.~ 
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. 85 

.~ L-____________________________________ ___ 
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FIG. 2. Extrapolation of flEta, A) to ,\ = 0 given by quadratic 
PtA) = 0.0929 + 0.0035'\ - O. 0150A2. Data points from Table II. 

L-2 t:.Et-1(a, X) 
t:.E(a, X) ~ ~ t:.E1(a, A) - t:.E

L
-
1 

(a, X) _ t:.EL(a, A)' (18) 

which would be exact if the series were exactly a 
geometric progression for I '" L - 1. The values of 
this approximation to t:.E(a, X) are shown in Table II. 
For X '" 0.3, it would seem that we have values of 
t:.E(a, x) to within one digit in the fourth decimal 
place, except for X = 0.3, where the calculation has 
obviously not yet converged, and the value is too high. 
We have fitted these results to the quadratic expres­
sionp(X) = 0.0929 + O. 0035X - O. 0150x2, which fits 
the values from.\ = 0.4 to 0.8 exactly. These results 
are displayed in Fig. 2, where it is seen that the point 
for X = 0.3 is above the curve. The extrapolation 
given by P(x) leads to 

t:.E(a, 0) ~ 0.0929, (19) 

which is in reasonable agreement with the exact re­
sult (16). In theory, the extrapolation could be im­
proved by including higher powers of .\, but this would 
make it necessary to obtain values of t:.E1(a, X) to 
higher accuracy and for higher values of I. In view 
of the ease with which the value of t:.E(a, 0) can be 
computed using the Mellin transform, there is no 
point in improving the accuracy of this extrapolation. 
The most important aspect of these numerical cal­
culations is that they demonstrate the nature of the 
conditional convergence of the series (3) around.\ = 
O. From Table I we see that the initial negative 
terms in the series, of which there are an increasing 
number as X decreases, almost cancel the positive 
terms in the tail. An example of a simple series 
with these properties is 

~ (.\) = e- n '\ - 2e- 2n '\ 

which has the properties 
00 

lim 2.; an (X) = + !, 
A"'O n~1 

(20) 

(21) 

which are very similar to those which we have al­
ready encountered. 

4. CONCLUSIONS 

We have determined the necessary analytic proper­
ties of t:.E(a, X) to allow an accurate determination of 
t:.E(a,O). The physical reason why this energy is 
positive is not clear; and the situation is made more 
puzzling by the following considerations 

(a) If the sphere is flattened, it must eventually 
approximate a pair of parallel plates, for which the 
energy is negative. In fact, it was the fact that the 
force is attractive for parallel plates which led Casi­
mir to suggest his model of the electron . 

(b) If we consider a sphere of dielectric material, 
we would expect a negative energy, because the model 
is also appropriate for a macroscopiC sphere of 
material held together by Van der Waals' forces and 
these are attractive . 

We are at present attempting to elucidate these prob­
lems, and in particular to develop an effective way of 
evaluating the quantum electromagnetic energy of a 
dielectric sphere. It is too early to say what the re­
sults of this investigation will be, or what light (if 
any) will be shed on the present problem. 

J. Math. Phys., Vol. 13,No. 9, September 1972 
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APPENDIX 

In this appendix we derive an expression for t:J.E1(a) 
as a contour integral. In order to avoid unnecessary 
duplication of technical details contained in Boyer's 
paper,1 we use his notation for the frequencies of 
the various normal modes. The reader should there­
fore refer to this paper for definitions and details of 
the various symbols which we use in the following. 
For the TE modes, we need to evaluate the quantities 

:i1(fr") = lie(l + t)[6 k1s(a)fr"(k1S(a» 
s 

+ 6 K1S(a,R)fr"(K1S(a,R» - 6 k1s (R)fr"(k1S (R»]. 
S s (AI) 

It is important to our analysis in Sec. 2 that this sum 
is a linear functional in the cut-off function, and so 
we have denoted it by ~(fr"). For large R, we haveS 

p K1S(a,R)fr"(Kzs(a,R» ~ .r K1Sfr"(K1S)dS 

100 (aSl(a,R,K») 
~ 0 Kfr"(K) aK d~A2) 

6 k1S(R)fr"(k1s(R)) ~ i oo 
k1Sfr"(k1S)ds 

s - 1 

~ fooo kfr"(k)(asl~~,k»)dk 

and, using the relation SI(a,R, K) = sz(R, K) - sl(a, K), 
we get 

:i1(fr") = lie(la+ i)[~Ylsfr"(-y~s~ - fooo Yfr"(~)CS~;Y»)dyJ. 

where Yzs and SI(Y) are related by 

Note that we use Yl(X) for the spherical Neumann 
functions in place of Boyer's n1(x). 

(A3) 

For the TM modes the analysis is very similar, giv­
ing the re sult 

~(fr") = lie(la + i) [~'jirsfr"~'ji~s) - fooo 'jifr"(~) C!~Y»)d'ji J. 
(A5) 

Re (¥) 

FIG. 3. Contour of integration for (A9). 
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where 

gl(S, y) = COS(1TS)(yjZ(Y»' + Sin(1TsHjiY1(y))' = O. (A6) 

By using the Euler-Mclaurin summation formula and 
integrating by parts, we get the final expression given 
in Boyer: 

00 

t:J.E(a) = lim 6 [:i1(fr") + ~(fr")] 
[f 1=1 

= lim ~ 1fe(l + i) Joo {SI(X) - [sz(x)] 
[f 1=1 a 0 

+ SI(X) - [SI(X)] - I} d~ pfr"(~) J (A7) 

We may now use (A4) to obtain an expression for the 
quantity as/ay which appear" in (A3), as follows: 

as 1 (hlm(y) hl (2)(y») 

ay = 21Ti h(1)(y) - h(2)(-0 ' 

where 

hP,2) = jl ± iyl' (A8) 

Equation (A3) may now be rewritten as a contour 
integral involving various spherical Bessel functions. 
The contour is chosen so as to encircle all the real 
zeroes of jl(X) and to avoid all the complex zeroes of 
the spherical Hankel functions. This is shown in Fig. 
3. Using (A8), we may therefore write (A3) as 

:i1(fr") = _lie(l :- i) 
21TW 

x [ fr" a (jf(y) _ hf(l)(Y»)d 
.{,- I' (1'/ ) jz<y} hp>(y} I' 

1 ; (my) h!(2)(y}) J 
+ r+yfr"(y/a} -:--( } - h<2>(} dy • 

J1 Y I I' 
(A9) 

Finally we deform this contour so that the integra­
tions are taken along the imaginary axis. In the pro­
cess, we must pick up the residues at the complex 
poles of the Hankel functions,jl(x} having no complex 
poles. 9 Furthermore, the Hankel functions have a 
zero on the imaginary axis for odd values of l; we 
therefore have to pick up only half of the residue at 
this pole and evaluate the integral as a principal 
value integral. The integrand itself can be simpli­
fied by using the WronSkian relations on the square 
braces, changing variables to ~ = iy, and using the 
parity relations for spherical Bessel functions to 
express all quantities in the lower half plane in 
terms of quantities in the upper half plane. The re­
sult of all these manipulations is 

(AIO) 

Here the stroke through the integral sign indicates 
that a prinCipal value is to be taken if there is a pole 
in the integrand. The quantities Yli and Yl: are those 
complex zeroes of the functions hF> and hpj , res­
pectively, which fall in the right-hand half-plane. The 
prime on the summation sign indicates that if one of 
the roots n i is pure imaginary, only half of the con­
tribution is to be taken. (M~) will be defined below. 
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Now a similar series of manipulations yield a simi-
1ar result for the TM modes. Corresponding to (A9), 
we get 

'fi(3') = _lieU -: i) 
"'1 27Tta 

[1 3'(y)t<yj I(Y»" (yhP>(Y»")d 
x r- y -;; \(yj h»' - (yhp>(y»' Y 

(
Y)t<yj h»" (yhF>(Y»") 1 

+ ++ y3' -;; \(yj h»' - (yhP>(y»' dyJ' 

and corresponding to (AI0) we get 

:5(3') = -lie(l + ~) r= 13'(i~)+ 3'(-i~)~(P(~)d~ 
1 27Ta JQ L a a ~ 1 

+ Ife(l + ~)L;'[- .3'(Yli\+_*JYI~\l. 
a YI, a) 'Yz!"\ a )J 

(All) 

(AI2) 

Here the quantities YI i and Yl~ are the complex roots 
of the functions (y~( 2»' and (yhp» , , respectively, 

1 T. H. Boyer, Phys. Rev. 174, 1764 (1968). 
2 E. M. Lifshitz, Zh. Eksp. Teor. Fiz. 29, 94 (1955)[Sov. Phys. JETP 

2,73 (1956)]; T. H. Boyer, Phys. Rev.182,1374 (1969); 186, 1304 
(1969); D I, 1526 (1970); D 1,2257 (1970). T. H. Boyer, Ann. Phys. 
(N.Y.) 56,474 (1970); D. Langbein, Phys. Rev. B 2, 3371 (1970); 
M. Fierz, Helv. Phys. Acta. 33, 855 (1960); N. G. Van Kampen, 
B. R. A.Nijboer, and K. Schram, Phys. Letters 26A, 307 (1968); 
C. M. Hargreaves, Proc. Koninkl. Ned. Akad. Wetenschap. B68, 231 
(1965). 

3 T. H. Boyer, Phys. Rev. 174, 1631 (1968); 180,19 (1969). B. W. 
Ninham and V. A. Parsegian, J. Chem. Phys. 52, 4578 (1970); Bio­
phys. J.10, 646 (1970); J. Chern. Phys. 53, 3398 (1970); B. W. Nin­
ham, V. A. Parsegian, and G. H. Weiss, J. Stat. Mech. 2, 323 (1970); 
V. A. Parsegian and B. W. Ninham, Nature 224,1197 (1969); Bio­
phys. J .10,664 (1970); J. Colloid Interface Sci. (to be published). 
I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Advan. 

which fall in the right-hand half plane. The functions 
1>z and 1>z are defined by 

1>z(~) = WI(i~)~(2>(i~)]-1, 
(A13) - - [l(l + 1) + ~ 2J 

1>IW = [H~I(iO)'(~hF>(iO)']' 
where the prime denotes d/d~. 

Equations (AI0) and (AI2) represent a convenient 
form for computation, compared with an expression 
of the type (A7). The integrals converge rapidly be­
cause of the exponential rate of decrease of the func­
tions 1>1 and (PI for large ~, and for each value of I a 
knowledge of the (21 + 1) complex zeroes involved in 
(AI0) and (AI2) is sufficient to allow determination 
of these quantities to arbitrary accuracy. With (A7), 
however, the rate of convergence of the integral is 
determined by the cutoff function, and increasing the 
accuracy of a particular evaluation involves the 
evaluation of more of the infinite number of real 
zeroes of the Bessel functions. 

Phys.lO, 165 (1961). 
4 H. B. G. Casimir, Proc. Koninkl. Ned. Akad. Wetenschap 51, 793 

(1948). 
5 H. B. G. Casimir, Physica 19,846 (1953). 
6 Note that Boyer performs his calculation in a slightly different 

way, taking the difference in energy between two pairs of con­
centric spheres; the first pair of radii a and R, the second pair 
of radii R/17 and R. His expreSSion for the energy therefore con­
tains pairs of terms identical except for the replacement of a by 
R/f/. Our method eliminates the unwanted terms containing R/f/. 

7 B.Davies (to be published). 
8 A detailed discussion of the validity of this transformation is the 

subject of much of Boyer'S paper. See Ref. I. 
9 M. Abrimowitz and I. A. Stegun, Handbook oj Mathematical Func­

tions (U.S. Natl. Bur.Stds., Washington, D.C., 1964). 
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The algebraic expressions for the matrix elements of symmetric tensor operators (the powers of infinitesimal 
operators) of the unitary groups in the Gel 'fand baSis have been studied. The expressions for the isoscalar fac­
tors of the related Clebsch-Gordan coeffiCients, one of the two represe!ltations to be coupled being symmetric, 
as well as the elements of a special recoupling matrix have been foune'. The supplementary symmetry proper­
ties of the isoscalar factors corresponding to the Regge symmetries of the Wigner and 6i coefficients of SU 2 
have been examined. 

1. INTRODUCTION 

The mathematical apparatus of the irreduCible tensor 
operators of the unitary groups! is a very important 
generalization of the theory of angular momentum of 
contemporary theoretical physics. The main problem 
of this apparatus is to obtain the algebraic expres­
sions for Clebsch-Gordan (CG) coefficients, recoup­
ling matrices and matrix elements of irreducible 
tensor operators. It is useful at first to solve the 
Simpler special problems, for example, to consider 
the matrix elements of the extremal tensor operators 
of the unitary groups.2 

An interesting and more difficult problem is to ob­
tain the expressions for the matrix elements of the 
symmetric tensor operators, which enables one to 
find the expressions for the general tensor opera-

tors. The main aim of this paper is to consider 
these symmetriC operators. We take the product of 
powers of commuting infinitesimal operators (gene­
rators) of Un + 1 of the type l\n+l (i = 1,2, ... , n), as a 
realization of the symmetric tensor operatur of Un' 
The matrix elements of such an operator can be ex­
pressed as a product of the reduced matrix elements 
and isoscalar factors (Lf.) of CG coefficients with 
one of the two representations symmetric. The com­
binatorial- graphical techniques for calculating such 
a special Lf. has been found by one3 of the authors by 
the use of the Young operators of the symmetric 
groups as projection operators. The expreSSions of 
Ref. 3 are not optimal ones with respect to the num­
ber of terms in the sum, because the summation is 
taking place over the permutations of labeled squares 
of the Young tableau. Here we are going to obtain the 

J. Math. Phys., Vol. 13, No.9, September 1972 
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we get 
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V. A. Parsegian and B. W. Ninham, Nature 224,1197 (1969); Bio­
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where the prime denotes d/d~. 

Equations (AI0) and (AI2) represent a convenient 
form for computation, compared with an expression 
of the type (A7). The integrals converge rapidly be­
cause of the exponential rate of decrease of the func­
tions 1>1 and (PI for large ~, and for each value of I a 
knowledge of the (21 + 1) complex zeroes involved in 
(AI0) and (AI2) is sufficient to allow determination 
of these quantities to arbitrary accuracy. With (A7), 
however, the rate of convergence of the integral is 
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operators) of the unitary groups in the Gel 'fand baSis have been studied. The expressions for the isoscalar fac­
tors of the related Clebsch-Gordan coeffiCients, one of the two represe!ltations to be coupled being symmetric, 
as well as the elements of a special recoupling matrix have been foune'. The supplementary symmetry proper­
ties of the isoscalar factors corresponding to the Regge symmetries of the Wigner and 6i coefficients of SU 2 
have been examined. 

1. INTRODUCTION 

The mathematical apparatus of the irreduCible tensor 
operators of the unitary groups! is a very important 
generalization of the theory of angular momentum of 
contemporary theoretical physics. The main problem 
of this apparatus is to obtain the algebraic expres­
sions for Clebsch-Gordan (CG) coefficients, recoup­
ling matrices and matrix elements of irreducible 
tensor operators. It is useful at first to solve the 
Simpler special problems, for example, to consider 
the matrix elements of the extremal tensor operators 
of the unitary groups.2 

An interesting and more difficult problem is to ob­
tain the expressions for the matrix elements of the 
symmetric tensor operators, which enables one to 
find the expressions for the general tensor opera-

tors. The main aim of this paper is to consider 
these symmetriC operators. We take the product of 
powers of commuting infinitesimal operators (gene­
rators) of Un + 1 of the type l\n+l (i = 1,2, ... , n), as a 
realization of the symmetric tensor operatur of Un' 
The matrix elements of such an operator can be ex­
pressed as a product of the reduced matrix elements 
and isoscalar factors (Lf.) of CG coefficients with 
one of the two representations symmetric. The com­
binatorial- graphical techniques for calculating such 
a special Lf. has been found by one3 of the authors by 
the use of the Young operators of the symmetric 
groups as projection operators. The expreSSions of 
Ref. 3 are not optimal ones with respect to the num­
ber of terms in the sum, because the summation is 
taking place over the permutations of labeled squares 
of the Young tableau. Here we are going to obtain the 
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corresponding expressions with a greatly reduced 
number of terms in the sums, the summation taking 
place over integers only. Furthermore, a rather 
simple recurrence method is described for obtaining 
the expressions under consideration. The technique 
resembles that used by one of the authors4 in the 
case of SU 3' The two classes of expressions are 
given and their symmetry properties, partly given 
in Ref. 3, discussed. 

In Appendix A it is shown how the corresponding 
formulas can be obtained from the results of Ref. 3. 

In Appendix B there is given a useful relation be­
tween the isoscalar factors of the Gel 'fand basis and 
the elements of the recoupling matrix described in 
Ref. 5. 

The results of this paper can be used for obtaining 
the general expressions for the CG coefficients of 
Un' For this purpose one can use the projection 
operators in the form of polynomials of infinitesimal 
operators 6 as has been done in the case of SU3 • 7 

Alternatively, one can use the recurrence relations 
obtained by forming the general tensor operators 
from the symmetric ones. The normalization proce­
dure in the second case can be carried out using the 
relation of Ref. 5. 

2. THE MATRIX ELEMENTS OF POWERS OF 
INFINITESIMAL OPERATORS 

At first we obtain the expression for the i.f. of a 
special kind 

[
[m ]n 
[m ]n-1 

p 
o 

[m ']n ] 
[m]n-1 

(1) 

Here [m] k == [m w m 2k' ••• ,mkk ] means the corres­
ponding row of the Gel 'fand pattern of the represen­
tation of Un (c.f. Ref. 1),p is the single parameter of 
the symmetric representation. In (1), and in what 
follows, we use the notations 

r([m]n' [m]n-1) 

( 

1 ".}l 1 (min - mjn - 1 - i + j)! )112 
~t"'J:5;n-

--------- (2) 
= .n (m. -1 - m. + i - j - I)! 

l~J<i~n In zn 

n (m. - m' - i + j - 1)!)1I2 
l~i<j~n In }n 

D([m]n' [m'1n) =( TI (' _ +._ ')1 
l,;j"i<;n mjn min 1 J. 

(3) 

The dependence of the i.f. of Eq. (1) on the para­
meters of the representations of the subgroup Un - 1 is 
confined to r, this dependence being deduced by fac­
torizing the simpler Lf. 8 The remaining part of the 
expression on the right-hand side of Eq. (1) is a nor­
malization factor. This factor can be deduced by 
equating the particular case of Eq. (1) ([m]n-l = [m]n' 
mnn = 0) to the one calculated with the help of projec­
tion operators (Refs 6 and 7). It must be noted that 
we use the general weight lowering operators of the 
form 
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[h] _ n-l( 1 
F_,· - n 

[lz t-I d (h i ·- hi) 

n - I (hi - h; - i + s)! 
n 

s=i+1 (h/ -lz; -- i + s)! 

n (h.'-h - i + s-I)! )1/2 
X n ! 5. ___ _ 

S=i+1(hi - "5 - i + s -I)! 
n-l n-l h·-k: 

X P max [h']n-1 iIl1 Eni ' " (4) 

n-1 
rather than that of Ref. 9. Here Pmax [h']n-1 is a pro-
jection operator of maximal weight as defined in Ref. 
6. 

The easiest way to obtain (1) is to use the results of 
Ref. 3 [these last ones being contained in Eq. (A2) of 
Appendix A]. The sum Fh (Xi - Yk) in this case re-

duces to one term equal to 1. 

Let us now consider the calculation of the matrix ele­
ments of powers of generators. The simplest cases 
of them are obtained by factorizing the matrix ele­
ments of individual generators of the group. To these 
cases belong, in the first place, the matrix elements 
stretched with respect to the parameters of the re­
presentations of subgroups. 

The simplest of powers of generators seems to be 
(E;, -l,n)P, With respect to the subgroup [~-l> this 
operator corresponds to the scalar component Un - 2 
of the symmetric tensor TP. Hence this matrix ele­
ment is proportional to the i.f. of Un-1 being calcula­
ted with the help of (1). The corresponding reduced 
matrix elements are to be obtained from the rela­
tion 

[m]n 
[m']n-1) . 
max 

(5) 

Here m;n-2 = m/n- 1 (i "" n - 2) is the maximal weight 
of Un-2. The operator P:;} [m']n-2 in F_ gives unity 
in this case. With the help of Eq. (2. 11) of Ref. 7 we 
transpose En - 1n with Ft. All the powers of E in - 1 
with nonvanishing exponents acting on the maximal 
state of Un - 1 give zero. For this reason, summations 
ariSing in the process of the transposition disappear 
and we are left with the matrix element of the opera­
tor 

P 1 n-l mil _ f 

~-- --'-- n E in-l m in - l 

(m:'-ln-1 - m:-1n~ i=1 in 

which is stretched in this case. 

The operations described above give the follOwing 
expression for the reduced matrix element under 
consideration: 

= 6C~ m/n-l,p + ~ min-l) [p! 

x !l (m. _ - m· _ - i + j)]l/2 
l~i<J"n-l zn 1 In 1 

D([m]n-l' [m']n-1)r([m]n' [m]n-l) 

x r([m]n' [m']n-1) 
(6) 
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It is to be noted that this reduced matrix element 
coincides with those of the operators 

( 

P! )112 n-l ex. (n-l ) n::r- n Ein " 6 O'i =p , 
TI Q'.!.=1 i =1 
i=l ' 

(7) 

because they form the basis of the representation p of 
Un-I' The corresponding matrix elements themselves 
are obtained by multiplying the reduced matrix ele­
ments obtained above by the products of i.f. 's to be 
dealt with in what follows. 

3. ISOSCALAR FACTOR WITH ONE OF THE RE-
PRESENTATIONS SYMMETRIC 

In generalizing and simplifying the method of Ref. 4, 
we take the lowest weight component T6 of the sym­
metric unit operator of Un' Its matrix element with 
respect to the corresponding baSis is equal to the 
i.f. given by Eq. (1). More general components of the 
same operator are 

p _ (P _ q) !) 1/ 2 
Tq - P!q! 

x [En-ln[En-ln[" .[En-1nT6] .. . ]]] 

( q times ) 

_(P-q)!q!)112'0 (-1)x q-x P x 
- P! ;' X!(q-X)! En-In TO En - 1n · 

(8) 

The reduced matrix element of this operator with 
respect to the subgroup Un - 1 is the i.f. under con­
sideration; it is 

[
[m ]n 
[m ],,-1 

p 
q 

[m']n ] 
[m']n-I 

=[(jJ-q)! IT (m. _ - m· _ - i + j) 
l~i<j~n-l zn 1 ]n 1 

n 

x IT (m! - m' - i + j)]112 
1~ i<j~n zn ]n 

D([m]n' [m']n)r([m]n' [m]n-l) 

XD([m]n_V [m']n-l)r([m']n' [m']n-l 

x TI (r - r - i + J') 
l"i<j~n-l in-l jn-l 

x D2([m ]n-l' [r ]n_l)D2([r ],,-1' [m ']n-l) 

r 2([m']", [r],,-l) x ---"-----'-'~-
r2([m]n' [r],,_I) , 

n-l 
p =.L (mi~ - min)' 

i= 1 
q = 6 (mi~-1 - min-I)' 

i=1 

(9) 

[r ]n-l being the Young scheme and the summation 
taking place over n - 1 parameter rin - 1 . When both 
of the two representations to be coupled are symmet­
ric, expression (9) reduces to the CG coefficient of 
SU 2 [the second of Eq. (13. 1) of Ref. 10]. On the other 
hand, when n = 3 it turns into Eq. (3. 14) of Ref. 4. 
Furthermore, we can limit ourselves to the case 
mnn = 0 which does not influence the value of the Lf., 
as pointed out in Ref. 1. 

It is easy to see that (9), after omitting the square 
root, possesses the high symmetry indicated in Ref. 

3. For example, it is possible to transpose the para­
meters min-l and m;+ln with the appearance of the 
phase factor (- 1) m in -l - m;+ln 0 The other kind of 
Regge symmetry gives the transposition of min with 
m/n - V without any phase factor. For the tabulation of 
the symmetric part of (9), it is useful to apply the 
following scheme of 4n - 2 parameters: 

mIn' max(m1n_1 , 1n1n ),min(mln_l' m 1,,)' max (m2n , mIn-I)' 

min(m2n , mIn-I)' max(m2n-l' m 2n ), 0 •• , m"" = 0 
(10) 

arranged in a lexical order and using specified phase 
relations for the transpositions of the first Regge 
symmetry type. 

Another symmetry property follows from the con­
tragredience relations. s This procedure gives (- 1)q 
as a phase factor, and the set of parameters (10) 
turns into the set obtained from this one by changing 
the signs and writing in inverted order, all the para­
meters becoming positive after adding mln 0 

In this way one obtains 22n -1 symmetry properties 
for the quantity (9). It stands to reason that not all 
the Regge symmetry properties11 of quantities of 
SU 2 can be generalized to SUn with n > 2. 

We observe that the symmetry property of Ref. 3 
allowing one to interchange the rows in the skew 
scheme belongs to the substitution group symmetry12 

rather than to one of the Regge type. Equation (9) is 
invariant with respect to this group which is equiva­
lent to partial hook permutations (cof. Ref. 1). 

It is to be noted that the relation between Lf. 's which 
couple the bases of two symmetric representations 
(of equal or different contragrediency) and SU 2 CG 
coefficients13 follows immediately from the Regge 
and substitution symmetry properties. 

Expression (9) does not allow one to carry out the 
summations even for particular cases. Thus, it is 
worthwhile to use other methods to obtain different 
expressions for the same i.f. We can obtain one such 
expression by the use of the operator 

( 
p! ) 1/2 E p-q E q 

~(p~_~q~)~!-q~! n n + 1 n -In + 1 

i P! )112 (-1)rex 
=\(P - q)!q! '2 (y - Q')! (q - y + Q')! 

(11) 

instead of (8) 0 After dividing its matrix element by 
the reduced matrix element of the operator Enn+l p 

and the i.f. of Un-I' one obtains 

p 
q 

[m']n ] 
[m']n-l 

= [(p - q)!]-1/2 [ n (m.' - m' - i + j) 
1.:::; t<) ~n In ]n 
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where 

R([m]n 
[m ]n-1 

, n [m'] ) 
[m ]n-1 

=6 (-I)y-ay1(p -y)lr 2 ([r]",[m],,_1) 

[rJn (y - QI)l(q-y + QI)lr2([r],[m'],,_1) 

x .n. (rin - rin - i + j)D2([r]", [m']n) 
l~~<J:!:;n 

x D2([m lIZ' [r],,), 
n 

y = 6 (m:" - rin)' 
i=l 

(13) 

The number of the summation parameters in (13) is 
n. The terms of this sum depend on QI(O ~ QI ~ P - q). 
However, the final result must be independent of this 
parameter. It turns out that in expression (13) the 
summation with respect to one of parameters rin can 
be carried out by the use of the summation formula 

a b 
(- l)x n (x + A.) n (Bi - x) 

~ x1(~ + b +l ~=-= x) 1 = (- l)a O(C, 0), (14) 

a, b, c being nonnegative integers. Equation (14) can 
be proved by induction starting from Eq. (14. 3) of 
Ref. 10. 

In order to use this summation formula for the pur­
pose indicated in Eq. (13), we transform the factorials 
depending on rin (i fixed) into the quasipowers (c.f. 
Ref. 10), all these being brought into the numerator. 
The factors left in the denominator are 

(m' - r. + i-I) 1 (r. - m - i + n) 1 • In tn • In nn 

It is evident that the sum in (13) in this new form has 
a much wider summation region, because it involves 
n - 1 new regions. However, this procedure does not 
change the value of the sum (13), because nonvanishing 
terms in these new regions are compensated by a set 
of terms equal in absolute value and opposite in sign 
to the first ones. These terms can be found by re­
numerating the summation parameters r in - j E-7 

rin - i, j ;>t i labeling the newly appearing regions. 

The above mentioned summation with respect to rin 
leads us to the expression 

R.([m]n 
t [m]n-l 

[m:]n ) = 6 (- 1)"'i 
[m ]n-l rjn,jt; 

x TI (rkn-r1n - k + I) 
h k<l~n 

k41,IH 2 

X D2 ([] [ '] )D2 ([ ] [] {;,o([r]n,[m]n-l) 
i,O r n' m n O,i m n' r n r2 ([] [ 'J ) 

i,O r n , m n-1 
i-l n n 

cp. = 6 (m' -1 - m· -1 + m· ) + L:: m: - ~ rin' , j=1 In In }n j=i+n In j=1 
ifi (15) 

The quantities Di ,0' DQ ," and r; ,0 are obtained from 
those of Eqs. (2) and (3f by removing those factors 
involving parameters with subscripts i, out of [r]n' 

Since allRi (i =: 1,2, ... , n) in (15) are equivale?t, 
they are connected by the elements of the substItu­
tion group of Ref. 12. R 1 and Rn are more convenient 
for some problems. For example, in the semi stretch­
ed case (m:n = mnn ), it is useful to take R l' On the 
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other hand, in the case of the maximal state (m!rr-l == m:n , i =: 1,2, ... n - 1), it is more convenient to use 
Rn' 

In the case of SU 2' our expression turns into the third 
of Eqs. (13. 1) of Ref. 10. On the other hand, in the 
case of the semistretched coupling of representations 
of SU3 (Ref. 4) it leads us to the doubly stretched 9j 
coefficient of SU 2 given by Eq. (25. 17) of Ref. 10. 

It is worth noting that our expressions (13) and (15) 
have n regions for n summation parameters in the 
case of Eq. (13) and 11 - 1 summation parameters in 
the case of Eq. (15). In the second case, one of the 
summation regions is free .. This occurs because 
Eq. (15) does not possess the full Regge symmetry 
exhibited by Eq. (9), which has n - 1 summation para­
meters as well as regions. 

APPENDIX A: AN ALTERNATIVE APPROACH TO 
THE PROBLEM 

Let [.>.1], [.>.2], [A3], [A 4] be the Young schemes such 
that Al ~ A? ~ AP ~ \4 (i = 1, 2, •.. ,n labeling the 
rows, A: being the lengths of the corresponding rows). 
We define the quantity 

[A 4] n Ai Af (: 1) 
[ 2] = . TI TI 3 nIl + k . I +. A ',]=1 ki=Ai+1 lrA/l ; - Z - j J 

n (Ai - AJ - i + j) 1 (A~ - A~ - i + j) 1 
=: TI 

1=i5j(,4 ,2 '+')1(,3,1 '+')1 Ai - "j - Z J. A; - Aj - Z J. 

n (A ~ - 10.
4 

- i + j - 1) 1 (A ~ - 10.
3

_ i + j - 1) 1 x TI l J , J 

1_· . (1 4 . . 1) 1 (2 3 . +. 1) 1 • 
-I <J Ai - Aj - Z + J - . A; - Aj - Z J - , 

(AI) 

Let, further, [A 2] and [A 3] be the Young schemes with 
A~ = min(mi",m/n _ 1), A¥ =: max(min,m/n - 1). In the 
notations of this paper, the result of Ref. 3 allows us 
to write 

where 
A[A] = (6 A;) 1//[1.], 

1[1.] being the dimension of the representation [A] of 
the symmetric group on 6iAi symbols. FpJ is the 
sum of the coefficients of those permutations in the 
expression 

(A3) 

which the symbols k ~ P 1 substitutes by the symbols 
1 > P l' (, in (A3) is the unit element of the symmetric 
group and (lk), the transposition of symbols I and k. 
T indicates that the order of multipliers with respect 
to label 1 is the same for each k. Fp is the symmet­
ric function on two sets of variables1xk andYz. For 
calculating the i.f. according to (A2), we must substi­
tute the values of the function Fpl with the x equal to 
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1<; - i (i = 1,2, ... , n; k; = >.: + 1, A: + 2, ... , m;~; 
P 2 = 67 c 1 (m;~ - A:) and the y to the lj - j (j = 1, 2, ... , 
n - 1; lj = mjn~l + 1, mjn-l + 2, ... , Af;p 1 = 
",11-1 ( 2 » 
L1jcl Aj - mjn - l . 

Extending the definition of Fp' ' we can define the' set 
of bisymmetric functions FJ~ = 0,1, ... ,P l ),Fs 
being the sum of the coefficients of those permuta­
tions in (A3) in which s arbitrary symbols from the 
set 1,2, ... ,PI are substituted by the symbols from 
another setP I + l'P l + 2, ... ,PI + 1)2' It can be 
shown, that the following set of equations hold for the 
Fs: 

'" (p 1 - s)! (p 2 - s)! P P 
L1 F = V 1 2, 
s (Pl-vl}1(Vl-S)1(P2-v2)1(v2-s)1 s v1 v2 

(A4) 
where 

VI and v2 can take on arbitrary values from the inter­
vals 0 ~ vI ~ PI and 0 ~ V2 ~ P2' respectively. The 
first summation in (A5) is taken with respect to per­
mutations, one from each left coset of the group of 
permutations of indices 1,2, ... ,PI with respect to 
the subgroup of permutations of indices 1, ... ,VI and 
VI + 1, ... ,PI' within the two sets. The second sum­
mation is analogous to the first one, the group being 
the permutation group of the symbols Pr + 1, ... , 
Pr + P2 ' and the subgroup having as its elements the 
permutations within the two sets h + 1, ... ,PI + v2 
andPl + v2 + 1, ... ,PI + P2 • 

Taking the different sets of (PI + 1) equations from 
the extended set (A4), we obtain different expressions 
for Ff, . Thus, if we take the equations with v2 = P2 
and VII varying from 0 to PI' we have 

PI 

F. = 6 (- 1)P1 -v1 V PI P2 • (A6) 
PI v1=0 v1P2 

The value of the bisymmetric function Vt 1
p

P2
, the 

1 2 

arguments taking the mentioned values, is equal to 

1 J. O. Louck, Am. J. Phys. 38,3 (1970). 

6 (A~ - r;) = VI' 
i 

(A7) 

2 L. C. Biedenharn and J. O. Louck, Commun. Math. Phys. 8,89 (1968). 
3 A.-A. A. Jucys, Lietuvos. Mat. Rinkinys 8, 597 (1968); Lietuvos 

Fiz. Rinkinys 9, 629 (1969); 10,5 (1970). 
4 S. J. Alisauskas, Lietuvos Fiz. Rinkinys 9, 641 (1969). 
5 S. J. Alisauskas, V. V. Vanagas, and A. P. Jucys, Ookl. Akad. Nauk 

SSSR 197, 804 (1971). 
6 R. M. Asherova and Yu. F. Smirnov, Usp. Mat. Nauk 24, No.3, 227 

(1969). 
7 R. M. Asherova and Yu. F. Smirnov, Nucl. Phys. B4, 399 (1968). 
S G. E. Baird and L. C. Biedenharn, J. Math. Phys. 4,1449 (1963). 
9 J. G. Nagel and M. Moshinsky, J. Math. Phys. 6,682 (1965). 

Using (A6)-(A7) for the FJ,1' Young's expression for 

the dimensions/rAJ, and performing the simplifica­
tions needed, we obtain formula (9) for the Lf. under 
consideration. 

On the other hand, solving equations (A4) with VI = 
PI and v2 = P2 - PI - a, P2 - PI - a + 1, ... 'P2 - a 
using the values of Xi and y k indicated above, one 
obtains 

(- l)y-a y 1 (p2 - y) 1 

= If (p - q) 1 (y - a) 1 (PI + a - y) 1 
n 

x U[A3] [r]n u[r]n [m']n 
[m]n_dA2] [11. 3 ] [r]n 

(AB) 

Formulas (A2) and (AB) may be brought into the form 
equivalent to the result given by the Eq. (12) and (13). 

APPENDIX B: RELATION BETWEEN RECOUPliNG 
MATRICES AND ISOSCALAR FACTORS 

According to the results of Ref. 5, the following rela­
tion holds between the elements of the recoupling 
matrix of four representations of Un with three of 
them symmetric and the Lf.: 

<[m]n-l q([m']n-l),rp - q(r');[m']n I 

x I [m]n-lr([m]n),qP - q(p);[m']) 

=(rlq!(p -q)lA[m Jn _ lA[m']n)1I2 

r' lp lA[m ]nA[m In-l 
n n-l 

x [[m]n P [m']n ] 
[m]n-l q [m']n-l ' 

r =~m;n - 6 min-I' 
;=1 ;=1 

n n-l 
r' = P - q + r = 6 min - 6 m/n -1 ' 

i =1 ,= 1 
(B1) 

A[A] is given in (A2). 

The particular cases of this relation (when P = q for 
Un and for the semi stretched Lf. of SU 3) have been 
obtained in Refs. 3 and 4. It can be seen that in the 
semi stretched case of the Lf. (m:n = mnn ), the re­
coupling matrix goes over into the one of Un-I' A 
particular case of this matrix (withP = q and rn:n -
mnn ) gives the matrix changing the canonical chains 
of subgroups in Un .3,14 Equations (12) and (15) for 
the Lf. on the right-hand side of (BI) are more con­
venient to use than Eq. (9), because in the first case 
there remain only n - 2 summation parameters, in­
stead of n - 1 as is in the second case. 

10 A. P. Jucys and A. A. Bandzaitis, The Theory of Angular Momen­
tum in Quantum Mechanics (in Russian) (Mintis, Vilnius, 1965). 

11 T. Regge, Nuovo Cimento 10, 544 (1958); 11, 116 (1959); A. M. Bin­
cer, J. Math. Phys.11, 1835 (1970). 

12 S. J. Alisauskas and A. P. Jucys, J. Math. Phys. 8,2250 (1967). 
13 A. OiLeva and G. Ponzano, Nuovo Cimento A51, 1107 (1967); S. J. 

Alisauskas and P. A. Jucys, Ookl. Akad. Nauk SSSR 177, 61 (1967). 
14 M. Moshinsky and E. Chacon, Spectroscupic and Group Theoreti­

cal Methods in Physics (Racah Memorial Volume) (North-Hol­
land, Amsterdam, 1968), p. 99; J. Flores and J. Niederle, Czech. J. 
Phys. B20, 1241 (1970). 
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This article is devoted to the development of constitutive equations of deformable magnetically saturated media 
in three dimensions. In Sec. 1 we recapitulate the local balance laws and jump conditions derived previously. 
A thorough study of the consequences of the objectivity requirement is given in Sec. 2. In the following sections, 
the material symmetry restrictions are examined and exact and approximate constitutive equations are obtain­
ed for a variety of material classes. 

1. RECAPITULATION 

In this section we set forth in one place the complete 
system of differential equations [valid in the body (B)], 
boundary conditions [on the surface (oB)], jump con­
ditions [across a steady surface of discontinuity (r)] 
and constitutive relations (the nonlinear theory) of 
the theory of magnetomechanical materials develop­
ed in Part 1. 1 We limit the presentation to the non­
dissipative case and note that the" spin rotation" 
equation derived in Part 11 is to be used only when 
the material is magnetically saturated. With the 
recognition of certain quantities and use of the objec­
tivity requirement other forms obtained before will 
result in the form given below. 

(a) The set of field equations for saturated media 
consists of: 

(i) Continuity equation: 

~~ + (PV},);h = 0 in (B - r), [pv k ] nk = 0 on (r). 
(1. 1) 

(ii) Balance of linear momentum: 

pi;k=pjA +pBI;kIJ.I + thl;1 in (B- r), 

[t hi + t~t/m) - pvkvl]nl = 0 on (r). (1. 2) 

(iii) Balance of moment of momentum: 

t[ld] = PLB[klJ.ll in (B - r). (1. 3) 

(iv) Balance of spin angular momentum: 

(plr) Ilk = E kim B(eff)/Mm in (B - r), 
lJ.[mt(jJ)kllnl =0 0 on (r). (1.4) 

(V) Maxwell's equations: In the case of quasi­
magnetostatics, the set of Maxwell's equations with 
II'I = const. in (B) and on (oB), reduces to: 

V x B ="1 x M, V' B = 0 in (B - r), 
V x B = 0, V· B = 0 outside (B), (1. 5) 

n x [B] = n x [M], n· [B] = 0 on (r), 

where we have defined 

M = PI', B(en.)h = B k + L B k + p-l ti~)/, 

vI. == 
Hk== 

IJ.k== 

fk== 

tkl == 
LBk== 

B " -(eft.) = 

Lkl == 

r== 
t kl = 
(em) -

t(jJ)kl == 

Ski == 

Mklm == 

magnetic field intensity, 

magnetization per unit volume, 

velocity field, 

magnetic field, 

magnetization per unit mass 

nonmagnetic body force per unit mass 
(e.g., gravity), 

stress tensor, 

local magnetic field intensity, 

effective magnetic field intensity, 

ponderomotive magnetic couple, 

gyromagnetic ratio = -e/moc. 

Maxwell's stress tensor, 

"spin interaction" stress tensor 

spin bivector 

"magnetic" couple stress tensor, 

With a strain energy function of the form 

5' = 5' (Fx , I' , F (jJ) , X), (F) kK == x k K , 

(F ) k = k 
(jJ) K-IJ. ,K (1. 8) 

where x k and XK are the spatial and material coordi­
nates, the constitutive equations are 

05' 05' 
tkl=P--XI,K' LBk=-""k' 

aX ~K u,.. (1. 9) 

05' 05' 
t(jJ)A I =p -- XI,K or MPqr =p ---lJ.q1Xr K' 

OIJ. ~K OIJ.[P,K ' 

The field equations (1. 1)-(1. 5) are supplemented with 
the mixed boundary conditions: 

[pvk]nk = 0 across (dB - r), 
tf, = thln l on (dB t -r), 
u~ = U"(oB) on (dB - dB t - r), 
Eihmt(jJ)hllJ.mnl == 0 on (dB - r), (1.10) 

~~~) = HkBI - (~B2 - B 0 M)gkl. (1. 6) n x [B] = M(in) X n, no[B] = 0 on (aB - r), 

Alternatively, (1. 4) may be written in the "couple 
stress" form: 

(p/2r) Ski = pLkl + t[l h] + M klm;m in (B - r)' 

(M klm]nm = 0 on (r)' (1. 4') 

with 

Ski == EAlm/J.m, Mklm == -1J.[kt(jJ)llm, 
(1. 7) 

and the definitions 

p == mass density, 
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with, [cf., Eq. (6. 1) of Part I] 

th = TR - (M(in)o[B]) ~nh, 

where tA is the stress vector, Tk is the mechanical 
surface traction prescribed on (dB t - r) with M(in) 

the inSide value of M on (d B - r); Uk is the displace­
ment, 

The number of unknowns (p, v k , tk I, IJ. h, B k, L B h, t(,,)k/) 
amounts to 1 + 3 + 9 + 3 + 3 + 3 + 9 = 31, and the 
number of components of Eqs. (1. 1) to (1. 5) and (1. 9) 
is precisely: 1 + 3 + 3 + 3 + 3 + 6 + 3 + 9 = 31. 



                                                                                                                                    

M E D I A. I I. CON S TIT UTI VET H E 0 R Y 1335 

With the following Cauchy's data at t := to 

p(t := to ):= PR' xh(t:= to ):= O"K XK , 

V (x, t := to) := v~(x), Ilh(t:= to) := O"KIlK , (1. 11) 

problems relevant to the nonlinear /heory of ma/?Ilc/i­
cally saLura/ed elastic media can be solved, the mag­
netic part being statically treated. Ultimately, theo­
rems of existence and uniqueness for the system of 
partial differential equations given above have to be 
proved. 

(b) For nOt/sa/ura/ed media, an equation such as 
(1. 4) cannot be written since this equation describes 
the rotation of a vector constant in magnitude. Equa­
tions (1. I), (1. 2), and (1. 5) are still valid. With the 
form of 5' given by (1. 8), the balance of moment of 
momentum cannot be reduced to (1. 3), but reads 

(1. 12) 

This follows from 

~ Xi,] + P i! Ilk] + P ~ Ilk] := 0 (1.13) 
p OX ll •K .K ollu oll[l.K·K 

which is the Euclidean invariance requirement equa­
tion of Sec. 7 of Part I. Alternatively, (1. 13) is the 
partial differential equation to be verified by 5' if g: 
is to be objective (invariant under time-dependent 
rotations in E3). We can thus write the stress tensor 
l hi in the form 

(1. 14) 

where Etkl is the elastic stress tensor, the constitutive 
equation of which is given by 

ago 
Elld := p ax-- XI).K' (1. 15) 

( h.K 

In summary, for nonsaturated media, no equation des­
cribes the motion of Il which is solely determined by 
the solution of Maxwell's equations. The field equa­
tions are (1. 1), (1. 2), (1. 5), and (1. 12). The constitu­
tive equations are given by (1. 15) and the second and 
third of Eqs. (1. 9). A constitutive equation must be 
given in the form M := M(B) if one wants to solve 
(1. 5). The boundary conditions and the Cauchy's data 
at t = to are 

[pvh]n~=O across (aB-r) 

liz = tk1n
l on (oB t - r), 

U k - Uk 
- UlB) on (oB - aBt - r), 

n x [B] := M(in) X n, 

n·(B] = 0 on (oB r), (1. 16) 

p(t:= to) = PR' xk(t = to):= O"KXK, 

vh(x, t:= to) = v~(x), (1.17) 

with 
tl<:= Tk - (M(inJ" [B]Hnk. 

This set of equations is adequate for describing 
magnetoelastic effects (such as magnetostriction) in 
nonsaturated bodies. We must however remark that 
in this case, theories such as those of Jordan and 

Eringen2, Dixon and Eringen3, and Grot and Eringen4 

are more suited for a constitutive theory Since, then, 
the needed equation M := M(B) would be included in 
the set of constitutive equations as well. 

2. OBJECTIVITY REQUIREMENT5 

In determining the restrictions arising from the 
axiom of objectivity, we distinguish between two cases: 
(i) no saturation of the magnetization, (ii) saturation 
of the magnetization, i.e., IIlI == const. For each case 
it must be understood that only consli/uliue equations 
labelled for the saturation case (or llonsaluralion) 
must be used as companions of the set of correspond­
ing field equations given in the preceding paragraph. 

According to Part I, the Lagrangian density £ is ex­
pressed in terms of the strain energy function g: by 

Making no hypothesis as to the magnetization magni­
tude per unit mass, we shall require g: to be invari­
ant under the orthogonal group, i.e., 

(2. 1) 

for all orthogonal constant tensors!t. In particu­
lar, we select 

(2.2) 

where RT is the transposed of the rotation tensor. 
Thus, using the polar decomposition of Fx ' 6 

;r:= g:(RTJ.L,RTFx,RTF(jl)'X), 

Since 

RTFx = U := Cl/2, 

we can write 

g: = g: (II, C, D, X), 

where 

C = FIFx , CAB =g;k xi.Ax",n, 

II = FIll, llA = Xi.AIl;, 

D:= FIFC!'J' DAB =gih Xi.Af.l'~.B 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

form a set of 18 independent quantities forming a 
single-valued minimal integrity basis for the argu­
ments involved in g:. The same result may be arriv­
ed at in applying Cauchy's theorem (see WeyF), ac­
cording to which g: is objective if it is a function of 
the following 57 quantities: 

Ililli := J.L2, 

Xi,AXLE := CAB' 

lli.Alli,B = GAE , 

Xi,Alli = llA' 

Xi .Alli,B DAB' 

ll'Ili.A == JA , 

J := (1/3!)E;jk EKLMxi.KXJ.LXk.M' 

L:= (1/3!)E"kEKLMlli Ilj Ilk U .K,L .M' 
1 KL' ' , 

PRN = 2: Eijk E RX'.KXJ.LIl".N' 

Q - "-E ELM Xi "j Ilk 
RN - 2 ijk R ,L'" ,M'" .N' 

WLM := E;j,,,Xi.Lxj.Mllk == - WML , 

K - "-E ELM Xi x j Ilk 
N - 2 iji< N.L .M'-' 

1 LM' ' k Rs == 2: E ij E SIl'.LIlJ.MIl. (2.8) 
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But one can show that only 18 (C AB,DAB and IlA) of the 
57 quantities are independent. Thus 

(2.9) 

It follows that the constitutive equations (1. 9) for an 
anisotropic inhomogeneous elastic material with 
electronic spin and unsaturated magnetization are: 

( 
aff aff aff ) l 

l = P 2ac-- x h.B + all !J.h + ~ !J. .B x.K ' 
KB K KB 

aff 
LBk =-all Xh.A' 

A 

t(,..)hl =p~ xi< Xl.K' 
aDAK .A 

Mpqr = - p~ !J.[PXql.A x r •K • 
aDAK 

(2. to) 

(2. 11) 

(2. 12) 

Magnetically saturated media: When the material 
is magnetically saturated, we must impose the con­
straints 

(2.13) 

The minimal integrity basis is now reduced to four­
teen members since CAB' IlA' and DAB are no longer 
independent and must be consistent with (2.13). In 
fact, using (2. 13), we have 

(2. 14) 
-1 

where CAB is the reciprocal of CAB introduced by 
-1 

CABCBM = 0;(. 

We must take account of (2.4) when we differentiate 
if with respect to the different arguments. In fact, 
depending on the choice of fourteen independent vari­
abIes among the list (2.8), there exist many objective 
forms for the strain energy if. Of course all these 
forms are equivalent to each other. For the approxi­
mate theories however, a form may be preferred over 
the others depending on the class of problems under 
consideration. Below, we give four interesting forms: 

Theorem: For magnetically saturated media, 
the strain energy is objective if it has anyone of the 
following forms: 

or 

or 

or 

g= = ff ( CAB' Il A , DAB' X) 

subject to 
-1 -1 

IlACABil B = const and IlACABDBM = 0, 

g= = ~(EAB,IlA,GAB'X) 
subject to 

-1 
IlACABil B = const, 

g= == 5' ( CAB' n A, 15 AB , X) 

subject to 

ITAITA = !J.~ = const and IT ADAB = 0, 

g= == ~(CAB' DrlB,X) 

subject to 

det(z)A H) == 0, 

J. Math. Phys., Vol. 13, No.9, September 1972 

(2. 15) 

(2.16) 

(2. 17) 

(2. 18) 

where 

E AB :== 1(CAB - °AB), 

(2. 20) 

Here EAB is the classical Lagrangian strain tensor. 

The equivalence of the first three forms is clear, the 
last one, eq. (2. 18), can be seen as follows: 

Since IT is a left null vector for :6 (alternatively :6 a 
right zero operator for fi) the determinant of D must 
vanish. Thus Ii will no longer appear explicitly in g= 
since it is determined through D. One can verify that 
the number of independent components for the argu­
ments of if amounts to 6 + 9 - 1 = 14 [- 1 due to 
restriction (2.18)]. We take notice of the inconveni­
ence that the quantity oD/ an appearing in the consti­
tutive equations must be computed from det D == O. 

3. CONSTITUTIVE EQUATIONS FOR ANISOTROPIC 
MAGNETICALLY SATURATED MEDIA 

Different functional forms of the strain energy func­
tion g= lead to constitutive equations involving differ­
ent variables. Some of these expressions are simpler 
than others. Below, we give the constitutive equations 
for the four cases enumerated in Sec. 2. To this end, 
we consider the material tensors 

a~ 
BK == P JXK Bk = - JXK --, 

L R. kL 'kaJ.1.k 
(3.1) 

and we introduce the strain energy function per unit 
of undeformed volume by 

(3.2) 

The mixed tensors ThK and T(ji) kK were encountered 
in Part I. 

Case (0, Strain energy given by (2.15): We intro­
duce the strain energy function 

-1 

~ ('b = ~(l) (CAB' IlA' DAB, X) - CP(1) [ilA CABilB - !J.~] 
-1 

- CP(1)MIlA CABDBM , (3.3) 

where CP(l) and CPtt) are Lagrange's multipliers. 

The following relations are useful in differentiating ~(l) 
-1 

aC AJ -1-1 
-- = _ CAMCNJ' 
aCMN 

aCMN 

a-- = 20~xk.N' 
x k.K 

(3.4) 

(3.5) 

= xk.A' 

(3.6) 
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aDAB 
-- -OK!J.h ax h.K - A .B' 

aGAB -a-- = 2oj!J.
h
.B' 

!J.h.K 

aDAB 

a-- = 6ffx h A, 
!J.h.K • 

(3.7) 

which follow by differentiating appropriate expres­
sions in (2.8). We also introduce the material form 
of the magnetization vector by 

By using (2.8) it can be shown that 

(3.8) 

(3.9) 

(3.10) 

Upon carrying (3.3) into (3. 1) and using (3. 4)-(3. 10), 
we obtain the constitutive equations: 

a~ a~ -1 a~-l 
TLK - 2 ~ + ~ CLA II + -----.ill CLADAB 

- aCKL a IlK A aDKB 

(3.11) 

K _ (1) KB _ M KB 
(

a:6 -1 -1) 
LB - -J aIl

K 
-2 l}>(l)C IlB l}>(l)C DBM , 

0:6 ) -1 
T(~)LK = ~ - I}>K CALII 

oDKL (1) A' 

Note that 1}>(1) does not appear in the first of Eqs. 
(3.11). The corresponding spatial tensors or vec­
tors. when no saturation occurs are given by (2.10)­
(2.12). 

Case (ii), Strain energy given by (2.16): In this 
case only one scalar Lagrange's multiplier 1}>(2) is 
necessary. Thus introducing 

~(~) = :6(2) (EAB' IlA' GAB' X) - 1}>(2) [IIA C~BIlB - !J.~J ' 
(3.12) 

we find the simple equations 

a~ a:6-1 
TLK (2) + ~ CLAII 

= aEKL a IlK A' 

(0~(2) -1) 
= - J aIl

K 
- 21}>(2)CKBIlB , 

a:6 -1 
- 2~ CLJD 
- aG

KB 
JB' 

Corresponding to these are the mixed material­
spatial expressions 

(3.13) 

a :6(2) 
- xh 
--~ .K 

K 
(3. 14) 

a :6(2) , 
= 2 ac- IJ.",L' 

KL 

which shows that 1}>(2) is irrelevant for the spin equa­
tion. Nevertheless, the form (3.14) can only be em­
played for the case of saturation because of the use of 
the GKL 's. This remark holds equally for the second 

of Eqs. (3.11), (3.13) and (3.15) given below. The 
spatial forms corresponding to (2.10)-(2. 12) are 

(3.15) 

At this point it is of interest to remark the following 
result 

E im h t(ll)mp !J.k.p := 0, or equivalently, ~ !J.k] K = 0, 
• a!J.[m.

K 
• 

(3.16) 

which follows immediately from the third of Eqs. 
(3.15) and the symmetry of GKB • Hence the last term 
of Eq. (7.36) of Part I vanishes and Eqs. (7. 36) and 
(8. 1) of Part I become identical for nondissipative 
media. 

Case (iii), Strain energy of the form (2.17): In 
this case we introduce 

and obtain the constitutive equations 

TLK = 2 __ 3 + __ 3 CLNII + ~ CLMD 
a~() (a~() -1 0:6-1 

ac afiA N afjA MB 
KL B 

(3.18) 

For the computation of T LK , the following expressions 
are used: 

(3.19) 

(3.20) 
-1/2 

C AMx h.MgKB , (3.21) 

(3. 22) 

Case (iv) , Strain enerf{Y of the form (2. 18): Here 
we write 
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~(~) = ~(4) (CKL ,1,)AB, X) - <P(4) det(fi). (3. 23) 

It follows that 

TLK = 2 a~(4) _ JeMNeLJDJN (-l/2MK _ C1MK) , 
aCKL 

(3. 24) 

where we have set 

a~(4) a (deID) 
JeMN = afjMN - <P(4) afjMN 

a~(4) 
Je N = -- - ~ <P(4) EMBC ENPQ fjBpfjC Q. 

M afjM
N 

(3.25) 

For this case we have IT = fi(i5 AB ) and,therefore,one 
must compute afjMN/afi A • 

An examination of various forms obtained above in­
dicates that the simplest form is provided by (3.13) 
which corresponds to the strain energy of the form 
(2.16). This is the form we shall employ in the rest 
of this article. 

4. MATERIAL SYMMETRY 

Materials in their natural states may possess cer­
tain symmetry regulations in their properties. The 
geometrical symmetry conditions in the physical 
properties of materials can be expressed by the 
form-invariance of the constitutive equations (hence 
the strain energy function) under a group of ortho­
gonal transformations is} and translations {B} at the 
material frame of reference, i.e., 

x = SX = B, 

where 

SST = STS = I, det S = ± 1. 

(4.1) 

(4.2) 

The invariance under all members of {B} provides 
restrictions on the inhomogeneities and under all 
members of the group is} places restrictions on the 
type of anisotropy present in the material at its 
natural state. Presently all known thirty-two classes 
of crystallographic elastic solids are obtained by use 
of twelve members of the group {S}. However, here 
we are concerned mostly with hemitropic materials 
for which the symmetry group is the proper ortho­
gonal group (detS = + 1) and isotropic materials for 
which the symmetry group is the full group of ortho­
gonal transformations. 

The material symmetries in all classes of magnetic 
materials cannot be determined by use of the crystal­
lographic {s} included in is}. In addition to the geo­
metrical symmetries present in the lattice structure 
of the crystals, the atoms of the lattice in magnetic 
materials are endowed with atomic magnetic moments 
(spins). It may turn out that the usual spatial sym­
metry operations, rotation and rotation-reflection, 
while preserving the geometrical properties of the 
lattice may reverse the orientation of spins. Thus 
there is need for the enlargement of the three-dimen­
sional crystal group {s}. A separate argument in this 
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regard may be made from the baSic premises in the 
solid state theory8: The atoms of a crystal lattice 
are in constant oscillating motions and the time ave­
rage of the positions of the component parts of the 
lattice constitutes the basis for the crystallographic 
symmetry. If there exists a microscopic nonzero 
time average for each component part, then this in­
formation is not contained in any speCification of the 
average positions. If the nonzero time average of the 
position recurs in an identical manner in each unit 
cell of the crystal, then this information is not con­
tained in the geometrical symmetry of the crystal. It 
is known that ferromagnetiC, ferrimagnetic and anti­
ferromagnetic crystals are characterized by orderly 
distributions of spin magnetic moments. 

The foregOing argument suggests that in the treatment 
of the symmetry properties we must consider the 
time symmetry along with the spatial symmetry 
regulations. Thus a four-dimensional (space-time) 
group is needed for a satisfactory discussion of the 
physical properties of magnetic materials. 'For ex­
ample, the effect of time reversal must be taken into 
account. Fortunately the time reversal adjoined to 
spatial symmetry operations such as rotation and ro­
tation-reflection is the only other relevant operation 
which affects the symmetry properties of magnetic 
materials. Properties of diamagnetic and paramag­
netic crystals are invariant under the time reversal 
so that these materials are governed solely by the 
three-dimensional group {s}. However, ferromagnetic, 
ferrimagnetic, and certain antiferromagnetic crystals 
are not time symmetric. 

The space-time symmetry operators correspond to 
proper and improper spatial rotations combined with 
time inversion. Zheludev9 introduced the notion of 
complementary operation <R referred to as reversal 
of the sPins. (or time inversion) whose product with 
R;, an element of the conventional crystallographiC 
:point group, gives an element of the magnetic group 
t ~}. The composition with <R is noted as 

(4.3) 

For instance, we have 

R 1'R 2 = R3 (since R 1 ,R 2 E {s} qR 3 E (s}), 

B.1'.!i2 =R 3, !!:.1·R 2 = R 1·B.2 =!!:.3' B.3 E {~}. (4.4) 

The recognition of these new complementary symme­
try operations, as explained above in the context of 
magnetic structures, results in a number of ninety 
possible crystallographic groups {~} (32 classical 
~roups {s} + 58 additional groups {~}; {~'} = {S} EB 
{~) for short referred to as magnetic point groups. 
For the classical 32 groups it means that it is pos­
sible to orient magnetic moments in a crystal such 
that there is no deterioration of spatial symmetry 
even if invariance of magnetic moment orientation 
under a symmetry operation is demanded. The dis­
tinct variants {~,} are obtained from the 32 ordinary 
groups [cf., (4. 3)]. For example, for a cubic system 
m3m (Oh in Schonflies' classification) we get m3m, 
~3~,~3m,m3~. 

The distinctive feature of magnetic (material) ten­
sors (Le., the material coefficients appearing, for in­
stance, in the expansion of the strain energy function) 
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consists therefore in their transformation properties 
under <R. 

Finally we recognize the Neumann's principle of far­
reaching insighPo: 

Every physical property of a crystal must possess at 
least the symmetry of the point group of the crystal. 

In conclusion, the macroscopic symmetry properties 
of ferromagnetic crystals must be classified under 
the ninety magnetic classes. It is interesting to note 
that certain magnetic properties have been shown to 
be possible after recognizing the magnetic symmetry 
classes, and their existence has received experimen­
tal confirmation, e.g., piezomagnetism in CoF2 and 
MnF 2 (antiferromagnetic crystals E 1lmm!E (Boro­
vik-Romanovll ). If the operation <R has no effect on 
material properties, then the material falls in one of 
the classical 32 classes. For example, diamagnetic 
and paramagnetic materials, in fact, all centrosym­
metric materials, fall in this category. Therefore 
there are no tensorial coefficients of odd rank in the 
expansion of the free energy and, hence, the magnetic 
properties are not influenced by <R. Similarly, the 
second order magnetostriction effect does not require 
the consideration of magnetic symmetries of crys­
tals (the first order, yes). For ferromagnetism this, 
of course, implies the presence of a magnetic mo­
ment even in the absence of an external magnetic 
field. 

5. HEMITROPIC AND ISOTROPIC MATERIALS 

Suppose that 1} is the number of independent compo­
nents of the tensorial arguments of the strain energy 
function 5'. If 5' is form invariant under the ortho­
gonal transformations S in an n-dimensional space 
then, according to a theorem of Cauchy, 5' is a func­
tion of 1} - p scalars I which form a minimal func­
tion basis of 5', where p == n(n - 1)/2 (cLSmith12, 
Kafadar and Eringen13). If I1,"',Iq (0 ~ q ~ 1) -p) 
are absolute scalars and I q+ 1 , ••• ,Irp are axial in­
variants, then 5' is invariant under the full group if 

5'(I1' ... ,Iq, Iq+1, .. " 1
1I

- p ) = 5'(I1, .. " Iq, - Iq+l> .. " 

- 1
1I
-). (5.1) 

This means that we only need to select 1} - p inde­
pendent members of the minimal function basis among 
the q independent members of the integrity basis (in 
the sense of Spencer14). 

There remains the question of single-valuedness of 
the minimal function basis which has been the basis 
of certain recent controversies.15 

Suppose that a minimal function basis is built up of 
1} - p members chosen from the q members of the 
minimal integrity basis. Suppose that m members of 
the remaining q - (1) - p) members cannot be ex­
pressed as Single-valued functions (not always poly­
nomials) of the 7j - p function basis members, i.e., 
the equations 

a=1, ... ,1}-P, 

{3 = 1} - p + 1, ... ,1} - P + In (5. 2) 

cannot be solved for J(3 to yield a single-valued solu­
tion 

In that case we cannot construct a minimal function 
basis only on 1} - p members (cf. Smith15) but we can 
construct one based on 1} - p + m members. But as 
has been pointed out by C. B. Kafadar (private com­
munication), the above mentioned result becomes ir­
relevant for the formulation of nondissipative con­
stitutive equations derivable from a strain energy 
function. Indeed, consider a second order tensor­
valued function t derived from a potential 5': 

t= t ~ B(K) 
(K)=l aU(K) , 

K = 1,2, ... ,1}, (5.3) 

where U(K) is the indexed series of independent com­
ponents of the arguments involved in 5', B(K) are func­
tions of the U(K)'S. Let {I ,a = 1,2, ... ,1} - p} be 
the minimal function basis

a 
and {Je, {3 = 1} - p + 1,'" , 

1} - p + m} the supplementary invariants that cannot 
be solved uniquely from the m relations 

(5.4) 

Following the preceding remark, we might consider 
5' = @(Ia,Je) and (5.3) would be read as 

11 (a!f ala a!f aJB J 
t = 6 - -- + - -- B(K) (5.5) 

(K)=l ala aU(K) Me aU(K) . 

Differentiating (5.4) with respect to Ia we obtain 

a.!.I a.!.I Me _ 
aI + aJ. aT - O. (5.6) 

a B a 

This relation can be solved for Me lala since afylaJB 
is well defined, hence (5. 5) may be written as 

t= 
aI 

Aa __ a_ B(K) 
aU(K) , (5.7) 

with 

a = 1,2, .. " 1} - p, a=1,2,"·,1}-p. (5.8) 

It follows that, in this formulation, though we take 
account of the nonsingle valuedness of the solutions 
of (5. 4), there are still1} - p coefficients Aa in the 
constitutive equation. Furthermore, an astute choice 
of the Ia may lead each constitutive equation not to 
contain all these coefficients, the value of which 
follows from experiment results. 

For tranversely isotropic materials, there exists a 
single preferred direction N which is the same at all 
points of the body at its natural state. In the special 
case when the direction of the spin coincides with N, 
then we need no special case for the magnetic group 
symmetries. If we select N in the direction of the 
X 3 axis then the group of transformations under 
which the strain energy function 5' is invariant may 
be represented by the matrices 

(

-100) 
R1 = 010, 

001 

(5.9) 

o ~ e ~ 21T. 

J. Math. Phys., Vol. 13, No.9, September 1972 



                                                                                                                                    

1340 G. A. M AUG I NAN D A. C. E R I N G E N 

In this case R1 . Me preserves the orientation of the 
spins. 

There exists a class of materials which appear to 
satisfy such transverse isotropy conditions. These 
are the rubber bonded barium ferrite composite 
materials (see Kafadar and Eringen13). In the initial 
state of these materials, all magnetic moments are 
alined along a direction which is also a privileged 
direction as far as the mechanical properties are 
studied Under application of an external magnetic 
field, the embedded ferrite particles tend in general 
to rotate, a behavior that can be described by the 
"spin rotation" equation of the above developed 
theory.1 6 Generally these materials are viscoelastic, 
but one may assume for the sake of simplicity that 
these media are nonlinear elastic, able to support 
large deformations, and obviously transversely iso­
tropic. 

6. CONSTITUTIVE EQUATIONS OF NONLINEAR 
HEMITROPIC MAGNETO-ELASTIC SOLIDS 

A. Material Expressions 
Here we obtain the constitutive equations of nonlinear 
magneto-elastic solids based on the strain energy 
function (2.16), Le., 

~(2) = ~(2) (CKL , ITA' GAB) 

subject to the saturation condition 
-1 

IIACABllB = i.L~ = const. 

(6. I) 

(6.2) 

For the present case, n = 3 (space is three-dimen­
sional),p = n(n - 1)/2 = 3,1/ = 18 for nonsaturated 
media and, for saturated media,1/ == 14. Thus 

1/ - P = 15 for nonsaturated media, 

1/ - P = 11 for saturated media. 

For hemitropic materials ~ must be invariant under 
the proper group. The axial vector ITA may be re­
placed by its dual ~AB. We have the identities 

tr~ = trC~ = trC2~ == trG~ = 0, (6.3) 

and the fact that tr~3 is not independent of tr~2. 
Among the minimal integrity basis, 14 for the case 
of nonsaturated media, we select the following 15 in­
variants Ie, (3 = 1,2, .. ·,15, 

11 = trC, 12 = ~ trC2, 13 = t trC3, 

14 = ~ tr1:2 , 15 = tr~2C, 16 == ~ tr1: 2C2, 

17 = trG, Is = ~ trG2, 19 = t trG3, (6.4) 

110 == trCG, III = trCG2, 112 == trGC2, 

Il3 = ~ trC2G2, 114 = ~ tr1:2G2, 115 = tr1:2G. 

For the case of saturation we may choose the first 
eleven invariants 113 (3 = 1,2, ... ,11. The constitutive 
equations (3. 1) are 

TLK == 2(0'1 _ O'5IIpIIP)gKL + O' 2CKL + O'3CK~ML 
-1 

- O' 5IIKITL - O' 4ITKCLAITA 

+ O'6(~MN~NKCLM - ~LN~NpCPK) 

+ 2O'10GLK + 2O' llGLp GPK 
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BK 
L 

-1 
- JO'6EpQK~QJCJICPI + 2J{P(2)CKBITB , 

(6.5) 

T(p.)LK == 2[O'7gKB + O'SGKB + a9GK~MB + a10CKB 
-1 

+ a 11(CKMGM
B + GKNCNB)]DJ~LJ, 

where gKB is the metric tensor in material coordin­
ates and a 13 == a ~(2/a 113 • 

It is interesting to see what happens when one starts 
with the expressions (2. 17}. Calling f; the dual of it 
and noting that fi is a general second order tensor, we 
can select 15 invariants for the nonsaturated case: 

II == trC, 

14 == trCfi, 

12 == ~ trC2 , 

15 == trC2fi, 

13 == t trC3, 

16 == tri>, 

17 == ~trfi2, Is ==t trfi3, 19 == ~trfifiT, (6.6) 

110 == tri>2fiT, III == ~ trfi2(])T)2, 112 == ~ trt2 

113 == trtf>, 114 == trtfi2, 115 == trtfic, 

where the superscript T stands for transposition. 

For the case of saturation we may take account of the 
constraints nADAB == 0 by chOOSing to discard those 
invariants which vanish as a consequence of these 
constraints. For instance, we notice that 

(6.7) 

Hence the multipliers {P(3)M are unimportant and we 
keep the eleven invariants 113 , (3 == 1,2, ... , 11, of the 
list (6.6). Alternatively, since 112 == const, we may 
take the twelve invariants 113 , (3 == 1,2, ... , 12, and the 
unknown (P(3) may be preserved. It follows that the 
constitutive equations (3.1) are 

5 aI ( aI -1 
TLK == 2 L; a B _13_ + a 12 ~ CLNITN 

13=1 aCKL anA 
11 a 113 -1 '" -1 ~ 

+ L; 0'8 a~A CLMDMB - 2 (P(3)IIAITB CLB) 
8=4 II B 

-1/2 -1 
X(CAK-CAK), 

( 
aI12 ) -1/2 

== -J a 12 anA - 2 {p(3)fiA C AK, 

(
11 aI) -162 

T(p.)LK == L; aB + AL. 
8=4 aDAK 

(6.8) 

Twelve, one, and eight material coeffiCients are, 
respectively, present in Eqs. (6.8). The full expres­
sions corresponding to (6.8), especially to the first 
of (6.8) are quite involved and we choose not to give 
them here. We note that minor simplifications are 
still possible in formulas (6. 5) an (6.8) by use of the 
Cayley-Hamilton theorem. 

B. Spatial Expressions 
In many applications the spatial forms of the consti­
tutive equations are needed. To this end we set 

thl ==Ethl +PLBhi.Ll-t(P.)h m i.L1: m , (6.9) 

where 
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t - P 
E kl --

P
R 

a xCI 
.K 

x
m

.K • 

B - _..1 ~ 
L II - a k' 

PR ).J. 

(6. 10) 

(6. 11) 

Here }<.,t is the elastic stress tensor and t(ll) is the 
"spin interaction" stress tensor. In addition, the fol­
lowing spatial strain measures are needed: 

Thus, we may consider 
-1 -1 

L = L(C,I-',d). 

(6.12) 

(6.13) 

The constitutive equations (2.10)-(2.12) in spatial 
form are 

(6.14) 

(6.15) 

Moreover, one may verify that the form (6.13) con­
stitutes an integral of Eq. (7. 35) of Part I, thus satis­
fying the Euclidean invariance requirement. In obtain­
ing (6.14) and (6.15) we have made use of the results 

-1 . 
ac m" 

ax" 
= 2gKN 6 'k'X.nN' 

.K 

-1 
ad mn 
__ - gMK{jnXm 
a).J. k - k.M· 

.K 

For the saturation case, we may take 

(-1 -1) 
L = L C,I-',)I 

subject to 

WI-' = f.L~ = const. 

In (6.18), we have defined 
-1 -1 -1 
ylIl == gKL/lh.KJl~L' yhl = ylk , 

-1 -1 
that is related to d and c through the relation 

-1 (»1) T -1 
y=d cd, 

where 

(-1) -1 
c= c ,i.e.,cid==gKLX~X:Z. 

Setting: 

L* == L _(J>(/lk/li'-f.L~) 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

to take account of the constraint, we get the constitu­
tive equations 

(6.22) 

t<1l) == 2~ ~(JV. 
P -1 

R a 
y (6.23) 

In the last relation we have used the result 

Note that the unknown (J> appearing in (6.23) is irrele­
vant to the spin rotation equation. 

If we note the relation 
-1 -1 
d = c·VI-', (6.24) 

then the second of Eqs. (6.23) can be written in the 
alternative form 

aL (-1 ) 
t(jl) = 2-.£.. - c .'VI-' T. 

P -1 
R dy 

(6.25) 

Analogous to (6.4), spatial forms of the minimal func­
tion basis are 

-1 
II == tr c, 

14 == hra2 , 

-1 
17 = try, 

-1-1 
11o = tr c y, 

18 

-2-2 

-1 

Is = tra2 c, 
-2 

= hry, 19 
-1-2 

111 = trcy , 

-2 
16 = ~tr a2 c, 

-3 
= hry, (6.26) 

-1-2 

/12 == tryc, 
-1 

Il3 = hrcy , 
1 ·-2 

/ 14 = ztr(12 y , lIS = tr (12 y, 

where (1 == dual I-' . Only the first eleven invariants 
need be considered for saturated magnetization. In 
that case, the spatial equivalent of (6.5) is 

-1 -1 -1 
thZ = (p/PR)[2(a l - as f.L~)Cid + 2a 2 CIzm c m l 

1 -1 -1 -1 
+ 2a 3 c k'ncmncnl + 2aSf.Lh/lm c m

l 

-1 -1 -1 -1 
+ 4a6apqan[kcmlpCml + 2Q10Yhn,cml 

-1 -1 -1 
+ 2QllYhnynmcml - 2Q4f.Llf.Lk 

~ ~ ~ 
+ 2aSEpQlilhaqncPn + 2a6EpQlaqncprCnrf.Lk. 

[ 

-1 (6.27) 
LB k = - (2/ PRJ - (Q4 + (J»/J h + aSEpqhaqn c P n 

+ a 6 E aqn ~lPr~l J Pqh Itr , 

[ 

-1 -1-1 
t(Il)h/ = 2(p/P R ) Q7 chq + Q8Yhmcmq 

-1 -1 -1 -1 -1 
+ a 9 YmnY h Cmq + a10ckmcmq 

+ al1(~\~~p + ~lmn~~) ~lmqJf.Ll;q. 
7. APPROXIMATIONS,INFINITESIMAL DEFOR­

MATIONS 

For infinitesimal deformations, we can take17 

where e hi is the Eulerian strain tensor, e is its trace 
and gkK are the shifters. Therefore, the set of con­
stitutive equations (6.14)-(6.15) for the nonsaturated 
case, reduces to 

J. Math. Phys., Vol. 13. No.9, September 1972 



                                                                                                                                    

1342 G. A. MAUGIN AND A. C. ERINGEN 

(7.2) 
LBt = " - p aJlk' 

For the saturated case, we get 

t(,·dkl = 2~. 
a Jl (l;k ) 

(7.3) 
The equations (7. 2) constitute the magnetic counter­
part of the equations (4.1) in Suhubi.18 

For the linearized theory, one needs a strain energy 
function expanded as a function of the independent 
variables, i.e., 

(7.4) 

where the coefficients satisfy the symmetry relations 

bmn = b nm , ak1mn = a mnkl, Cklmn = c lkmn , 

dkl=dl~ dklmn=dlkmn=dklnm=dmnkl, (7.5) 

fklm =fkml, ),hlmn = Alkmn = Aklnm. 

The strain energy function is subject to some restric­
tions: 

(a) If in the natural state the initial stress, the initial 
local magnetic field intensity and the initial "spin 
interaction" vanish, then 

d kl = 0, a kl = 0; (7.6) 

(b) For centrosymmetric materials, there exists no 
odd rank material tensors, i.e., 

a k = jk 1m = fk 1m = 0; (7.7) 

(c) The strain energy is subject to the symmetry 
operation <R (cf. Sec. 4.). Since Jl is an axial tensor, 
this implies that 

a k = a kl = fhlm = c k1mn = O. (7.8) 

In the case for which (7.7) and (7.8) hold true, the 
coupling between magnetization and deformation 
fields subsist only in the form of the magnetostrictive 
effect due to the material coefficient A k I mn. This 
material coefficient, which was first introduced by 
Akulov,19 admits only two independent components 
for a centrosymmetric cubic crystal. Thus the strain 
energy function assumes the simple form 

L: = ~aklmnJlI;i< Jln;m + ~b mnJlmJln + ~d hlmne hlemn 

+ ~AklmneklJlmJln (7.9) 

of which the different terms are often referred to as 
the exchange energy, the magnetic anisotropy energy, 
the elastic energy and the magneloslrictive energy. 
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Without restrictions (7.6)-(7.8), from (7.4) and (7.2) 
we obtain the constitutive relations for nonsaturated 
magnetization: 

tkl = d kl + dhlmnemn + fmklJl m + ChlmnJln;m 

+ %AhlmnJlmJln + alJlk + bmlJlmJlk 

+ Ulmn Jln;m + flmnemn + Amn IpemnJlP)Jlk 

+ aknJln;1 + ankpqJlq;PJln;1 + jmknJln;IJl m 

+ CpqknepqJln;I' (7.10) 

LBk = - p-l(ak + bmkJl m + j kim Jlm;l + fk lmelm 

+ AmnklemnJlI), 

t(jJ)kl = a lk + alkmnJln;m + jmklJlm + Cmnlkemn 

and the following ones for the case of saturation: 

tkl = d kl + dklmnemn + fmhlJl m + ChlmnJln;m 

+ %AklmnJlmJln + alJlk + bmlJlmJlk 

+ (jlmnJln;m + flmnemn + AmnlpemnIlP)Jlk, (7.11) 

LBk = - p-l(ak + bmkJl m + jklmll m :1 + hlmelm 

+ AmnklemnJlI- 2 (9llk), 

t(jJ)kl = 2(a( kz) + a(lk)rnnJln;m + jm(kOJl m + Cmn(k/)e mn ). 

We note that the "spin interaction" stress tensor is 
symmetric in the latter case while the stress tensor 
t k I is not. 

With the hypotheses (7.6)-(7.8), the nonsaturated 
case reduces to 

tkl = dklmnemn + cklmnlln;m + % Aklmnllmlln 

+ bmillmil k + AmnlpemnJlP Ilk' 

LBk = - p-l(bmk ll m + Amnklemnlll) 

t(jJ) - a "n;m 
kl - lkmnr- , 

and the saturated case to 

tkl = dklmnemn + % Aklmnllmlln + bm1llmll h 

+ A mnlP emnllPIl h 

LBk = - p-l(bmk Il
m + Amnklemnlll- 2 (9llk), 

t(jl)k = 2a( ) "n;m I Ik mnr- • 

(7.12) 

(7.13a) 

(7. 13b) 

(7.13c) 

If the material is noncentrosymmetric (for instance 
if it is transversely isotropic according to the defini­
tion given in Sec. 5), we must keep jklm "" O. Thus, for 
example, in the case of saturation, we must add 
jlmnJln;mJlk, - p-1hlmJl m :1 and 2jm(Id)ll m to (7. 13a), 
(7. 13b), and (7. 13c) respectively. 

Finally, if we disregard terms of order higher than 
that of e hi' the constitutive relations (7.13) provide 
the set 

LB h = - p-1b hnJl n + (2/ p)<P Ill" 

t(jl);, = 2a( ) "n;m 
1 lh mn"""" • 

(7. 14b) 

(7.14c) 

The first term in (7. 14a) is none other than the 
Hooke's law for infinitesimal deformations in Elas-
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ticity theory; the second term that represents the 
magnetostrictive effect does not perturb the sym­
metry of t k I' The last term is due to the magnetic 
anisotropy. 

For ferromagnetic materials, the following remark 
is in order. We recall that B = H + PjJ.. For very 
strong fields, we may assume that M = PjJ. »H, 
hence there are no magnetic domains in the magneti­
cally saturated crystal and the magnetic anisotropy 
energy may be considered to be negligible. It follows 
that M and B are parallel and the only remaining 
coupling is through the magnetostrictive effect. H the 
ferromagnetic material is uniaxial with H Rl PjJ., one 
must take account of the magnetic anisotropy effect 
the influence of which is comparable to that of the 
magnetostrictive term. 

Finally we give a useful form of the strain energy 
function which has applications in certain further 
studies, e.g., magnetization surface energy if there is 
any, study of the nonnegative ness of the strain energy, 
uniqueness theorem for the linearized theory. 

Starting from (7.11) which is valid only for saturated 
media, considering a stress free initial state and neg­
lecting terms of order higher than that of e hi' we can 
write 

~ = ~ tk1e kl - (P/2)LBkp.k+ ~ t<1l)klP.k;1 + (\>p.~ 
+ (~akp.k + ~ jm[k!lP.m/J.k;1 + ~a[lkJmnP.n;m1J.k;'1 
- ~ al/J.ke kl - ~bmlp.mtJ.kehl- iAklm,JLml>lnekl 

- ~ Cmlltule"'lI/J.k;1 + a[lkltJ.h;l + ~ aOk)tJ.h;I). 
(7.15) 

In the Simpler ease of saturated, centrosymmetric, 
initially stress free materials corresponding to the 
form (7.9), this reduces to 

~ = ~tklekl-(p/2)LBkiJ.k + ~t<Il)kl/J.h:1 + (P/J.~ 
+ (~a[lkJmn/J.lI:m/J.k:l- ~bml/J.m/J.keH 

- iAklmn/J.m/J."ekl). (7.16) 

The quantity (\> /J.~ being a constant can be dropped 
without loss of generality. 

In the following paragraphs, we present three com­
monly encountered material structures likely of ap­
plications. 

8. LINEAR ISOTROPIC MATERIALS 

For fully isotropic materials,we have (7.7) and (7.8) 
valid. 

Hence, 

~=dkleLI+1.dklmne e +1.ah1mn/J 1/ 
,,2 hi mn 2 r-l;kr-n:m 

+ -2
1 b mn 1/ 1/ +1. A klmn eLI/ 1/ 

""'m""n 2 RZ""m""n- (8.1) 

The tensorial coefficients have their isotropic values: 

d kl = dO hl , bmn = bomn , 

d klmn = AOklomn + (p. + 3e)llkmllln + /J. ll knlllm' 

a 1kmn = oll lk ll mn + IIlllmllkn + WO I .. ll km , 

Aklmn = all kl ll mn + f3llkmllln + yll kn lllm • 

(8.2) 

For nonsaturated media, neglecting terms of order 

higher than first for e kl' we obtain the constitutive 
equations 

tkl = dll kl + Ae m
m llhl + (2/J. + :K)ek/ + (a/2)/J.2o kl 

+ [b + t (y + !3)]/J.kllz, 

LBk = - (b/P)/J.k' 

t(ll)hl = ollm;mll kl + vIlA;1 + wIlI;k' 

(8.3) 

Using (8. 1) and (8.2) and assuming the existence of a 
stress free state (d == 0), the strain energy can be 
written in a form similar to that of Eq. (21. 2) of 
Eringen20 for micropolar elasticity, i.e., 

~ = H A(tre)2 + (2 Il + :K)tre2] + ~bjJ.2 
+ Ht(30 + v + w)(tr Wl)2 + (II - w) tr({ Wl}: {Wl }T) 

+ (v +w)tr[d(Wl): d(Wl)T]} 

+ Ht(313' + f3 + y)(tre)jJ.2 

+ (f3 + y)tr[de:d(/J. 0 jJ.)]), (8.4) 

where we have introduced the definitions 

'iJJl kl == Ilk;l ~ F(Il)kK IlK I' 

with 

Wl={Wl} + (Wl), (8.5) 

tr(Wl: WlT) = /J.1;mp.l;m, 

and the deviators according to the relations 

d(jJ. 0 Il) = jJ. 0 ". - t ".21. 

(8.7) 
From classical elasticity, it is known that 

(8.8) 

are sufficient for tbe first term in (8.4) to be non­
negative. 

Similarly the second and third terms of (8.4) are non­
negative if 

b ~ 0, 30 + II + W ~ 0, W + II ~ 0 ~ w - II. 

(8.9) 
It is easily verified that the third term of (8. 4) can 
never be made nonnegative for all independent varia­
tions of e and p. Thus, 

a = 13 = y = O. (8.10) 

There is no magnetostrictive effect in isotropic mag­
netized materials. Using a method similar to that 
used by Eringen20, one may prove that (8.8), (8. 9), and 
(8.10) are also necessary conditions. The only effect 
of the magnetization field upon the stress is due to 
the "magnetic anisotropy" coefficient b. Therefore, 
Eq. (8. 3) can be written 

t hi = do hi + Ae:nm Il kl + (2/J. + :K)e kl + bllkll l , 

LBk = -(b/P)llk, (8.11) 

t(ll)kl = Ollm;m ll kl + VlJ.k;1 + WIJ.I;k· 

In (8.11) we can set d = - p when the material is in­
compressible, where P is the mechanical pressure, an 
unknown to be determined upon solving a peculiar 
problem with ad hoc boundary conditions. 
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For saturation, the strain energy function may be de­
pendent on the direction of 11 but not on its magnitude. 
Hence the term ~b1l2 of (8.4) may be ignored and we 
obtain from (7.3) the constitutive equations for in­
compressible isotropic linear elastic magnetically 
saturated solids: 

th.l= (-P + Aemm)ohl + (211 + :K)e kl , 

LBh. = 2 (<9/p) 11 I.. , (8.12) 

t(ll)kl = 2ollm:mOkl + 2(v + W)1l0:k) , 

in which <9 and p are two unknowns (<9 can be set 
equal to zero without loss of generality, given the 
form of the "spin rotation" equation). Only four 
material coefficients are necessary to describe the 
behavior of this material. 

We see that numerous effects disappear for an iso­
tropic body. There are neither magnetostrictive 
effects nor magnetic anisotropic effects. The rota­
tion of the spin is solely due to the Maxwell's mag­
netic field and the interaction of neighboring spins 
through the gradients of 11. It is then certainly more 
instructive to consider materials with less degrees of 
symmetry, for instance transversely isotropic mater­
ials or centrosymmetric cubic materials of which the 
latter is commonly encountered in micromagnetism 
theory. 

9. LINEAR TRANSVERSELY ISOTROPIC 
MATERIALS 

Here we are not concerned with the establishment of 
constitutive equations for transversely isotropic 
materials in the frame of the nonlinear theory. The 
result would certainly be rich in effects but the treat­
ment would require finding a minimal function basis 
which is unfortunately not yet at our disposal. The 
purely elastic case has been studied by Ericksen and 
Rivlin.21 For magnetized materials, the question of 
single valuedness would be quite intractable. We thus 
restrict the present work to the approximate theory 
of infinitesimal deformations. 

These materials are not centrosymmetric, the hypo­
theses (7. 8) are therefore valid but not (7. 7). Hence 
we take j h.lm "# 0 and write the strain energy function 
in the form 

~=dhle +!dhlmne e +!Ahlmne "" hi 2 kl mn 2 1..1 t"m t'"n 

+ ~bmn Il m JJ. n + ~a/'lmnlll:hJJ.n:m + jhlmlll,ll m:I' 

(9.1) 

We call h the preferred direction with h parallel to 11 
in the reference configuration. h is normalized, thus 

(9.2) 

JJ.k = 1JJ.lhh in the reference configuration (t = to)' 
(9.3) 

The tensorial coefficients appearing in (9.1) must be 
transversely isotropic tensors. These tensors may 
be expressed as linear combinations of outer products 
of hi and 0ij (see Smith and Rivlin22), Le., 

jhlm =j10 /,lhm +j2 0 /'m h l +j3 0 lm h k +j4 h k h l h m, 

d klmn = (YoO hi 0mn + (Y1 ° km 0ln 
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+ (Y2 0 knOlm + (Y3 0mn h k hl 

+ (Y4 0 klhmhn + (YSO kmhlhn + (Y6 0lnh k h m 

+ (Y70lm h h. h n + (YSOknhlhm+ (Y9 h kh l hmhn' 

(9.4) 

Similar expressions can be written for a klmn and 
A klmn with the scalar coefficients fli and I'i' i = 0, 1, 
.. ',9, replacing (Y i' In general, the coefficients d i , bp 
j;, (Y;, {3 i and I'i may depend on the temperature (J and 
the magnitude of 11. For the sake of simplicity, how­
ever, the material coefficient will be considered as 
pure constant. 

We introduce the following notations: 

e == e m
m , /!, == hmhne mn , JC == emnllmhn' 

V" j.I. = Il\k' ffi == hmhnll m:n, 'U == hmllm, (9.5) 

'D == hmhnllmlln = 'U2 • 

Using the notations (8.5)-(8.6) and assuming the 
existence of a stress free state (do = d 1 = 0), we can 
write (9. 1) in the form 

~ = ib o ll2 + ~b1 'U2 + Haoe 2 + a1 tre2 + a 2 e8 

+ Q3 tr(h 0 h:e2) + a4 62 ] + j1 tr(1l 0 h:lJR) 

+ j2tr(lJR:h 011) + j 3'U\7·j.I. + j 4 'Utr(h 0 h:lJR) 

+ Hflo\7·j.I. + /31 tr(IJRIJRT) + /32tr1JR2 + 733 ffi\7·j.I. 

+ /3 s tr(1JR IJRT : h 0 h) + /36 tr(IJRT IJR: h 181 h) 

+ /37tr(lJR:h 0 h:IJRT) + flstr(1JR2:h 181 h) + /39ffi2] 

+ Hyo eJ.L2 + Y1 tr(e: J.L 181 j.I.) + Y3 6 j.1.2 

+ y4 'U2e + Y2tr(e: j.I. 0 h) + Ys/!,'U21, (9.6) 

with the new material coefficients: 

(Yo == (Yo, (Y1 == (Y1 + (Y2' a2 == (Y3 + (Y4' 

a3 == (Ys + (Y6 + (Y7 + (Ys' (Y4 == (Yg, 

733 == /3 3 + 134 , 

1'0 == 1'0,1'1 == 1'1 + 1'2 'Y2 == I's + 1'6 + 1'7 + I's' 

1'3 == 1'3,1'4 == I'4'I'S == I'g. 

For the nonsaturated case the constitutive equations 
result in long expressions that we shall not give here. 
For the saturated case, neglecting terms of order 
highe r than that of I e I.. II . 1iJ. m I , we get 

t kl = (aoe + ~ ( 2 6)O kl + (ra2e + Q4/!')h kh l 

+ a1e!'1 + a 3e "tl h i"hm + ~Y2llkhl 
+ j1iJ.kiJ. m:l h m + j2iJ. k /ll:mh m 

+ j 3\7 • j.I. hi /l k + j 4 ffi 11 kh I' 

LBk =-(I/p)[(j3\7·j.I. +j4 ffi)h k +h/lm:khm (9.7) 

+ j21l h:mhm + i Y2 e kmhm - 2 <9/l k] 

t(ll) hi = 2[/30\7'11 + /33ffi + j 3'U]Okl 

+ 2(i33 \7' j.I. + /3gffi + j4 'U)hh.hl 

+ 2(jl + j2)/l(k h l) + 2(/31 + (3 2 )/l(k:O 

+ 2(f3 5 + (3 7 )hm /l rn:(l h k) 

+ 2(i36 + i3 S)h(l/lk):rn hm, 
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where we have set 

b o = b1 = Yo =Y1 = Y3 = Y4 = Ys = 0 (9.8) 

since, for saturation, the strain energy (9. 6) does not 
depend on the magnitude of 11 23 but only on its direc­
tion (equivalently, its components). Sixteen material 
coefficients appearing in (9.7) and listed below re­
main to be experimentally determined. They are 

(1i' i = 0, 1, ... ,4, j; , i = 1, ... , 4, 

'Y2' (9.9) 

If we set h == 0, we recover Eq. (8. 12) given for the 
isotropic case. 

The following model may be more suitable for compu­
tations. We may reasonably assume that the "ex­
change" terms (of quantum mechanical origin) are of 
little importance in t hi and LB h but retain their im­
portance in t(jJ) hZ' If we set ILB I = O( 11l1), we can 
neglect terms of the kind 11l1·le I, '\1·le I, .... We thus 
write the approximate constitutive equations for in­
compressible linear transversely isotropic elastic 
magnetically saturated solids: 

thl = (-P + aoe + ~a2o)ohl + (~a2e + a4 o)hhhz 

+ ale hl + a3e m(jhh)hm + fY2llhhZ, 

LB h = (2 <P/P)fJ.h, 

t(~\z, given by the third of Eqs. (9. 7). 

(9.10) 

In this case, the rotation of the spin is affected by the 
Maxwell's magnetic field and the magnetization field. 
Second order gradients of the magnetization will ap­
pear in the velocity of rotation of Il. 

10. CENTROSYMMETRIC CUBIC MATERIALS 

This paragraph is intended for applying to ferromag­
netic materials of cubic structure. We refer to Sec. 4 
for the general features of the invariance under mag­
netic point groups and to Refs. 8,10, and 24. 

As an example we consider a cubic crystal of the 
magnetic class ~3~ E m 3 , the generators of which 
are 

(-1 0 0) 
0-1 0 , 
o 0 - 1 (0 0 1) (1 1 0 0 , 0 

o 0 1 0 
~ - ~). 

-1 0 
(10.1) 

This material is centrosymmetricj Eqs. (7.7) and 
(7.8) are therefore valid. Thus we consider the fol­
lowing expansion of the strain energy function: 

~=dhle +l.dh1mne e +l.Ahlmne fJ." hi 2 hi mn 2 hi mr-n 

+l.ahlmnfJ.. fJ. +~bmnfJ." (10.2) z z. k n;m 2 m"""n • 

We conSider only the saturated case which is of im­
portance for ferromagnetic materials. Neglecting 
terms of order higher than that of 112 in t h I and III I 
in LB, we get the approximate constitutive equations 

tI.l = d hl + dhlmnemn + bmll..i.mfJ.h + ~AhlmnfJ.mfJ.n, 
LBh = - (l/p)(bmh jim - 2 <PfJ.h), (10.3) 

t(~)hl = 2a(lh)mn fJ.n;m. 

For the considered symmetry, the material co­
efficients appearing in (10. 2) assume the form (see 
Sirotin2S) 

bmn=boomn, dhl=doohl' 

d klmn = do h1mn + dl2ohlomn + d44(ohmolnohnolm), 

A hlmn = Mhlmn + Al2o h1 omn + A44(ohmoln + ohnolm), 

a(Zh)mn = ao lhmn + aI20ZhOmn 

+ a44 (olmohn + olnohm), (10.4) 

in which the symbol 0 hlmn is equal to one if k = l = 
m = n and zero otherwise. Upon carrying (10.4) into 
(10.2) and assuming the existence of a stress free 
state (do == 0), we can write the strain energy function 
in the form 

~ = HoJJ.~ + ~[dy(e~~)2 + d I2 e2 + 2d44 tre2] 

+ ~ [Ay (eiifJ.iI-L~) + A12ell~ + 2A44 tr(e: Il @ Il) 

+ ~ ray (fJ.~. ~)2 + a12(trim)2 

+ a44 (trim 2 + trim imT~ , (10.5) 

where we have made use of the notations (8.5)-(8.6). 
This equation is written for rectangular coordinates. 
For instance, we have 

~ (eii )2 = eI1
2 + e 22

2 + e33
2, , --

L;(ei:.ifJ.il..i.i) = e11fJ.~ + e22fJ.~ + e331..i.~. (10.6) , 
Since for saturation ~ does not depend on the magni­
tude of Il we set 

(10.7) 

and we are left with 8 material coefficients, namely 
d, d l2 , d 44 , A, A44, a, al2 and a44 • For instance, in rec­
tangular coordinates, Eq. (10. 3) yields for an incom­
pressible solid: 

t11 = - p + d l2e + (d + 2d44 )e11 + (A/2 + A44)fJ.l 2, 

t12 = 2d44e12 + A44 fJ.lfJ. 2, 

LBi = (2 <p/p)fJ.p (10.8) 

t(~)l1 = 2(a + a44 + a12)fJ.1.1 + 2a12 (fJ. 2 •2 + fJ. 3•3), 

t(fl)12 = a44(fJ.1.2 + fJ.2.1)' 

etc., 

while the term which represents the magnetostrictive 
energy in (10.5) is 

~m.s.e. = (A44 + A/2)(e11 1..i.1 2 + e 22 fJ.2 2 + e 33 fJ.3 2 ) 

+ 2A44 (e 12fJ.lfJ.2 + e23 fJ. 21..i.3 + e31 ji3fJ.l)' (10.9) 

This form is similar to that of Landau and Lifshitz.26 
It shows that only two material coefficients are need­
ed to describe the magnetostrictive effect for a 
centrosymmetric cubic crystal (cf. Ref. 19). Finally, 
we note that, as in the case of fully isotropic mater­
ials, the local field LB is of no importance for such a 
structured medium. In fact, it is known that the mag-
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netic anisotropy energy is of fourth order in cubic 
crystal 26 and therefore is relatively small. In the 
present work, its effects cannot be felt since the ex­
pansion of ~ has been cut at the third order. 

This last class of materials is particularly important 
for it is in the realm of ferromagnetic materials that 
the saturated media have been studied experimentally 
for some decades 19.27• The theoretical considera­
tions are shown to possess physical reality. It is 
therefore expected that, in future articles, motions of 
special interest and special effects predicted by the 
theory will be examined more accurately for both 
exact nonlinear and approximate linear theories. 

11. PROSPECTS 

The classical (three-dimensional) theory of magne­
tized deformable materials presented in Part I and 
herein provides an insight into the continuum be­
havior of the interaction between deformable matter 
and the magnetization field. It takes into account in a 
macroscopical way two features of quantum mechani­
cal origin: a repartition of electronic spins throughout 
the body and the interaction of neighboring spins. If 
we disregard these average effects, the theory still 
gives a basis for the nonlinear treatment of the mag­
netostrictive effect. The theory has been developed in 
the frame of quasimagnetostatics. 

Several likely applications of the theory exist. We 
mention three such classes below: 

(i) Nonlinear hemitropic and isotropic magnetical­
ly satwated media: The study of nonlinear deforma­
tions due to high intensity of applied magnetic fields 
can be made, thus casting light onto rich nonlinear 
effects. For instance, one may ask the legitimate 
questions: Is there any Kelvin-type effect? Is there a 
possibility to study universal motions in order to give 
a strong theoretical support to the laboratory deter­
mination of the material coefficients? All answers 
are certainly beyond the sc'ope of the present articles. 

(ii) Ferromagnetic media: The theory seems ade­
quate to tackle on the one hand piezomagnetism and 
magnetostriction and, on the other, a phenomenological 
approach to the problem of magnetic domains. We 
have provided the necessary tools for a study of 
centrosymmetric cubic materials in the frame of an 
approximate theory. For example, it would be of in­
terest to study the structure28 of a wall separating 
two magnetic domains and the velocity of propagation 
of magnetic walls in the light of the present develop­
ment. 

(iii) Rubber bonded barium ferrite composite 
materials: We may reasonably assume that the 
theory is fitted for studying such materials. The 
"spin rotation" equation obtained here above would 
prove capable of describing the dynamical behaviOr 
of the small magnets embedded in the matrix of 
rubber-like material, upon action of an applied mag­
netic field. Although only approximate constitutive 
equations are given, it is expected that fully nonlinear 
ones will be constructed once minimal function ~es 
for transverse isotropy are established. The study of 
large deformations such as bending 'Or torsion super­
posed to an applied magnetic field of given direction 
should lead to interesting results. 
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Finally, we note that some categories of problems can 
be examined such as that of the superposition of in­
finitesimal deformations to a finite deformation field 
and the superposition of a small dynamical magnetic 
field upon a large static magnetic field. 
The limitations of the theory are quite obvious: Only 
quasimagnetostatics and nondissipative processes 
(except for Sec. 8 in Part I) have been conSidered, 
thus excluding the electric field and the polarization 
and their related effects e.g., magnetoelectropolariz­
ability, piezoelectricity' .. and the strong dynamical 
behaviors, e.g., waves. Furthermore, we note that the 
inclusion of the notions of temperature, conductivity, 
and resistance would have led to numerous other ef­
fects. 
To remedy some of these limitations, we give in a 
forthcoming article a special relativistic theory of 
nonlinear elastic elastic solids that exhibit a reparti­
tion of electronic spins, an electromagnetic field act­
ing upon the body. Current, charges, electric and 
polarization fields are no longer ignored and the treat­
ment is fully dynamical due to the synthesis of space 
and time as one entity. It is thus expected to give a 
sound basis for the approximate theory developed 
above. 
We close the present article by noting three prospects 
of interest: 
(a) The theory developed above is concerned with a 
classical mechanical behavior of materials. Mechani­
cal couple stresses and micromorphic29 (more re­
strictly micropolar) deformation fields have been ex­
cluded. It seems that some magnetized materials may 
possess a plastic behavior, hence the possible intro­
duction of "mechanical directors" (not to be confused 
with the "magnetization director" or spin introduced 
above). Other materials such as the aforementioned 
rubber-like material are indeed composites and there­
fore manifest a more involved mechanical behavior. 
More naturally, certain liquid crystals are known to 
possess both microscopic orientations and magnetic 
dipole moments. A synthesis of the present work and 
of the concept of micropolar medium should provide 
still further rich grounds for the exploration of new 
physical phenomena. 
(b) The considered materials have been selected 
among" simple" materials. The treatment of more in­
volved materials such as those gifted of hereditary 
characteristics, requires the study of functional con­
stitutive equations. Approaches" ala" Eringen30 or 
"a la" Noll31 if the statement of balance laws consti­
tutes the starting point, or" ala" Edelen32 if use is 
made of a non-local variational principle to start 
with, may be envisaged. 
(c) Finally we mention the attempt of Eringen and 
Kafadar33 to develop a micromorphic theory of mag­
netism in matter. It is expected to explain micro­
magnetism phenomena, but it seems to be a task to 
define the energetic concepts without which the con­
struction of a constitutive theory (or of a variational 
principle) remains incomplete. With the construction 
of the energetic concepts it will be possible to predict 
the behavior of materials exhibiting extra degrees of 
freedom of mechanical and electromagnetical origins. 
This theory would give an inSight into the behavior of 
matter at an intermediate level in the midst of two 
realms, microphySiCS and continuum physics, though 
the formalism of the latter would be used throughout. 
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The results of previous work are generalized to include procedures whose measurement operations correspond 
to expectations as defined by Davies. For such procedures Von Neumann's projection axiom is not in general 
applicable. Finite and infinite sequences of measurements and transformations as well as finite and infinite de­
cision procedures are considered. It is shown that with each such procedure there is associated in a unique 
manner a probability operator measure. 

I. INTRODUCTION 
In an earlier paper, 1 hereafter denoted as I, proces­
ses consisting of finite or infinite sequences of ob­
servations separated by transformations (such as ro­
tations, translations, etc.) were considered. The pro­
cess Q was required to be such that there exist a 
Hilbert space JC such that each observation in Q cor­
responded to a discrete self-adjoint operator in 
B (JC), the algebra of all bounded linear operators on 
JC. Also each transformation in Q, considered as a 
map with domain and range in the set of all state pre­
paration procedures, was taken to correspond to a 
map: S(JC) ~ S(JC) which was implementable by an iso­
metry in B(JC). S(JC) is the set of all states on JC. 
Furthermore, Von Neumann's projection axiom2 was 
required to be applicable. 

The main result of I was that, with each finite or in­
finite process Q which satisfied these requirements, 
there is uniquely associated a probability operator 
measure OQ: 6 Q ·) B(JC). l;Q is a a-field of Borel 
subsets of QQ, the set of all possible outcome se­
quences of Q, and B (JC) is the algebra of all bounded 
linear operators on JC. 

In another paper3 hereafter called II, this and other 
results of I were extended to include finite and infi­
nite decision procedures. That is, for each j, the 
choice of operations in the procedure for the jth step 
of any path could depend on the operations and out­
comes of previous observations. The decision proce­
dures were required to satisfy the same restrictions 

as were imposed in 1. That is, each observation in 
each procedure Q corresponded to a discrete self­
adjoint operator in B (JC) and each transformation 
was implementable by means of an isometry in B (JC). 
Also Q was to be such that Von Neumann's projection 
axiom was applicable. Also, each path p of Q was re­
quired to be such that the length of every (proper) ini­
tial segment of p is finite. 

Now as Margenau has pointed out4 there are many 
measurement procedures which do not satisfy Von 
Neumann's projection axiom. Furthermore, if one 
wishes to consider observables with continuous spec­
tra without replacing them by "coarse grained" ob­
servables which are discrete, then the projection 
axiom fails. That is, for discrete observables the map­
ping p .", p' := L,;PxPPx , where {px Ii = 1,2" .} is a 

l l Z 

complete set of eigenprojectors for a discrete obser-
vable A exists. However, if A is continuous, then no 
mapping of the form p ."" p' given above exists. 5 More 
generally, the map p ) p' as defined above is a condi­
tional expectation as defined by Nakamura and 
Umegaki,6 and these exist only for discrete observa­
bles. 

For these reasons it seems worthwhile to consider 
procedures which contain measurements for which 
Von Neumann's projection axiom is not applicable. In 
this work, these procedures will be treated by the me­
thods of Davies 7 and Lewis. 5 The mathematical ob­
jects one works with in these methods are expectations 
and their dual~instruments. The basic correspon-
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The results of previous work are generalized to include procedures whose measurement operations correspond 
to expectations as defined by Davies. For such procedures Von Neumann's projection axiom is not in general 
applicable. Finite and infinite sequences of measurements and transformations as well as finite and infinite de­
cision procedures are considered. It is shown that with each such procedure there is associated in a unique 
manner a probability operator measure. 

I. INTRODUCTION 
In an earlier paper, 1 hereafter denoted as I, proces­
ses consisting of finite or infinite sequences of ob­
servations separated by transformations (such as ro­
tations, translations, etc.) were considered. The pro­
cess Q was required to be such that there exist a 
Hilbert space JC such that each observation in Q cor­
responded to a discrete self-adjoint operator in 
B (JC), the algebra of all bounded linear operators on 
JC. Also each transformation in Q, considered as a 
map with domain and range in the set of all state pre­
paration procedures, was taken to correspond to a 
map: S(JC) ~ S(JC) which was implementable by an iso­
metry in B(JC). S(JC) is the set of all states on JC. 
Furthermore, Von Neumann's projection axiom2 was 
required to be applicable. 

The main result of I was that, with each finite or in­
finite process Q which satisfied these requirements, 
there is uniquely associated a probability operator 
measure OQ: 6 Q ·) B(JC). l;Q is a a-field of Borel 
subsets of QQ, the set of all possible outcome se­
quences of Q, and B (JC) is the algebra of all bounded 
linear operators on JC. 

In another paper3 hereafter called II, this and other 
results of I were extended to include finite and infi­
nite decision procedures. That is, for each j, the 
choice of operations in the procedure for the jth step 
of any path could depend on the operations and out­
comes of previous observations. The decision proce­
dures were required to satisfy the same restrictions 

as were imposed in 1. That is, each observation in 
each procedure Q corresponded to a discrete self­
adjoint operator in B (JC) and each transformation 
was implementable by means of an isometry in B (JC). 
Also Q was to be such that Von Neumann's projection 
axiom was applicable. Also, each path p of Q was re­
quired to be such that the length of every (proper) ini­
tial segment of p is finite. 

Now as Margenau has pointed out4 there are many 
measurement procedures which do not satisfy Von 
Neumann's projection axiom. Furthermore, if one 
wishes to consider observables with continuous spec­
tra without replacing them by "coarse grained" ob­
servables which are discrete, then the projection 
axiom fails. That is, for discrete observables the map­
ping p .", p' := L,;PxPPx , where {px Ii = 1,2" .} is a 

l l Z 

complete set of eigenprojectors for a discrete obser-
vable A exists. However, if A is continuous, then no 
mapping of the form p ."" p' given above exists. 5 More 
generally, the map p ) p' as defined above is a condi­
tional expectation as defined by Nakamura and 
Umegaki,6 and these exist only for discrete observa­
bles. 

For these reasons it seems worthwhile to consider 
procedures which contain measurements for which 
Von Neumann's projection axiom is not applicable. In 
this work, these procedures will be treated by the me­
thods of Davies 7 and Lewis. 5 The mathematical ob­
jects one works with in these methods are expectations 
and their dual~instruments. The basic correspon-
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dence assumption is that each procedure Q must be 
such that each measurement operation in Q corres­
ponds to an expectation (or an instrument). However, 
before working with procedures, we must first define 
expectations and instruments and give some easy 
properties. This is done in Sec. II. It is noted, among 
other things, that the use of expectations and instru­
ments requires a generalization of the definition of an 
observable to be a probability operator measure 
rather than the more specialized spectral measure. 

In Sec. III sequences of measurements are considered 
in which each measurement corresponds to an expec­
tation. (Rather than carry both expectations and in­
struments through this work, which would be unneces­
sary, we will work almost exclusively with expecta­
tions.) Furthermore the value space need not be dis­
crete. Thus in this section the requirement, present 
in 11 and II,3 that the observables be discrete is drop­
ped. 

The main result obtained is that with each finite or in­
finite sequence Q of measurements there is uniquely 
associated an observable (or probability operator 
measure) OQ. In the case of finite sequences Q, there 
is also a unique expectation associated with the pro­
cess, and the observable OQ is merely a part of the 
expectation. 

Section IV extends this result to finite and infinite de­
cision procedures. Here the requirement that the va­
lue space of each measurement in Q be discrete is re­
imposed. The reason is that there are some mathe­
matical problems in the nondiscrete case related to 
how one expresses the dependence of the choice of the 
expectation in step j in a path on the prior outcomes. 
In any case it is doubtful if procedures with uncount­
ably many lines leading out of a vertex of the associa­
ted tree need be considered. 

The Appendix gives some mathematical results neces­
sary to carry out the constructions of this paper. The 
Kolmogorov8 extension theorem, extended in I to in­
clude probability operator measures on Cartesian pro­
ducts of the real line, is extended further here to 
Cartesian products of arbitrary, complete separable 
metric spaces. Davies and Lewis7 theorem on the 
combination of instruments is given for the combina­
tion of expectations. It is noted that these theorems 
can be shown to apply also to a-compact, locally com­
pact Hausdorff spaces. 

II. EXPECTATIONS AND INSTRUMENTS 

Expectations are defined as follows: Let X be a set 
(of outcomes of a measurement procedures) and ffi(X) 
a set of Borel subsets of X and B (JC) the algebra of 
bounded linear operators on some Hilbert space Je. 
An expectation 8 is a map, 8: ffi(X) x B (JC) ____ B (Je) 
such that [0 and 1 are the zero and identity operators 
of B (Je)]: 

(a) If B ~ 0 then 8(E,B) ~ 0 for each EEffi(X). 
(b) 8(X, 1) = 1. 
(c) For each BE B (JC), 8 (-, B) is strongly count­

ably additive. 
(d) For each complex number 01, set E, and op­

erator B, 8(E, OIB) = 0I8(E,B). 
(e) 8(E,B + B') = 8(E,B) + 8(E,B'). 
(f) Let Aa be a monotone net of operator s in B (Je) 

with A = s-lim aAa. Then for each E, 
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8(E,Aa) is a monotone net with 8(E,A) = 

s-lim a8 (E, A J. 
This definition is the same as that given by Davies. 7 
The replacement of weak by strong convergence in 
properties (c) and (f) has no effect since weak and 
strong countable additivity are equivalent,9 and in (f) 
weak and strong convergence are equivalent.10 

A simple example of an expectation is given by 

8 (E, B) = z::; Px BPx (1) 
XEE 

for each E C X with X countable and B in B (JC). Equa­
tion (1) gives the well-known form of the expectation 
associated with any measurement procedure whose 
outcome set X is at most countably infinite and which 
satisfies Von Neumann's projection axiom. 

Let S be the set of states on JC. Then an instrument is 
defined 5 . 7 to be a map ~: CB(X) x S ---- S such that (i) 
(J (E, p) ~ 0 if p ~ 0 for all pE S; (ii) (J (-, p) is strongly 
a-additive; and (iii) Tr ~ (X, p) = Trp for all pES. 

BaSically an expectation can be regarded as a condi­
tioning on operators 5 just as an instrument is a condi­
tioning on states. 5 That is, let 8M and [1M be the res­
pective expectations and instrument associated with 
some measurement procedure M. Then 8M (E,B) is 
the conditioning of B which corresponds to the prior 
carrying out of M and finding the outcome in E. Simi-
1arly (JM(E, p) is the conditioning of p which corres­
ponds to the carrying out M on a system in state p 
and finding the outcome in E. 

The duality of [1M and 8M is evident from the fact 
that 

Tr(P0M (E, B) = Tr«(JM (E, p)B) (2) 

for each p in S, E in ffi(X) and B in B (JC). If M corres­
ponds to a discrete observable and Von Neumann's 
projection axiom holds, then ~M is given by 

(3) 

for each ECX and PES and OM is given by Eq. (1). 

The association of expectations and instruments to 
measurement procedures also results in the generali­
zation of the concept of an observable. In the usual 
quantum mechanics, a bounded observable corres­
ponds to a self-adjoint operator in B(JC) or, equivalent­
ly, through the spectral theorem, to a spectral mea­
sure on ffi(R), the set of Borel subsets of the real line. 
Here an observable corresponds 5 • 7 to a probability 
operator measure on CB(X). (A spectral measure is a 
probability operator measure whose range set is a 
set of mutually commuting projection operators. In 
general, the operators in the range set of a probability 
operator measure do not have to be projection opera­
tors nor do they have to commute.) Here, if M is a 
measurement procedure with associated expectation 
8M , then 8M (-, 1) is the observable which M mea­
sures. 5 

Although the use of expectations and instruments and 
the consequent generalization of the definition of ob­
servables may appear counter intuitive, they do have 
some important advantages. One is that there are po­
tentially at least, many measurement procedures 
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which do not satisfy the projection axiom, but can be 
described by expectations and observables in the gen­
eral sense of Davies and Lewis. 5 Of course, there may. 
be many measurement procedures which cannot be 
associated with expectations either. However, the in­
creased generalization given by expectations and in­
struments does bring a potentially larger class of 
measurement procedures into the domain of the the­
ory. 

Another advantage is that, as will be seen, the com­
pounding of measurement procedures 7 each described 
by an expectation (and observable) gives a procedure 
which is described by an expectation. Thus an obser­
vable is associated with the compound procedures, and 
it also corresponds to a measurement procedure. 
This does not hold in the usual quantum mechanical 
interpretation in which Von Neumann's projection 
axiom holds. There the compound procedure of mea­
suring observable A1 = 6 y<c:y yPy followed by a mea­
surement of observable A2 = 6 zc z zPz , where A1 and 
A2 do not commute, has associated with it a map 
& (~, 1) defined by 

&(E, 1) = 6 PyPzPy . 
(j. deE 

For each EC Y x Z. But & (~, 1) so defined, is not a 
spectral measure and thus the compound procedure 
does not correspond to any observable under the 
usual interpretation. 

m. SEQUENCES OF MEASUREMENTS 

In this and the next sections only those sequences Q 
of measurements will be considered which are such 
that each measurement operation in Q corresponds to 
exactly one expectation. Any Q for which this is true 
will be said to satisfy the corres/JOndence assilm/)/ion 
as there corresponds to each such Q a unique se­
quence of expectations. Clearly this is a weaker re­
striction than was used in I and II where the projec­
tion axiom was required to hold. 

Also, in this and the next section, the simplifying re­
striction to processes with no transformations sepa­
rating the measurements will be made. This is an in­
essential simplification made simply to conserve on 
notation. It will be shown later that the results ob­
tained extend easily to processes with transforma­
tions separating the measurements. 

Let Q denote a process consisting of an infinite se­
quence of measurement operations and {&/I j = 
0,1, ... } the corresponding infinite sequence of expec­
tations. That is, for each j, under the correspondence 
assumption, &/ is the unique expectation associated 
with the measurement operation Q (j). Q is also as­
sumed to be such that for each j, the outcome space 
X j is a complete separable metric space. This is a 
weak restriction since it includes the real line R or 
any countable set such as the integers with discrete 
topology.11 Also, if each X j is a complete separable 
metric space, so is the Cartesian product 0j'~J Xj for 
each 11.12 

Now for each II, let Qn denote the first 1/ steps of Q, 
{& J' Ii = 0, 1, .. , n ~ 1} the corresponding sequence of 
expectations X n = IXij'~J X j the Cartesian product of 
the outcome spaces and ffi(xn) the Borel system of 
subsets of xn. By Theorem 2 in the Appendix there is 

associated with Q n a unique expectation & Qn : 

ffi(xn) x B (X) ~) B (X), such that for each set E in 
m(xn) of the form 

with E j Em(Xj), one has 

&Qn(E, B) = &6 (Eo, &{ (E 1 , "', &~-1(En-1' B)"'» 

For each B in B(X). By the same theorem one also 
has that for each set E of the form E = F x G with 
FEffi(XI) and GEffi(xn-l) with xn-l = Xl X ••• X X n - 1, 

(4) 

(5) 

(6) 

Thus one sees that by means of the correspondence 
assumption, with each finite process Q rI whose out­
come spaces satisfy the restriction given, there is 
associated a unique expectation &Qn defined on m(xn) 
x B(X) which satisfies Eq. (4). In particular, the uni­
que probability operator measure associated with the 
process Q

n 
is given by &Qn(~, 1). 

If one assumes that to each probability operator mea­
sure there corresponds a unique observable (the con­
verse is already assumed in this section), then the 
above shows that a unique observable is associated 
with the process Q rI' i.e., the observable correspond­
ing to & (,in (~, 1). 

In order to better understand this description, one has 
the following: If each outcome space Xj is countable, 
then the above results give 

for each EEffi(xn) and BEB(X). ifin denotes an element 
of xn and {CPn (j)} is the subset of X j containing the 
single element cP~(j). If, furthermore, Von Neumann's 
projection axiom holds, then repeated use of Eq. (1) 
in (7) gives 

& Qn (E, B) = '" pQ(O) p Q(l) p Q(n-1) 
LI 'fi (0) 'fi (1) • •• 'fi (n-1) 

<f
n EE n n n 

X BPQ(n-1) .•• pQ(1) pQ(O) (8) 
'f,,(n-1) 'fn(1) 'fin(O) , 

which is a well-known result. 

These results show that with each finite sequence of 
measurements one can, under the correspondence 
assumption, associate a unique expectation defined on 
the product space xn. The question now arises whe­
ther such an association is possible for infinite se­
quences. 

To this end, let Xw = 0';:0 Xj be the set of all possible 
infinite sequences of outcomes for the process Q. De­
fine fT to be the field of all Borel cylinder subsets of 
xw and ffi(Xw), the minimal a field over fT. That is, 
each EEfT has the form E = F x Xn X Xn+1 X ••• with 
FEffi(X") for some n. The question now becomes 
"under the correspondence assumption does there 
exist a unique expectation &Q : ffi(Xw) x B(X) ~ B(X) 
such that for each EEfT with Borel base F in ffi(xn) 
and BEB(X), 
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= s-lim m8nQ"(F, 8n
Q 

(X n' ••• , 8n~m-1 (X n+m-1' B) . •• )), 
(9) 

where s-lim means convergence in the strong opera­
tor topology?" 

It can be shown by means of examples that for some 
sequences of expectations the limit of Eq. (9) exists 
and for other s it does not exist. However, one has the 
following result. 

Set B = 1 in Eq. (9). Then from 8j
Q 

(X j ' 1) = 1 for each 
j, one has that the sequence of probability operator 

measures {8 Q
,,(-, 1) In = 1,2"'} is consistent, and 

the limit of Eq. (9) exists trivially and equals 
8 Qn (F,I). By Theorem 1 of the Appendix there exists 
a unique probability operator measure 8 Q(-, 1) : 
<B(Xw) --'> B (JC) such that, for each EE g: with base F in 
<B(xn) for some n, 

(10) 

Thus one has the result that (under the correspon­
dence assumption) with each infinite process Q there 
is associated a unique observable or probability ope­
rator measure 8 Q(-, 1) which satisfies Eq. (10) and 
which contains the statistical properties of Q. This 
follows from the fact that for each E in <B(Xw) and 
each state p, Tr(p8 Q(E, 1)) is the probability that 
carrying out Q on a system in state p yields an out­
come sequence in E. 

IV. DECISION PROCEDURES 

In the above, the methods of Davies 7 and Lewis 5 have 
been used to treat finite and infinite sequences of 
measurements. Here these methods are extended to 
include decision procedures. However, in order to 
avoid many mathematical problems, the restriction 
that the outcome space of each measurement proce­
dure be at most countably infinite is reimposed. This 
is a quite minor restriction since it is doubtful if one 
needs to consider decision procedures whose asso­
ciated trees have vertices with uncountably many 
lines leading out. 

Let Q denote an infinite path decision procedure and 
T Q the associated tree. That is, Q is such that all 
paths in T Q are infinitely long. It is also required that 
each path in Q be such that each initial segment be of 
finite length. The necessary definitions and proper­
ties of trees and their association with decision pro­
cedures are given in II, and the reader is referred 
there for details. We continue to suppress inclusion 
of transformations or, more generally, of any opera­
tion (other than the identity observable) representable 

OQn (5
n

) 

= 6 6 '1',,,,5, 'f2(-:.S2 

'1'2,'- <P, 

as an isometry on the underlying Hilbert space. (The 
inclusion of procedures with one or more finite paths 
will be discussed later on.) 

For each n let Q" denote the fir st n steps of Q. That 
is, Qn is obtained from Q by cutting each path of Q (or 
T Q) between the nth and (n + l)th steps and discarding 
the infinite terminal segments. 

Under the correspondence assumption each measure­
ment in Q corresponds to an expectation with an asso­
ciated set of outcomes. For each n = 1,2, ... , define 
5" to be the set of all possible outcome sequences CPn 
(= CPn (0), ... , CPn (n - 1)) of length n associated with 
carrying out the first n steps of Q. That is, for each n 

51 = X.." 

5,,+1 = U 
'l'nCS

" 

*X CPn 'l'n' 
(11) 

where cP" * X'I'n is the set of all sequences CP"t1 of length 

n + 1 such that CPn+1 (j) = cp,,(j) for j = 0,1, "', n -1 
and CPn+1 (n)~ X • 'l'n 

To motivate this definition, one notes that the first 
measurement in Q, denoted by Q(cp), has the (discrete) 
outcome space X.." corresponds to an expectation 8.pQ, 
and is step 0 of Q. <I> denotes the empty set. For each 
n = 1,2'" and each CPnE5 ,let 8Q be the expectation n IfJ n 
corresponding to the measurement operation Q (CPr) 
and X'I'n the (discrete) outcome space of Q(CPr)' Q(CPn) 
denotes the measurement operation, Q assigns to step 
n of any path in T Q which corresponds to observing 
the outcome sequence ~n in the first n steps of Q. 
[Step number n is the (n + 1 )th step.] 

Let 6" denote the set of all subsets of 5 . For each 
Q " n one defines a mapping 0 n: 6 n ~ m(JC) as follows: 

For each CP"E 5 n 

oQn({cp,J) = 8';u,o({CPn(0)}, 8';",1 ({CPn(l)} , "', 

8 Q ({cp (n - I)} 1)"') (12) (Pn,n-l n , , 

where CPu ,j denotes the first j elements of CPu and CP", 0 

= <1>. For each EC 5", 

(13) 
'PnC- E 

where strong convergence is implied. 

It must now be shown that 0 Q n is a probability opera­
tor measure. To this end, one first shows that the 
strong limit implied by Eq. (13) exists. Consider 
() q n (S ). This can be written as 

II 

(14) 

where CPn,j denotes the first j elements of «in' By repeated use of properties (a)-(c) and (f) in the definition of 
expectations, one has for the last sum in Eq. (14), 
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'PnESn 
0~n.o ({CPn(O)}, 0~'1 ({CPn(l)}, ••• , 0~,n_l ({CPn(n -1),1»"') 

lfJ n J n-l'= lPn-l 

6 
'PnESn 

CPn,n-l'::'Pn-l 

SJ",n_l ({Cfn(n -I)},I» ... ) 

The second equality of Eq. (15) follows directly from 
properties (b) and (c) in the definition of expectations. 
The first equality follows from the fact that by pro­
perty (a) the internal sum in the middle part of Eq. 
(15), which can be written as the limit of a sequence 
of partial sums, is the limit of a monotone sequence 
of positive operators. Property (f) allows one to shift 
the sum stepwise to the left. 

Substitution of Eq. (15) into Eq. (14) and the use of 
0~ . =0 o~ . in each term of the sum of Eq. (14) 

n ,J n-I.J 

(Cfn,j == Cfn-1,j for j == 0,1, ..• n - 2) and repetition of 
this process over and over gives finally 

oQn(sn) == 6 0'P ({'Pl (O)}, 1) = 0" (S1' 1) = 1 
,n ES 1,0 1,0 
Tl I (16) 

as 'Pl. 0 == 4> is independent of CfI. 

From this one has that OQn(E) exists for each EcS n• 
This follows from the fact that OQn({IPJ) ~ 0 for each 
IPnESn and that OQn(E) is the limit of a nondecreas­
ing sequence of partial sums bounded from above11 

by oQn 4S n) == 1. 

Finally the strong countable additivity of OQn follows 
from the fact that if an infinite sum of positiYe opera­
tors exists, then the limit is independent of the order­
ing of the terms in the sum. Thus for any countable 
pairwise disjoint sequence {Ej Ii == 1,2- •• } of subsets 
ofS" withE== UmEm. 

m 

and OQn is a probability operator measure. 

Thus one sees that for each decision procedure Q and 
each n the correspondence assumption associates to 
the decision procedure Q n conSisting of the first n 
steps of Q, a unique observable or probability opera­
tor measure OQn • Clearly OQn satisfies Eqs. (12) and 
(13) and describes the statistical properties of Q n' 

The latter follows from the fact that the probability 
that carrying out Q n on a system in state p. gives an 
outcome sequence in E is given by Tr(p OQn(E». 
In order to use these results to assign an observable 
OQ to Q, one defines Xn by Xn = U., ES X," • Since 

T"n n 't'n 

each X "'n is countable, it can be assigned a suitable 
metric to make it a complete separable metric 
space. l1 Also since Sn is countable,Xn is a complete 
separable metric space.13 

Let CB(X) and CB(xn) be the a-fields of Borel subsets 
of X andXn, = Xo x Xl X '" X X n- l ' respectively. 
Let xw denote the set of all infinite sequences of X: 

(15) 

g: the field of all Borel cylinder subsets of xw, and 
CB(Xw) the minimal a-field over g:, For each n, define 
nn to be the subset of XW defined by nn == Sn X Xn+l 
X Xn+2 X ., • , Since Sn is at most countably infinite 
and each X'Pn is a Borel subset of X n' S n ECB(xn) and 
in fact, each subset of S n is a Borel subset of xn. 
Clearly nnE g: for each n. 

Define n Q by n Q == n n n n. n Q is the set of all out­
come sequences of Q. Also n QE CB(XW) as CB(Xw) is 
closed under countable intersections. Let g:Q be the 
ring of all cylinder subsets of n Q with bases in S n 

for some n. That is, each E in g:Q has the structure 

(18) 

for some FCS and some n. Let lJQ be the minimal 
a-ring over g:8. Clearly lJQ is a sub a-ring of CB(XW). 

In order to show that there is a unique probability 
operator measure OQ associated with Q, one proceeds 
as in n. For each n one defines OQ~ on CBexn) by 

OQ~(B) == oQn(BnS.) (19) 

for each BE <B(xn) where OQn is defined by Eqs. (12) 
and (13). Clearly OQ~ is well defined and is a proba­
bility operator measure on <S(Xn). 

One must first show that the dN, are consistent on 
the <s(xn) for II = 1,2, ••.• First assume that the OQn 

are consistent on lJ", and let In > n. The for each 
set A in <S(X"') of the form A == D X X-" with D in 
CB(Xn) one bas from Eq. (19), with E = An S m and 
F==Dns n , 

OQ:n(A) = OQm(E) = OQn(F) == OQ~(D). (20) 

It remains to show that the OQn are consistent. To 
this end, let E be a subset of S m given by 

E== U U 
'PnEF 'PmESm 

'Pm,n='Pn 

for some subset F of Sn' [Note that by Eq. (11), E 
and F are such that there are sets A and D defined as 
for Eq. (20) such that E :::: An s 711 and F = D n S n .] 
From Eqs. (12) and (13) one has 

OQm(E) == 6 ~ ~ oQ"'({CPm}) 
'PnEF 'Pn+lESn+l 'PmESm 

\P"+l,n=fPn CPm,n:;(ji1J 

:::: 6 6 ... 6 
'PnEF 'Pn+IESn+l 'P,..ESm 

8~ ({IPm(O)}, •• , , 
m,O 

'Pn+1, n~'Pn 'Pm,n~<fn 

8,~ ({Cfm(n + I)}, . ", 8,~ ({(/Jm(m - I)}, 1»' . '). 
'J"m,n+l ym 

By the use of the same techniques that were used to 
obtain Eq. (16), the above expreSSion gives 
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OQm(E) 

= 6 8:n,o({cpn(O)}, ... ,8:n({cpn(n-1)},I» ... ) 
nEF 

= oQn(F), (21) 

and thus the OQn are consistent. 

Since the OQ~ are consistent, Theorem 1 of the Appen­
dix gives the result that there exists a unique proba­
bility operator measure OQ' on cp"(xw) such that for 
each set B in ff with base D in cp"(xn) 

OQ'(B) = OQ~(D). (22) 

By Eq. (18) and the fact that n Q is in cp"(xw), ffQ and 
~Q are a subring and sub a-ring of ff and cp"(XW) , res­
pectively. Thus one can define a map OQ : LQ .-7 CP..(Je) 
as the restriction of OQ' to LQ. That is, 

(23) 

for each E in LQ. Since OQ'is strongly continuous 
from above1 on CP..(xw) and oQ'(nn) = 1 (Eq. (19)] and 
the n n are nonincreasing, one has that OQ(n Q) = 
oQ'(n Q) = s-lim n oQ'(nn) == 1. Thus OQ is a proba­
bility operator measure. Also for each EEffQ with 
base FCS n for some n, Eqs. (22) and (23) give 

OQ(E) = oQn(F), (24) 

The uniqueness of OQ follows from the uniqueness of 
OQ' and the fact that OQ as given by Eq. (23) is well 
defined. 

Thus one has the result that, under the correspon­
dence assumption, with each infinite decision proce­
dure Q consisting of measurement procedures with 
countable outcome spaces only, there is associated a 
unique probability operator measure or observable 
o Q, which contains the statistical properties of the 
process. 

This result extends easily to finite path decision pro' 
cedures as well as those with both finite and infinite 
paths. To see this, the methods of II, used for a simi­
lar extension, are followed. Let Q be a decision pro­
cedure with one or more finite paths, and let Q' be the 
infinite path procedure obtained by adding to each fi­
nite path of Q an infinite sequence of repetitions of 
the measurement procedure whose only outcome is 1 
and whose corresponding expectation 8: {<p, {I}} x 
B(Je) ~ B(Je) is defined by 8(<p,B) = 0, and 

8({1},B) = B (25) 

for each B in Je. This corresponds to adding an infi­
nite sequence of repetitions of the measurements of 
the identity observable and extends each finite out­
come sequence of Q by adding on an infinite sequence 
of l' s to give the corresponding outcome sequence of 
Q'. 

It first must be shown that the operator associated 
with each finite path of Q by the appropriate expecta­
tion string is also the same operator associated with 
the extended path of Q'. To this end, let p be a finite 
path in Q with corresponding outcome sequence cpP, 
and let p' be the extension of p in Q' and cP P' the cor­
responding outcome sequence. Let cpP be of length n 
and cP /:" be the initial segment of cp P' of length m. By 
construction, for all j, if 0 ~ j < n cp P (j) = cp P , (j) and 
if j ? n, cpP'(j) = 1. 
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For each m > n one has from Eqs. (12) and (25) 

OQ»z({cp!'}) 

= 8;', ({cp!' (O)}, "', 8~, ({cp!'(n -I)}, 
<Pm,o 'Pm, n-l 

"Q' {P'} Q' { P' } 
l? P' (CPm (n) , ••• ,8 P' ( CPm (m - 1) ,1»"') 

CfJrn.,n 'Pm 

= 8~', ({cp!'(O)}, ••• , 8;', ({cp!'(n -I)}, 1), (26) 
<pm.o <Pm, n-l 

where the last equality arises from repeated use of 
Eq. (25), and Cp/:':j denotes the first j elements of cpP' 
(or of Cp/:"). By construction, for each j ~ n - I, 

8 Q;, = 8 Qp , and thus one obtains 
'l'j 'l'j 

(27) 

where the right-hand operator is just the operator one 
would assign to path p of Q in a direct construction. 
Furthermore, since the right-hand side of Eq. (26) is 

independent of m if m > n [cp,;:;, j = cpr and cp';:;(j) = 
cpP'(j) for j = 0,1, ... ,n -1], one has 

lim mO Q»z({cp!'}) 

= 8; ({cpp(O)}, ''', 8;(cpP(n -1),1» ... ). (28) 
'1'0 'I' 

From these results, the probability operator measure 
OQ' uniquely associated with Q' can be used to asso­
ciate a probability operator measure OQ with Q which 
satisfies Eq. (12). One first defines the a-field ~Q as 
follows: Let FQ and IQ be the respective sets of all 
finite and infinite outcome sequences of Q. Let ~Q be 
the set of all sets of the form E1 UE2 where E1 C FQ 
and E2 = BnIQ for some Borel subset B of xw. 

To define OQ: ~Q --)B(Je), one first lets E be any set 
in LQ which contains infinite sequences only. By con­
struction the corresponding paths in Q and Q' are 
identical, and one sets 0 Q (E) = OQ' (E). 

Next let cpP be any finite outcome sequence corres­
ponding to a finite path p of Q with length n, and let 
cpP' and p' be the corresponding outcome sequence and 
path of Q'. Define OQ({cpp}) by 

(29) 

and let E P' be the set of all outcome sequences of Q' 
'I'm 

which have cpt:, as an initial segment. Clearly by con-
struction E P ' = {cpp,} and OQ' (E,:' ) = oQ»z({cp!'}) for 

'I'm Ym 

all m > n. Since OQ' is a probability operator mea­
sure it is continuous from above,1 and one has that 
OQ'({cpP'}) = limmOQ»z({cp!'}). Equations (28) and (29) 
then give 

OQ({cpp} = 8 Q ({cpP(O)}, ... , 8 Q (cpP(n - 1),1» ... ), 
ept epP 

(30) 

which is just what Eq. (12) would give for a direct con­
struction. 

For any set E containing finite outcome sequences of 
Q only, set 

OQ(E) = 6 OQ({cp}) (31) 
epEE 
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with OQ ({cp}) given by Eq. (29). One has OQ (E) = 
OQI(F), where F is the set of outcome sequences of Q' 
corresponding to those in E. Finally let E = E1 U E2 
with E1 and E2 containing finite and infinite sequences 
only. In this case define OQ(E1UE2) by 

Q Q Q QI QI 
0E U E = 0E + 0" = 0E + 0E 

1 2 1 -:! 1 2 

with O~ and O~ given as above. 

Since OQI is a probability operator measure so is OQ, 
and one has the desired result that OQ, constructed 
through OQ', is the probability operator measure asso­
ciated with the decision procedure Q. OQ is unique 
since Q I is the unique extension of Q which allows Eq. 
(30) to be satisfied, and OQI is unique. 

So far the procedures Q were assumed to consist of 
measurement procedures only without any intervening 
transformations. It is easy to see that the results ob­
tained here hold without this restriction. To see this, 
let the procedure Q contain transformations (imple­
mentable by isometries in the common Hilbert space 
of the process) in between the measurement proce­
dures. Let cp be any infinite outcome sequence of Q. 
Then by repeated use of Eq. (2) which gives Tr(.g 
(E, VpVt)B) = Tr(pVt 8(E,B)V), one has the result 
that the right-hand sides of Eqs. (5) and (12) are re­
placed by 

Qt c> Q ( Qt c> Q Qt c> Q 
Vo "0 Eo, V1 "1 (Ev ''', V n-1 "n-1(E n- V B) 

X V~_l)'" )Vi)V~ 
and 

~Qt 8<pQ ({CPn (O)}, ~Qt 8: ({CPn (I)}, ... , 
n,O n,D n,l n,l 

respectively, where vj and v'nQ 
. are the isometries 

"n.) 
corresponding to the appropriate transformations in 
Q. Note that, in the decision procedures, the possible 
dependence of the transformation on previous out­
comes is taken care of by the index" CPn ,/, on VQ. 
Also the above expressions reduce to the right-hand 
sides of Eqs. (5) and (12) if Vi and Vip . correspond 
to the identity for each j = 0, 1, ... , nn21l, 

By Theorem 3 of the Appendix, if 8 is an expectation 
so is vt8v for any isometry V. Thus the association 
of probability operator measures (or observables) 
with procedures applies also to infinite sequences of 
measurements (Sec. m) with intervening transforma­
tions and to decision procedures which contain trans­
formations; for one uses the above replacements in 
Eqs. (5) and (12) and proceeds exactly as before, using 
Theorem 3 when necessary, to obtain the desired as­
sociation. 
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APPENDIX 

A. Operator Valued Measures 

Let L be a a-ring of subsets of some set nand B (JC) 
the algebra of all bounded linear operators on a 

Hilbert space JC. A map 0; ~ -B(JC) is an operator­
valued measure if O(cI» = 0 and 0 is strongly count­
ably additive. 0 is self-adjoint or positive if, for each 
E in ~, 0 (E) is a self -adjoint or positive operator, 
respectively. If 0 is positive, L is a a field, and 
0(51) = 1, then 0 is a probability operator measure. 
Each probability operator measure 0 and each state 
p define a scalar probability measure 1J, by Pp (E) = 
Tr(pO(E» for each E in ~. 

An operator-valued measure has the following easy 
properties; 0 is finitely additive. If E C F, then 

O(F) = O(E) + O(F - E). (AI) 

If further 0 is positive, then 

O(F) ~ O(E). (A2) 

If 0 is finitely additive, positive, and strongly conti­
nuous from above at cI> or from below, then 0 is 
strongly countably additive. 1 •14 Weak countable addi­
tivity is equivalent to strong countable additivity, but 
not to uniform countable additivity. 9 

If ~ is the minimal a ring over a ring S of subsets of 
n and 0' is a bounded positive operator measure de­
fined on S, then, as Berberian14 has shown, there is a 
unique extension 0 of 0' onto L such that 0 = 0' on 
S. 

An operator-valued measure 0 is bounded if there 
exists a constant M such that 

IIO(E)II < M (A3) 

for each E in ~. 0 is decomposable if there exist 
four positive operator measures 0v O2 , 0 3 , 0 4 such 
that 

(A4) 

It will be seen that there are many decomposable 0' s. 

Let X be a Hausdorff space and <B(X) the a field of 
subsets of X generated by the open subsets. A boun­
ded positive operator measure on <B(X) is regular if 
for each EE <B(X) 

O(E) = sup{O(C) I CCE and C compact}, 

O(E) = inf{O(V) I V:JE and V open}. 

If X is a complete separable metric space, it follows 
from a result of Parthasarathy12 that very bounded 
positive operator measure on <B(X) is regular. 

For our purposes the most important property of ope­
rator measures is the extension of such measures on­
to infinite product spaces from finite product spaces. 
One has the following theorem: 

Theorem 1: Let {Xj Ii = 1,2' .. } be a sequence of 
complete separable metric spaces, xn = Xl X X 2 X 

••• Xn and <B(xn) the a field of Borel subsets of Xn, 
and let {On In = 1,2"'} be a consistent sequence of 
positive operator measures with (xn) the domain of 
On' Let xw = Xl X X2 X •• , and S' be the field of all 
Borel cylinder subsets of XW and <B(S') the minimal 
a field over S'. 

Then there exists a unique positive operator measure 
o on <B(S') such that for each EES' with base FE<B(xn), 
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O(E) = On (F). (A5) 

Proof: If one can show that {On In = 1,2"'} de­
fines a unique positive operator measure 0' on 5', 
then, by Berberian's extension theorem, 14 one has 
the desired result. To this end, one must show that 
0', defined on 5' by Eq. (A5) with O'(E) replacing O(E), 
is finitely additive and strongly continuous at <P from 
which it follows that 0' is strongly countably additive. 

To prove strong continuity at <P, it is sufficient to 
prove the converse. That is, let {E I Il = 1,2, ... } be 
a nonincreasing sequence of sets in 5' such that there 
exists an E > 0 and a 1/1 in X such that 110' El )1/111 > E 

for each l. We have to prove limlEI is not empty. 

Let n I and Fl be the base index and base for each 
EI[EI = Fz x Xn +1 X ••• with FI in <B(Xnl)]. Since 

I 
each 0 n is regular on <B(xn), for each 6 > 0 there is 
a compact set C I in <B(Xnl ) with C Ie Fl such that 
liOn (Fl - C I )1/I116 < /21+1. 

I 

From here on the proof will not be given as it is an 
exact repetition of the proof given elsewhere for the 
realline. 1 ,8,15 One notes that since each xn is a 
metric space each compact subset of xn is sequen-
tially compact and closed. 16 QED 

B. Expectations 

The definition of an expectation & is given at the be­
ginning of Sec. II of the main text and will be referred 
to often. 

Many properties of expectations are simple conse­
quences of the definition. One has from properties 
(e) and (c) of the definition 

&(E,O) = 0 = &(cp,B) (A6) 

for any E in <B(X) and B in B (X). Also & (E, B) is self­
adjoint if and only if B is. To see this, let B be self­
adjoint and set 

(A7) 

where B+ is the positive operator given by 

10() B 
B+ = rdS r , o 

(A8) 

where SB is the spectral measure of B and S~ = 
SB«- CXl,r]). Since B+ -B is also a positive operator, 
properties (a), (d), and (f) give that &(E,B) is self-ad­
joint. If B is not self-adjoint, then one can write B = 
B1 + iB2 with B 1 ,B2 self-adjoint and repeat the above 
to show that &(E, B) is not self-adjoint. Another im­
mediate property is that 

B ~ B' implies &(E,B) ~ &(E,B'» (A9) 

for all E and self -adjoint Band B'. This follows from 
(a), (d), and (e), and B - B' ~ O. Also, one notes that 
f or each B, & (-, B) is a decomposable operator mea­
sure. This follows from setting B = Ba + iBb and 
using Eqs. (A7) and (A8) to decompose Ba and Bb fur­
ther to get B = B1 -B 2 + iB3 - iB4 where B 1,B2 , 
B 3' and B 4 are positive operators. Properties (a), (d), 
and (f) give the desired result that 8(E,B) = &(E,B1) 
- &(E, B 2 ) + i8(E, B 3) - i&(E, B 4 ) for each E in 
<B(X). This answers the question for such measures 
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raised in conjunction with Eq. (A4). Thus one sees 
that & is a family of operator measures indexed by 
the operators in B(X) and whieh satisfies properties 
(a), (h) and (d)- (f) in the definition. 

Finally one has that 

&(E, 1) = 0 implies &(E, B) = 0 (AI 0) 

for each BEB(X). Since any operator can be decom­
posed into the sum of four positive operators [Eqs. 
(A 7) and (A8)] by properties (d) and (f), it is sufficient 
to prove this for positive operators. Let B be a posi­
tive operator in B (X) and consider B' = B/ liB II. Since 
0.; B' .; 1, Eq. (A9) and &(E, 1) = 0 imply that 
&(E,B') = 0 and by (d) &(E,B) = O. 

The next theorem refers to the composition of a finite 
number of expectations. 

Theorem 2 (Davies and Lewis): LetXv X2 , •• ,Xn 
each be a complete separable metric space with 
<B(X1 ), ••• , <B(Xn), the respective a-fields of Borel 
subsets of Xl' ..• ,Xn ' Let &v &2' .. " & n be expecta­
tions defined on <B(X1 ) x B(X), "', <B(Xn) x B(X), re­
spectively. Then there exists a unique expectation 
&: <B(xn) x B(JC) ---7 B(X), where <B(xn) is the system 
of Borel subsets of xn = Xl X ••• X X

n
, such that for 

each rectangle E = E1 X • •• x En with Ej in <B(Xj ) 

for j = 1, 2, ... , n, 

for each B in B (X). 

Proof: Davies and Lewis 5 have shown that, for 
n = 2, the combination of two instruments is an instru­
ment. Clearly this holds for any finite n. The theorem 
then follows from the fact that expectations and instru­
ments are uniquely related by a 1-1 corespondence7 

through Eq. (2) of the text. QED 

Theorems 1 and 2 can be generalised to the case in 
which the Xv' •• ,Xn are a-compact, locally compact 
Hausdorff spaces. In this case one defines Baire and 
Borel expectations and regularity in an obvious way. 
The one can prove that every Baire expectation is re­
gular, and every Baire expectation extends to a unique 
regular Borel expectation &, such that &, = & on the 
Baire sets.17 Theorem 2, just proved, then applies 
with minor changes to a sequence of Baire expecta­
tions, and one can combine these results to show that 
a sequence &v ••• , &n of regular Borel expectations 
on Bo(X1 ) x B(X), ••. , Bo(Xn) x B(X) generates a 
unique regular Borel expectation on Bo(xn) x B(X).17 
[Bo(X) = minimal a ring over the set of compact sub­
sets of X.] 

The following simple result is needed in the text. 

Theorem 3: If V is an isometry on a Hilbert space 
X and & is an expectation on <B(Q) x B(X) for any set 
Q, then V t & V is an expectation. 

Proof: Properties (a), (h), (d), and (f) of the defini­
tions of an expectation are obvious. Property (e) fol­
lows from 

II Vt&(E,B)V - S Vt&(EjB)V 1/111 
)=1 
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~ Ilvtll·11 (8(E,B) - ~ 8(Ej ,B))Vl/Ill ~ 0 

as m -) OCJ, 

and property (f) follows from 
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The equivalence of massive Yang-Mills theory in the simplest gauge to a theory of vector electrodynamics 
is reviewed. The resultant Feynman rules and 5U(2) invariance are used to derive Ward-Takahashi relations 
among the corrected vertices which are valid to all orders. One of these is employed to find a new Ward iden­
tity. A brief discussion of divergence problems is given. 

1. INTRODUCTION 

Investigations of massive Yang-Mills theoryl-4 have 
generally been formal and/or complicated by efforts 
to include space-time dependent gauge transforma­
tions. It is the purpose of this paper to adopt a more 
pedestrian approach, and examine the theory in the 
simplest gauge (called the vector gauge 5) by stan­
dard perturbative methods. 

The ultimate goal of previous papers as well as the 
present work is to determine whether massive Yang­
Mills theory is renormalizable. Since the key to the 
renormalizability of spinor electrodynamics is the 
existence of Ward relations, it would seem that the 
first step toward the goal is to look for them in this 
case also. This step is successfully carried out here. 

Since the title of this work is similar to that of a 
paper by Veltman,3 perhaps the main distinctions be­
tween the two should be explicitly stated. Broadly 
speaking, they differ in approach (this paper does not 
employ the spurious scalars introduced by Veltman) 
and in the generality of the results (the Ward-Taka­
hashi relations derived here are valid off, as well as 
on, the mass shell). 

The development begins with Sec. 2, where the Yang­
Mills Lagrangian is interpreted as representing a 
theory of vector electrodynamics in which the "phO­
ton" has the same mass as the charged particles. In 
Sec. 3, it is shown that nonlocal gauge invariance may 
be used to rotate Wightman functions corresponding 
to different processes into one another; in this way 
the apparent asymmetry introduced by labeling one 
gauge field component "neutral" and the others 
"charged" is removed. 

The Feynman rules for the perturbation expansion 
are derived in Sec. 4, and Ward-Takahashi relations 
among the bare propagators and vertices are ob­
tained in Sec. 5. 

The similarity of the massive Yang-Mills theory to 
a theory of vector electrodynamics provides motiva­
tions for the theorems concerning general tree dia­
grams which are presented in Sec. 6. Section 7 con­
tains derivations of Ward-Takahashi relations be­
tween total propagators and vertices which are based 
on these theorems. It is also shown there that al­
though the distinction between neutral and charged 
fields is central to the theorems, the generality of the 
Ward-Takahashi relations is not impaired, since, 
essentially, gauge invariance allows a neutral field 
to be rotated into a charged one. 

In Secs. 8 and 9 one of the Ward-Takahashi relations 
is applied to find a Ward identity between the renor­
malization constants of the formally renormalized 
theory. 

Section 10 concludes the paper with discussions of 
the field ordering implied by the theorems and the 
question of divergences. 

2. FORMALISM 

The Lagrangian of the massive Yang-Mills field in 
the vector gauge is 

.e - - ~Da D/lU + -2' m 2DaDIl 
- JlV a J.I. a' 

where 
Dffu == a/lD:; - a uD: - gC abcD~ DJ, 

a, b, c, ... label the SU(n) components of the vector 
fields and the C's are structure constants. 
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Since the title of this work is similar to that of a 
paper by Veltman,3 perhaps the main distinctions be­
tween the two should be explicitly stated. Broadly 
speaking, they differ in approach (this paper does not 
employ the spurious scalars introduced by Veltman) 
and in the generality of the results (the Ward-Taka­
hashi relations derived here are valid off, as well as 
on, the mass shell). 

The development begins with Sec. 2, where the Yang­
Mills Lagrangian is interpreted as representing a 
theory of vector electrodynamics in which the "phO­
ton" has the same mass as the charged particles. In 
Sec. 3, it is shown that nonlocal gauge invariance may 
be used to rotate Wightman functions corresponding 
to different processes into one another; in this way 
the apparent asymmetry introduced by labeling one 
gauge field component "neutral" and the others 
"charged" is removed. 

The Feynman rules for the perturbation expansion 
are derived in Sec. 4, and Ward-Takahashi relations 
among the bare propagators and vertices are ob­
tained in Sec. 5. 

The similarity of the massive Yang-Mills theory to 
a theory of vector electrodynamics provides motiva­
tions for the theorems concerning general tree dia­
grams which are presented in Sec. 6. Section 7 con­
tains derivations of Ward-Takahashi relations be­
tween total propagators and vertices which are based 
on these theorems. It is also shown there that al­
though the distinction between neutral and charged 
fields is central to the theorems, the generality of the 
Ward-Takahashi relations is not impaired, since, 
essentially, gauge invariance allows a neutral field 
to be rotated into a charged one. 

In Secs. 8 and 9 one of the Ward-Takahashi relations 
is applied to find a Ward identity between the renor­
malization constants of the formally renormalized 
theory. 

Section 10 concludes the paper with discussions of 
the field ordering implied by the theorems and the 
question of divergences. 

2. FORMALISM 

The Lagrangian of the massive Yang-Mills field in 
the vector gauge is 

.e - - ~Da D/lU + -2' m 2DaDIl 
- JlV a J.I. a' 

where 
Dffu == a/lD:; - a uD: - gC abcD~ DJ, 

a, b, c, ... label the SU(n) components of the vector 
fields and the C's are structure constants. 
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£ is invariant under the transformations pression on the right; this time ffi is chosen to be ffie , 
where 

if R ab satisfies 

and 
a)!Rab = 0, RacR~b = Dab 

RadRbeRcJCdeJ = Cabc ' 

This implies that there are conserved currents in the 
theory, which in turn suggests that there are Ward 
relations. 

In the remainder of this paper, only the theory cor­
responding to the group SU(2) will be studied. There 
are then three independent vector fields, and if the 
following identifications are made, 

All == D~(X), 

Bil == (1/~2)(D: - iDff), B~ == (l/~)(DJ + iDff), 

the Lagrangian becomes 

£ - _ -4' a all" + -2' m2A All - -2' b b+Il" + m2B B+1l 
- Il" Il Il" )!' 

where 
(2.2) 

all" == allA" - alIA)! - ig(B~BIJ -BIlB~), 

bll " == allB" - Q"BIl + ig(AIlBv -A"BIl )· 

£ now appears to describe a theory of vector electro­
dynamics, in which the neutral and charged particles 
have the same mass. Hence the case SU(2) is con­
venient in that it is particularly amenable to familiar 
interpretation. 6 

3. SU(2) INVARIANCE 

The invariance of the theory under constant rotations 
in SU(2) space means that the various physical pro­
cesses are not all independent. The relations between 
them are most easily displayed in terms of Wightman 
functions. 

In order to illustrate the method of deriving these 
relations, consider 

If ffi is the unitary Hilbert space operator correspond­
ing to a rotationR ab in Eq. (2.1), it follows from SU(2) 
invariance of the vacuum that 

Now choose ffi = ffiM with 

Bil i/2 - i/2 - i/{2 Bil 

ffil B+ ffiM = i/2 - i/2 i/~ B+ . (3.1) M /1 /1 

A/1 iH2 i/~ 0 All 

Then 

(0 IA/1(x)A,,(Y) 1 0) 

= ~(OI[BI'(x)B,,(y) + B~(x)B:(y) + BI'(x)B~(y) 
+ B~(x)B,,(y)] 10) . (3.2) 

Another ffi operator may be used to reduce the ex-
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BI' 0 e- irp 0 BI' 

ffi- 1 B+ ffie = e i ¢ 0 0 B+ , (3.3) e I' Il 

All 0 0 -1 A)J 

and 1> is an arbitrary real number. This rotation, of 
course, corresponds to charge conjugation in electro­
dynamics. When invariance under this operation is 
invoked, it is inferred that 

In general, any Wightman function containing an un­
equal number of Band B+ fields vanishes. It may 
also be shown that 

Hence, Eq. (3. 2) becomes 

By proceeding in similar fashion, using invariance 
under transformations which mix charged and neut­
ral fields, such as ffi M' and invariance under charge 
conjugation ffie , it is possible to relate other Wight­
man functions involving equal numbers of different 
types of fields to each other. Some additional exam­
ples are given below: 

(0 IB~(X)B" (y)Ap(z) 1 0) = - (0 1BIl (x)B~ (y)Ap(z) 1 0), 

(3.5) 

(0 IB;(x)Bv (Y)Ap(z) 1 0) = - (0 IB;(x)A,,(y)Bp(z) 1 0), 

(3.6) 
(OIA/1(x)A,,(y)Bp (z)B;(w) 1 0) 

= (0 1BIl (x)B~(Y)Ap(z)Ao(w) 1 0), (3.7) 

(0 IB~ (x)B;(y)Bp(z)Bo(w) 10) 

= (01 A/1(x)A,,(y)Ap(z )Ao (w) 10) 

- (01 A/1(X)A" (y)B;(z)Bo(w) 10). (3.8) 

These equations are valid to all orders in the pertur­
bation expansion and, therefore, in each order sepa­
rately. They will be referred to again in Sec. 7, 
after some interaction representation results have 
been discussed. 

4. FEYNMAN RULES 

A. The Renormalized Lagrangian 

The Feynman rules of any theory of vector electro­
dynamics are not trivial to derive, because the time 
components of the vector fields must be treated as 
dependent variables. However, Nakamura7 and Tzou,8 
building on the work of Lee and Yang,9 have shown 
that in the present case the noncovariant parts of the 
propagators may be dropped and the Feynman rules 
again become simple if the interaction Hamiltonian 
is taken to be the negative of the interaction Lagran­
gian.10 The rules found in those papers are extended 
to include renormalizations in this section, and are 
employed in the remaining sections. 
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It is not known whether the massive Yang-Mills 
theory is renormalizable; but it is still possible to 
formally allow for proper normalization of physical 
quantities by introducing renormalization constants 
into the Lagrangian. This is accomplished with the 
following replacements: 

m -') Zl/2 m , g-'> ZlZ23/2g, D#--') Z~/2D~. 

Notice all fields are assumed to be renormalized by 
the same constant; this must be the case if SU(2) sym­
metry is to remain unbroken by the renormalization 
procedure. The Lagrangian, Eq. (2.2), now becomes 

£ = - tZ2AJluAflU + i ZZ2 m2A flAP 

with 
- ~Z B B+JlV + ZZ m2B B+fl (4.1) 

2 2 flU 2 fl 

AflU = aflAV - aVAfl - iZ1Zilg(B~Bv - BJlB~), 

BJlU = aJlBU - aVBfl + iZ1Zilg(AflBU - AVBfl)' 

The constants m and g now appearing in £ are the 
observed mass and coupling constant. 

The free field Lagrangian £F is taken to be 

and the interaction Lagrangian £ j is defined by 

£ = £F + £j, 
so 

£j = Z2(Z - lji m2AflN + Z2(Z - l)m 2BflB+fl 

+ (Z2 - 1) [- hafl A v - aUAfl) 

x (aflAV - aUAJl) + i m2AflAfl] 

+ (Z2 - 1)[- ~(aJlBv - avBfl) 

x (aflB+v - aVB+fl) + m 2BflB+Jl] 

+ iZ1g[aflAv(B+JlBV _BflB+V) 

+ a"Bv(AflB+v - B+flA") + aJlB:(BJlA" - BflA")] 

+ Z2 Z-lg2[~ fB+ B B+flBV - B+ B+BflBv) 1 2 2~ fl v fl v 

- (A~+flAvBv -AflAI-IB:BV)]. 

B. Vertices 

If broken lines represent neutral particles and solid 
directed lines represent charged particles, the arrow 
indicating the flow direction of positive charge, then 

0) 
v ---0----- fL } My/", v----o--- fL 

b) 
v ..)(. fL, P } 
v ----)(---- fL, P 

W",,,,(p) 

p,qf pl- p 
Vpv!'-( p', pJ c) II, pi 

, . ' • fL' P , 
CT,q= p \p,P, k 

- UcPv/"'-d) lI,p'+k • 'v' .. fL, P , 
CT,q=p-P P k 

e) v,p'+k Y.' fL' P U/1VPf' 

FIG. 1. The vertices associated with £ [. The arrows on the charged 
lines indicate the flow direction of positive charge. 

the vertices derived from £ j are those shown in Fig. 
1. The symbols appearing there are defined by 

(4.3) 

WVfl(p) = - i(21T)4 (Z2 - l)[gVI-I(P2 - m 2) - PVPJl], 

(4.4) 
VpVfl(P' ,p) = i(21T)4Z 19[(P' + P)pgvl-I 

+ (P' - 2P)v g JlP + (p - 2P')Jlg pv], (4.5) 

UOPVfl = i(21T)4ZfZ21g2[2gopgvl-I-g~vgflP -gO/lgpv]' 

(4.6) 
The following symmetry properties of the bare ver­
tex functions are easily proved from their definitions: 

VpVfl(P' ,p) = - VpVfl (- p',-p) = VpflV(P,P') 

= - VflVP (p' ,P' - p) 

= - VVP/l(P - P' ,p), 

VpVJl(P',P) + VVl-lp(P,P) + V/lpv(p',P') = 0, 

C. Propagators 

(4.7a) 

(4.7b) 

(4.7c) 

(4.7d) 

That the charged and neutral particles have the same 
propagator is implied by Eq. (3.4). If their common 
free field propagator is denoted by SV/l(p), then 

SV/l(p) = _ _ i_ gV/l - (p vpl-I/m 2) • (4.8) 
(21T)4 p2 - rn2 + iE 

Its inverse S:~(P), defined by 

S;l(p)SPfl(P) = Ij~, 
is 

S;J(P) = i (21T)4 [gvfl(P 2 - m2) - PVP/l]' (4.9) 

Note that the bilinear vertex function WVfl ' Eq. (4.4), 
may be written as 

(4.10) 

When amplitudes are computed, the free propagator 
will be modified by diagrams involving vertices. The 
effect of the bilinear vertices (Figs. la and Ib) can 
be calculated in closed form, so they need not be ex­
plicitly included on internal lines. To do this it is 
only necessary to realize that any two points in a 
diagram connected in lowest order by SV/l(p) are con­
nected to all orders by ~V/l(P) defined as 

~ = S + SWS + SWSWS + .... 

(The space-time indices have been suppressed for 
simplicity; matrix products are implied.) When Eq . 
(4.10) is used, this becomes 

0) 

b) 

v ... -.-..... fL 
P 

FIG.2. The unrenormalized charged (a) 
and neutral (b) particle propagators. 
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or 
t> = [1 - (Z2 - 1) + (Z2 - 1)2 - .•. ] S 

t>u~(p) = Zi1SU~(p). (4.11) 

Similarly, two points connected by t>Vil in one diagram 
will be effectively joined by DVIL in a complete ampli­
tude, where 

D = t> + t>Mt> + t>Mt>Mt> + '" . 

With the definition of M vlf , Eq. (4. 3), and of t>v~, Eq. 
(4.11), it may be shown that 

DUIl(p) = _ _ i_ Z:? gVIl - (pUpiljZm2) • (4.12) 
(21T)4 p2 - Zm2 + if 

Clearly,DVIl(p) is an unrenormalized propagator 
which includes all contributions from the bilinear 
vertex counterterms. Its graphical representations 
are given in Fig. 2. 

The relationship of SV/l to DVIl is most directly ex­
pressible in terms of their inverses. The inverse of 
DV/l turns out to be 

D~J = i (21T)4 Z2[gvll{p2 - Z m2) - p VPIl] , 

and the desired relation is 

D~J(P) = S~J(P) - MVIl - WVIl (p). 

D. Amplitudes 

(4.13) 

(4.14) 

The elements introduced above are to be assembled 
into diagrams and associated amplitudes according 
to rules following from the standard Dyson-Wick 
procedure, with one notable addition. It turns out to 
be expedient to compute and include contractions of 
two free fields with the same space-time argument, 
instead of defining them to be zero. The reason is 
not uncovered until later in the development, so the 
detailed discussion of this point is postponed until 
Sec. lOA. For now, it is simply noted that diagrams 
resulting from the new rule are understood to be in­
cluded in any calculation described in the remaining 
sections. 

5. THE BARE WARD RELATIONS 

Before going on to the consideration of more general 
diagrams, some simple relations involving the unre­
normalized propagator and the bare vertices are pre­
sented here. 

From the definition of ~VIl(P' ,p), Eq. (4. 5), and of 
D~J(P), Eq. (4. 13), it follows that 

(p' - p)p VpVIl(p',p) = gZlZ21[D~J (p') - D~J(p)l (5.1) 

or 

(p' - p)YDvB(p') Vyscx(p' ,p)DCXIl(p) 

= - gZl Zi1[DVI1(P') - DVIl(P)]. (5.2a) 

Similarly, 

DVB(p') V y6a (p',p)DYIl(P' _ p)p a 

= gZlZi1[DV/1(P') - DUIl(p' - p)] (5.2b) 
and 

p'BDuy (P' - p) Vy13a(P' ,P)DCXI1 (p) 

= - gZl Zi 1[DUIl(P' - P) - DV/1(p)]. (5.2c) 
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These last equations are Ward-Takahashi relations 
(WTR). The first, (5. 2a), is directly analogous to the 
one found in spinor electrodynamics.1"1 The other 
two, Eqs. (5. 2b) and (5. 2c), exist as a consequence of 
the extra symmetry in the Yang-Mills theory. 

A WTR for U opvl' follows trivially from the defini­
tions of UOPVIl and VPU/l(q,q),Eqs. (4)-(6). It is 

qOUOPU /1 = gZlZ i!.l Vpu /1(q, q). 

Using the definition of ~V/l(p' ,p), this may be written 
in a more complicated, but equivalent, form that will 
be needed in Sec. 7D2: namely 

(p' - P)OUOPUIl 

=gZlZi!.l[VpV/l(P' + k,p') - VpUIl(p + k,P)]. (5.3) 

Other WTR' s may be inferred from the symmetries 
of UOPUIl Eq. (4. 7c). 

Ward relations are derived from the WTR's above by 
allowing p to approach p'. For example, 

DUS(p) VpBcx(P,P) DCXIl(p) = -gZlZ21 _a_ DV/l(p) (5.4) 
app 

and 

UOPU/l = gZlZi l a;o ~v/P,P). (5.5) 

These equations have the usual physical interpreta­
tion: Differentiation of a diagram with respect to a 
momentum has the effect of inserting into that dia­
gram an external neutral line with zero momentum. 
Equation (5.4) shows the new line is added to a pro­
pagator. Equation (5.5) shows the new line is added 
at a V vertex, changing it to a U vertex. 

It is interesting to note that all the results in this 
section which involve DUll remain valid if DUll is re­
placed by t>UI1. Generally speaking, the bare WTR's 
are the same for any nonzero value of the mass 
appearing in the propagators. 

6. THE GENERALIZED LEE THEOREM 

Some facts about certain important sets of diagrams 
will now be established. They are applied later to 
generalize the WTR's of Sec. 5 and to prove a Ward 
identity. The theorem and corollaries presented 
here are direct extensions of analogous theorems 
proved by Lee in connection with another theory of 
vector electrodynamics. 12 

Definilion 1: Let GV/l(c;p) be the algebraic expres­
sion corresponding to an arbitrary diagram of the 
general form shown in Fig. 3. 13 The main charged 
particle line of such diagrams shall, henceforth, be 
known as the trunk. c specifies the particular con­
figuration of the diagram; that is, the number of the 
various types of vertices attached to the trunk and 
the order in which they are arranged. All configura­
tions considered have at least one vertex. p is the 
momentum entering the trunk; the momentum leaving 

V 'II' /::V\ /: 
: I I \ I I r \,': 

11 .)( I I I V II: I '/ : ~ 1-'-, P 

FIG. 3. The general form of diagrams associated with the symbols 
G" (c; pl. The momenta and indices of the branches attached to the 
tru"nk are suppressed; this information is formally contained in the 
index c. 
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the opposite end of the trunk is, of course, p plus the 
sum of the net momenta entering through the 
"branches" at each vertex. Whereas the trilinear and 
quadrilinear vertices of Figs. lc-e may appear any­
where along the trunk, the bilinear vertices, Figs. la 
and Ib can only occur at the trunk ends in diagrams 
comprising scattering amplitudes because their 
appearance elsewhere has been taken into account by 
using DV~(p) as the unrenormalized propagator (see 
Sec.4C). 

Definition 2: GpV}l(c;P.q) is defined to be the sum 
of all distinct diagrams derivable by attaching one 
additional neutral line, with index p and momentum q, 
to the trunk of the configuration c. 

To illustrate these definitions and obtain some infor­
mation needed for the Theorem, consider this 

Lemma: Denote> by Cvll(l;p) anyone of the five 
charged line vertices shown in Fig.!. These are the 
simplest configurations. Then 

qP Gl'v/l(I;p, q) = gZlZ:?[D~Z,(p')DaB(p' - q) GpIP;p) 

- Gvo: (l;p + q)D aB(p +q)DBJ-(P)], (6.1) 

where p' is the momentum leaving the trunks of the 
summands of Gpv/l(l;p,q). 

Proof: The five G
V
/1(I)'s together with the asso­

ciated Gpv}l(l)'s prescribed by Def. 2 are given in Fig. 
4. The method of proof is straightforward calculation. 
Only the most complicated case, Ie, shall be worked 
out here. 

When the Feynman rules of Sec. 4 are used to trans­
late the diagrams for Gpv }l(lc;p,q) into a momentum 
space expression, the result is 

Gpv ,,(lc;p,q) = V,wC' (p',}) + q)DetB(p + q)Vp61l (p + q,p) 

+ ~Vet(P',P + k)Detb(p + k)VoGjl(p+k,P)-Uopuw 

The bare WTR's of Section V then imply 

ql' Gpvll (lc;P ,q) = gZlzi l VavaJp' ,P + q)DcxB(p + q) 

x [Dil~(P + q) - DsJ(p)] + gZlZil[D~J(P') 

- D~J(p + k)]DaB(p + k) VoBJ.Jp + k,p) 

- gZlZi l Vavjl(q ,q), 

which reduces to 

qP Gpvjl (lc;p,q) 

or 

=gZlZil[D~l(p')DaS(p + k)VoBP(P + k,P) 

- Vova(P',P + q)DaB(p + q)DilJ-(P)] 

qPGpv/,(lc; p, q) = gZlZi,l[D-;}ciP')DaB(p' - q) Gpll(lcjP) 

- Gva(lc;P + q)DaB(p + q)DilJ(P)]. (6.2) 

In the reduction, the relation 

V"va(p + q + k,p + q) - V"V}l(P + k,p) - VOV}l(q ,q) = 0 

was used. It follows directly from the linearity of 
V

PVj1
(P' ,p) in its two variables [see Eq. (4.5)]. 

With the development leading to Eq. (6.2), the Lemma 
has been proved for case Ie. Similar calculations 
establish it for the remaining cases. QED 

Theorem (the generalized Lee theorem): for any 
configuration c, 

qP Gpvll(c;p,q) = gZlZil[D~J(p')DaB(p' - q)Gsll(c,P) 

- Gva (c;p + q)Da6(p + q)Di3J(P)]' (6.3) 

where P' is the momentum leaving the trunks of the 
summands of Gpvll(c;p,q). 

Proof: Each possible configuration may be classi­
fied according to which of the five types of vertices 
(see Fig. 1) terminates its trunk. The Theorem must 
then be proved for each class. Details are outlined 
below for the class terminating with the vertex of 
Fig. Ie; this is a case not included in Lee's work.1 2 

If G
Vf1

(c;P) is within the class of configurations under 
conSIderation, it may be written as 

GVJl(c;P) = Ua va aDaB(P")Gs,,(c';p), z 1 ~ 

where P" is the momentum leaving the trunk of 
G8}l(c';P), and aI' a2 are the indices of the charged 
line "branches" which distinguish c from c'. In words, 
c is derived from another configuration c' by attach­
ing the appropriate vertex. Definition 2 leads to this 
equation 

GpV}l(c;p,q) = ~VCi(P' ,p' - q)Detb(p' - q) 

xU. Dyo(p")G (c"p) 
0zbOjY O}l' 

+ U DaB(p" + q)G . (c"p q) 
OZVOjCi pBIl " . 

Gv/...(1 CiP) -
VC1v,..(~+k,p) 

GptI,...11C iP, q) 

G",,(Jdjp) = 

- uO"~O", Vf-

Gv,..(1e;p\ = 

UC11110"'?-

G,ov,...fle;p,q) 

II -----0---- fL, P 

fL, P 

P':q 
II 4 )(: 4 fL' P + 

P,? , 
II 4' )( 4 fL,P 

fL, P 
O",k: :P,q 

II 4: : 4 fL, P + p,q: IOj k 
II 4! : 4 fL,P 

0", k, ,P,q 
+ II "4 \( 4 fL, P 

0"2' ~2 ,<Yi' k, 
II 'v' fL, P 

0"2,k,2, ~q 
II 4 V\: 4 fL,P 

Oik 
+ 

FIG.4. Diagrams conSidered in the Lemma. For each elementary 
configuration G u "(liP) the appropriate contributions to the three 
index symbol Gp""U;p,q) are given. The latter are found in accord­
ance with Def. 2. 
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If the theorem is assumed valid for G S (c';p,q), then 
a little computation, making use of tht bare WTR' s in 
Sec. 5, shows it to be also true for GpvjJ(c;p,q). 

With parallel arguments it may be shown that adding 
a vertex of any type to a configuration that satisfies 
the Theorem produces another configuration which 
also satisfies it. But the previous Lemma, Eq. (6.1), 
established the Theorem for each elementary configu­
ration. Therefore it is true in all cases by induction. 

QED 

Definition 3: The quantity FpvjJ(c;p,q) is defined by 

FpvjJ (c;P, q) = GpvjJ(c;p,q) 

- ~va(P',P' - q)Da8(p' - q)GsjJ (c;p) 

- Gva(c;p + q)Da8(p + q)VpJ3jJ (P + q,p), 

Le.,FpvjJ is formed in the same way as GpvjJ except 
that contributions from the two diagrams with the 
neutral line attached to an end of the trunk of G VI' are 
omitted. 

Corollary 1: 

qPFpvl'(Cjp,q) =gZlZ:?:l[GvjJ(CiP) - GvjJ(CjP + q)]. 
(6.4) 

Proof: This relation follows from Eq. (6.3), DeL 3, 
and the bare WTR's after a straightforward calcula­
tion. 

Definition 4: Define Gp(CiP,q) by 

Gp (Cjp,q) = DI'V(P)[FpvjJ(c;p,q) 

+ Vpva (P,p - q)Da8(p - q)GsjJ(c;P)]. 

Graphically, Gp(c) is the sum of all distinct diagrams 
found by attaching one neutral line to G VIl (c) after its 
trunk has been closed into a loop and before the inter­
nal loop momentum P has been integrated over. 

Corollary 2: 

qP Gr>(c;p,q) = gZlZi 1 [DjJ V (p - q)GvjJ(C;P) 

- m v (P)Gv~(c;P + q)] 

and 

qP f dp Gp(c;p,q) = o. (6.5) 

Proof: The first equation may be inferred directly 
from DeL 4, Eq. (6.4) and the bare WTR's of Sec. 5. 
The second is found when a displacement of the integ­
ration variable p is madeJ4 

7. GENERAL WARD-TAKAHASHI RELATIONS 

A. Total Amplitudes 

The corollaries of the preceding section were proved 
by Singling out the neutral lines for special consider­
ation. It will be shown here that the SU(2) invariance 
of the theory of" vector electrodynamics" being in­
vestigated implies additional relations in which 
charged lines play the role previously assigned only 
to neutrals. 

As a prelude, note that scattering amplitudes have 
this form: 
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(21T) 3/2 

x T a '" vjJ (PN , ••• ,P2 ,P 1 ) o (L:.p in - L:.Pout )' (7.1) 

Each factor (21T)-3/2 E~(p) represents an incoming or 
outgoing particle, E).. (P), A == 1,2,3, being its approp­
riate polarization vector. 

The T functions are calculated by summing all dia­
grams contributing to the process in question. They 
may also be expressed in terms of time ordered 
Wightman functions, and the explicit LSZ formulas 
are given in Appendix A. The symmetries of the T 
functions corresponding to various processes are 
derived from the latter formulation by applying rela­
tions of the type given in Sec. 3. 

The results of Sec. 3 directly imply the symmetry 
properties of total amplitudes only. But certain im­
portant partial sums of diagJ ams, .. uch as self-ener­
gies and corrected vertices, also have symmetries 
that can be used to derive more general WTR's than 
are allowed by the corollaries of Sec. 6 alone. Speci­
fic examples are presented in the remainder of this 
section. 

B. The Total Propagator 

As a consequence of Eq. (3.4), the total propagator 
S'lJjJ(p) is common to both kinds of particle. It is 
given by 

S' == D + DrID + DrIDnD + ., .. 

S' = D (1 - rID)-l, (7.2) 

or, alternatively, 

5' -1 = D-l - rI , (7.3) 

where rIvjJ(P) is the sum of all proper" self-energy" 
diagrams associated with either the charged or neut­
ral particles. nlJjJ(p) includes no explicit bilinear 
vertices since the unrenormalized propagator DVjJ has 
been used throughout, and it already contains the con­
tributions of the counterterms (see Sec. 4C). 

Interpreted as the neutral particle self-energy, rI VjJ 

is the sum of all proper diagrams with two neutral 
external lines. The summands may be constructed 
as follows: (1) Write down all proper diagrams with 
one external line-a neutral line labeled by }l, and call 
these the primary diagrams; (2) attach one more 
neutral line, labeled by v, in all possible ways to the 
primaries to find secondary diagrams; (3) sum the 
secondary diagrams to obtain rI VjJ' All the charged 
lines in the primary diagrams must be closed into 
loops to conserve charge, so the second step creates 
the quantities GlJ (c; q ,p) of Def. 4 as pieces of the 
secondary diagrams. Furthermore, since all internal 
loop momenta, here denoted q, are to be integrated 
over in accordance with Feynman's rules, the self­
energy contributions are seen to be expressible in 
terms of the type of integral appearing in Corollary 
2, Eq. (6. 5). The three steps outlined above which 
lead to this conclusion are illustrated with a particu­
lar example in Appendix C. 

From the considerations in the previous paragraph, 
it follows that Eq. (6. 5) may be applied to all the 
terms constituting the function rIvjJ(P); consequently 
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(7.4) 

It is concluded that fIv~ must have the form 

(7.5) 

C. The Total Trilinear Vertex 

With the SU(2) relations (3.5) and (3.6), space-time 
reflection invariance and the LSZ formulas of Appen­
dix A, it may be shown that the T function associated 
with the total amplitude for the process in Fig. 515 

has the exchange symmetries (4. 7a) previously found 
for VpVIl(P',p). 

Denote the total trilinear vertex by V; v IJ. (p', p). It dif­
fers from the T function by terms involving external 
line corrections. But the total external charged line 
correction is the same as that of the external neutral 
lines, because both depend only upon S'v~, nVIl and 
the bilinear vertices of Figs.la and Ib. 16 So it might 
be expected that external line corrections do not 
affect symmetry properties, and, in fact, it is easily 
proved that V;VIl has the same exchange properties as 
the T function and ~VIl' Specifically 

V;UIJ.(P',P) =- V~UIl(-P',-P) = V~~v(P,P') 
= - V~up(P',P' - p) = - V~p/P - p',p). 

(7.6) 

The total vertex is given by 

V~u~(P',p) = Vpv~(P',p) + vpVIl(P',pl. (7.7) 

where vpUIl(P' ,p) is the total correction to the bare 
vertex. Generally speaking, corrections to the bare 
vertex are generated by attaching a neutral line in all 
possible ways to the charged particle self-energy 
diagrams. The total correction is the Sum of all the 
ensuing diagrams except those with the form shown 
in Fig. 6. The latter are excluded, because they are 
external line corrections rather than contributions to 
the vertex. Hence the relation of nVIl to v pv~ is just 
such that Corollary 1, Eq. (6.4), leads to 

(7.8) 

And this, together with Eq. (7.3) and the bare WTR 
(5.1), implies 

Two more WTR's may be inferred with the aid of Eqs. 
(7.6). 

The conclusions of this subsection may be summa­
rized as follows: In the bare WTR's (5.2), make the 

II, pi 

p, q::p/_p 
, FIG. 5. The form of the diagrams contributing A to the three particle T function and V;'U" (P' pl. 

• • fL' P 

(0) 

p, q 
I 
I 

11, pi --0--i----fL, P 

(b) 

p,q 
I 

I ~ !--'/>,_ 
11, P ------v.r-fL, P 

FIG.6. Diagrams omitted from the corrected vertex V' pvp(p'p). 

replacements 

the resulting equations are correct WTR's for the 
total trilinear vertex. 

D. The Total Quadrilinear Vertices 

1. Four Neutral Exlernal Lines 

Let Uopvv(k,P' - k,p) be the sum of all proper dia­
grams of the type shown in Fig. 7. All momenta have 
been directed inward, so [Topv/, is clearly symmetric 
under the interchange of any two external lines. 
There is of course no bare contribution to this vertex. 

Since all charged lines in the summands of Uo VII 
must form closed loops, it follows from Corollary 2, 
Eq. (6. 5), by an argument paralleling the one used in 
the case of nv~ (Sec. 7B) that 

p~ Uopv~(k,P'- k,p) = (p' - k)v Uopv~(k,P' - k,p) 

= kp Uapv~(k,P' - k,p) = qO Uopvik,p' - k,p) = O. 
(7.10) 

These last relations are directly analogous to the 
similar result for light-light scattering in spinor 
electrodynamics. As in that case, they mean the con­
stant term in a Taylor expansion of [Topv~ vanishes. 

However, it is not clear in the present instance that 
the remaining terms are finite, as they are in spinor 
electrodynamics. 

2. Two Neufral- Two Charged External Lines 

Consider the process in Fig. 8. Obviously, the total 
amplitude and its associated T function are invariant 
under exchange of the two neutral lines. Other ex­
change symmetries are found from SU(2) relations 
such as (3.7). 

Let t~pvll(k;P' + k,p) be the sum of all diagrams con­
tributmg to the process except those involving exter­
nal line corrections. As in the trilinear vertex case 
(Sec. 7C), it may be demonstrated that t~pvll has the 
same symmetries as the T function. However, t~pVI' 
is not the appropriate quadrilinear vertex, because it 
still includes diagrams of the type shown in Fig. 9. 
If the sum of these contributions is denoted ot~PVI' 
(k;P' + k,p), then the Feynman rules yield 

ot~pv~(k;P' + k,p) 

= V~VIl(P' + k,p + k)S'Ba(p + k) V;au(P + k,p) 

+ ~'vB(P' + k,p + q)S'8a(p + q) V~C(1l (p + q,P), 

(7.11) 

rI, q :: _(pl+p)", /P, k 
/ ':m 

// " 
I / ' 

11, P -k / 'fL, P 

FIG. 7. The form of diagrams contributing to TJ 0 p v p (k, P' - k, p). 
All neutral particles are assumed to be incoming. 

-I rI,q=p_p; IP,k 
, I 

11, pi + k --+-----"f/):.A.-----/-L, P 

FIG. 8. The form of diagrams contributing to t '0 v (k; P' + k, p) 
and U'apvp(k;P' + k,p). P P 
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and the total corrected vertex U~PUtl(k;p' + k,p) is 
defined by 

U~PVtl (k;p' + k,p) 

= t~pUtl(k;p' + k,p) - 6t~pVtl(k;P' + k,p). (7.12) 

The symmetries of V~Vtl' Eqs. (7.6), may be used to 
prove 6t~pvtl behaves under exchanges in the same 
way as the T function and t~PVtl' so U~PVtl also has the 
same properties. These well-advertised symmetries 
are now finally revealed in terms of U~PVtl: 

U~pL'tl(k;P' + k,p) = U~PtlJk;- P,- p' - k) 

= U;OVtl(q;p' + k,p) = U;tlOp(P;- q,k). (7.13) 

The vertex corrections to the bare process may be 
constructed from the diagrams for the quantity 
vpVtl(P;p) introduced in Eq. (7.7) by attaching an extra 
neutral line at all possible points, except along the 
incoming or outgoing charged lines (the latter contri­
bute to 6t~PVtl)' Hence Corollary 1 is again applicable, 
and together with the bare WTR (5.3), yields 

qO U~pVtl(k;P' + k,p) 

=gZ1Z2"1fV;utl(p + k,p) - V;Vtl(P' + k,p')]. (7.14) 

Additional WTR's are implied by the symmetry equa­
tions (7.13). 

3. FOllY ChaYj.{cd Ex/ernal Lines 

t~pv)l(k;P' + k,p) is defined to be the sum of all dia­
grams with the form shown in Fig. 10, except those 
with external line corrections. Since it turns out that 
symmetry relations between such quantities are the 
same as those among the total amplitudes and their 
associated T functions, it may be inferred from the 
SU(2) equation (3.8) that 

t~pVtl(k;P' + k,p) 

= ~PVtl(- k,p' + k,p) - t~PVtl(- k;- p' - k,p). 
(7.15) 

With the help of Eq. (7.12), this becomes 

t" (k'P' + k p) + 6f' (-k'-p' -k p) opVtl' , °PVtl' , 
- U ( k p' k p) - U' (- k'- p' - k p) - oPflll -, -, opUJ1' , • 

But Eqs. (7.6) and (7. 11) may be utilized to find 

6t~pvJ1(- k;- p' - k,p) 

(7.16) 

= - VSou(P' + p,P' + k) S'Sa (P - k) V~PJ1 (k,p) 

- Vp,pv(k,P' + k)S'Ba(p')V~OIl(P' + p,p) 

== - ot~pVtl(k;P' + k,p), 

o-,q~p'-p p"k 

v, p' + k - ... ---L!.1bCA-~0f--.L./}.L>' ~·-fL, P 

FIG.9. The form of diagrams omitted from 
the corrected vertex U",pvp(k;p' + k,p). 

v,q= pl+pxp, k 

v,pl+k fL' p 

FIG.10 The form of diagrams contribut­
ing to t" a p" p(k; P' + k, p) and 1';;,," p (k; P' 
+ k,p). 
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and 6f~pvlJ is seen upon inspection of the above expres­
sions to be the sum of all the diagrams with the form 
of Fig. 11. These are precisely the contributions that 
must be removed from t~PVJ1 to arrive at the correc­
ted vertex U~puJ1 for the process in question. More 
exactly, 

U~~uJ1(k;P' + k,p) 

= t~pVJ1(k;P' + k,p) - 6t~pVtl(k;p' + k,p). 

Equation (7.16) then reads 

U~pVIl(k;P' + k,p) 

= UOPVil (- k,p' + k,p) - U~PVJ1(- k;- p' - k,p). 

(7.17) 

The exchange symmetries of U~PVIJ may be found 
from the relation above or inferred from the LSZ 
formula for the total amplitude (Appendix A). They 
are the following: 

U~'pvil(k;P' +k ,p) = U~PJ1vCk;p,p' + k) 

= U~'OVJ1(q;p' + k,p) = U~llop(P;q,k). 
(7. 18) 

When the WTR's for UOPVIl ' Eq. (7.10), and U~PV)P Eq. 
(7.14), are employed in conjunction with Eq. \7.17), 
the result is 

or 

qOU,;;JUP(k;P' + k,p) =gZ1Z21[V~vJJ(P - k,P) 

+ VI;V!J (P' + k,P')]. (7.19) 

Once again, other WTR's may be derived by taking ad­
vantage of the exchange symmetries (7.18). 

E. Concluding Remarks 

Two of the relations found in this section, (7.9) and 
(7.14), are similar to WTR's appearing in Lee's 
work,12 although in the present instance more bare 
vertices have been included. Equation (7.19) and the 
WTR's obtained by applying the exchange symmetries 
(7. 6), (7. 13), and (7. 18) are new, however, and indige­
nous to the massive Yang- Mills theory. 

Incidentally, WTR's similar to those presented above 
may be derived, in principle, without specializing to 
the SU(2) case or identifying the fields with charged 
and neutral particles. A generalized Lee theorem 
similar to the one in Sec. 6 has been proved by the 
author for the SU(n) massive Yang-Mills theory. 
However, additional terms appear on the right-hand 

0-, q;: pl+p 
p, k 

0~ 
fL, p 

v, p'+P 

FIG. 11. The form of diagrams omitted from 
the correct vertex U""l'vJk;p' + k,p). 
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side of the analog of Eq. (6.3), and these complicate 
the WTR's among the total vertices. Therefore, only 
the simple, easily interpreted 5U(2) case has been de­
scribed here. 

The method employed and the WTR's derived above 
constitute the major results of this work. The re­
mainder of the paper consists essentially of an appli­
cation and a discussion of Some related problems. 

8. FORMAL RENORMALIZATION 

A. Introduction 

As an application of a general Ward-Takahashi rela­
tion, a Ward identity shall be derived in the next sec­
tion. Here, some preliminaries are presented; it is 
necessary to develop the conditions which formally 
determine the renormalization constants. 

The total propagator and vertices satisfying Ward­
Takahashi relations were discussed in Sec. 7. Theyal­
ready contain renormalization counter terms, and they 
become the renormalized propagator and vertices 
when specific values are chosen for the constants Z, 
Z1> and Z2' The conditions used to evaluate renorma­
lization constants are always partly conventional, and 
this is expecially true in the present case, since the 
physical system described by the massive Yang-Mills 
theory has not been specified. For definiteness, phy­
sical conditions shall be imposed which are analogous 
to the ones appearing in spinor electrodynamics. 

Once the conditions are postulated, the theory is for­
mally renormalized, although it is not yet known 
whether this procedure removes the divergences. 

A new expression for the propagator will prove useful 
in what follows. Note that if Eq. (4.14) is used in Eq. 
(7.3), the result is 

S'-1 = S-1 - n', 
where 

[1~f1(P) :=:0 !lUll (P) + MUll + WVIl (P). 

A little manipulation produces this relation: 

S' = S + S'[['S. 

B. The Mass Condition 

(8.1) 

(8.2) 

(8.3) 

If S'VIl (p) is to be the appropriate renormalized propa­
gator, it must have a pole at the physical mass squar­
ed, that is at m 2, with residue one. 17 More exactly,the 
mass condition shall be expressed by 

(8.4) 

it may presumably be satisfied by a particular choice 
of the renormalization constants appearing in S'uf1(p). 
Equation (8. 3) is then seen to imply 

C. The Wavefunction Normalization Condition 

When the LSZ formalism is utilized to compute the S 
matrix S for the process in which one particle comes 
in with momentum p and polarization A and goes out 
with momentum P' and polarization A', the result is 

S(p', A';P, A) = 2P o<\,,,6(p' - p) 

+ [lOA' (P')/(211) 3/2 ]S;J-(P')S' 01' (P)SpI11 (p) 

X [El(p)/(211)3/2]6(P' - Pl. 

But with proper normalization and the conventions of 
Appendix A, 

(8.6) 

must hold for physical states. Hence the condition 

lOA' (P)S~;(P)S'OP(P)S;;1l1(P)El(P) p2-->m 2 ) O. 

When Eqs. (8.3) and (8.4) are taken into account, this 
becomes 

D. The Charge Condition 

Consider the matrix element 

(8.7) 

where Ip, A) in and Ip', A') out are single-c~arged par­
ticle in and out states, respectively, and a in (q, A") 
creates an incoming neutral particle. In Appendix B 
it is shown that when the neutral particle operator is 
contracted out and the motion equation of the neutral 
field is used, this matrix element becomes 

- i 1 dxe-
iqx E~I/(q)out(p, A!U)X) - (2-1) 

x m 2Ap (x)]1 P,A)in 

p E~,(P') , E~ (p) , 
= £ AI/(q) (211)3/2 TpVf1 (p ,p) (211)3/2 6(p -P -q), 

(8.8) 

where J differs from the total "electromagnetic" 
current ~nly by an additional divergence. Therefore 

Q being the total" electromagnetic" charge operator. 
When the limit q ---) 0 is taken in Eq. (8. 8), and the 
equation 

3 
"p( o() flo 
L, 10 A 0)10 A 0 = - g 
1\-1 

(see Appendix A) is used to remove the £1\1/1'(0) fac­
tors, the following relation is discovered: 

- i21T<SI(0)out(p',A'!Qlp,A)in 

= - i(Z - 1)1 dx out(p', A/IAo(x)lp, A) in 

+ [E~, (p')1 (211) 3/2] To Vf1 (p, p)[ < (P)/ (211) 3/2] 

X 61 (0)6(p' - p), 

in which the one-dimensional delta function has been 
denoted by 61 (0). The matrix element of Ao(x) ap­
pearing above may be expressed in terms of T OV~ by 
reversing the contraction procedure; the result is 
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J dxout(p',,\'\Ao(x)\p''\)in = (21T)45 0p (0) 

x [E~' (P)/(21T)3/2J1;J01 (P, p)[ E~ (P)/ (21T)3/2 

X 61 (0) O(p' - p) 

= (i/rn2)[ E~(P)/(21T)3/2] TOvfl(P,P)[ E~(P)/ (21T)3/2] 

X 01(O)O(p' -- pl. 

Therefore the matrix element of the charge operator 
becomes 

- i2ITout (p','\' \Q \p,,\) = z[ E~'(P)/(27T)3/2] TOVfl(P,P) 

X [Ei(p)/ (27T)3/2]o(p' - p). 

Now by analogy with spinor electrodynamics, \P,A). 
. d ln 
IS assume to be an eigenstate of Q; specifically, 

Q \p,;\) = g\p, ;\). (8.9) 

But by the definition of the 5 matrix and Eq. (8.6), 

So, finally, the condition 

E~(P) TOVfl(P,P)E~(P) p2~ m 2"- iZ-1g(27T)42Poox,\ 
(8.10) 

is reached. 

Equations (8.5), (8.7), and (8.10) are the conditions 
from which the three constants Z, Z l' and Z 2 may in 
principle be determined. 

9. A WARD IDENTITY 

A. Derivation 

The function T v (p' ,p) introduced in the previous sec­
tion is the surri Jf all diagrams with the general form 
shown in Fig. 5. However, some of these diagrams do 
not contribute to the expression on the left side of 
condition (8.10). For example, consider Fig.6b. The 
sum of all diagrams of this type is, in accordance with 
the Feynman rules, 

v (p' p)5'S a(p)w (p) 
pus ' all ' 

(9.1) 

and the mass condition (8.5) implies 

so that Fig. 6b does, in fact, not enter into condition 
(8.10). Similarly, it is seen that all diagrams with 
corrections to the external charged lines may be ne­
glected. 

The same is not true of corrections to the external 
neutral line, because the neutral momentum is not on 
the mass shell. These contributions must be evaluat­
ed and included. They have the form shown in Fig. 12, 
and their sum is 

p,q=p'-p , , , 

~ 
.. A .. II, p'-___ --'=--_- fL, P 

FIG. 12. The form of the external 
neutral line correlations to the 
trilinear vertex V'rUr(p',p). 
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n 'pB(q)5' B a(q) V'au II (p', Pl. 

As a consequence of the above considerations and the 
definition of V~VI1 as the complete vertex function, it 
is possible to write 

<! (p)T Ou II (p, P)E ,\1I(p) == E,\~ (p)[ V'OUII (p, p) 

+ n'OJ3(O)S'Ba(O)V' 'XUJ.l(P,P)]EAIl(p) 

if p2 = m 2 • But the expression for S'UI1, Eq. (8.1), and 
the definition of n'UIl' Eq. (8. 2), together with the form 
of nUll' Eq. (7. 5), may be utilized to find18 

i (ZZ )-1 
5'Ba(0) == __ 2 gSa 

(27T)4 m 2 ' 

and 

n' 8a(0) =: i (27T)4 (ZZ2 - 1) rJl2gscx' 

Therefore 

c/ (p)T Ou II (p, p)E !(p) == (ZZ 2)-1E / (p) V'ou 11 (p, p)E !(p). 

(9.2) 

At this point, the WTR for V'p u II is applied. In Eq. 

(7.9) let p approach P'j the result is 

(9.3) 

From conditions (8.4) and (8.5) and Eq. (8.1), it is in­
ferred that 

5'-1 == 5 -1 + O[(p2 - 117 2)2], 
so 

a c -- 5'-1 (p) = - 5-1 (p) + O(p2 - m 2). app UI1 app UI1 

When this is inserted into Eq. (9.3) and it in turn is 
used in (9.2), the relation 

E A,U(p)T Ou J.I (p, p)E "Jl (p) = - i g(27T )4Z-1Z 1 Z~2 2poO A' A 

is found at p2 = m 2• The last step is to use this for­
mula with condition (8.10) and arrive at the following 
Ward identity: 

Z 1 Z22 = 1. (9.4) 

B. General Comments 

The standard Ward identity of spinor electrodynamics 
states that Z 1 is the same as Z2; Eq. (9. 4) is a dif­
ferent relation. The difference has its origin in the 
fact that, unlike the photon, the neutral particle in the 
present theory has a finite mass, so the charge con­
dition imposed here, Eq. (8.10), involves an off mass 
shell amplitude. Such is not the case in the analogous 
spinor electrodynamics derivation, because a q = 0 
photon is still on its mass shell. 

The discrepancy between the usual Ward identity and 
the result above prompts a discussion of the distinc­
tions between the present development (which is adopt­
ed from Nishijima 11) and the usual textbook presen­
tation of renormalization constants. The two attitudes 
may be characterized as follows: (a) In the standard 
approach, the constants Z 1 and Z 2 are primarily ver­
tex and propagator renormalizersj their values are 
chosen by requiring that divergences be removed from 
the theory; (b) according to the method utilized in 
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this paper, physical quantities, i.e., the coupling con­
stant and field operators, are renormalized, and the 
renormalization constants are evaluated with physical 
conditions such as equations (8.4), (8.6) and (8.9). 

Whichever way the Z's are defined, the Ward identity 
then follows from the appropriate WTR. Approach 
(b) has been used here because it is not yet known 
how, or even whether, divergences may be removed 
from the massive Yang-Mills theory by simple ver­
tex and propagator renormalizations, so the Z's can­
not be evaluated in accordance with method (a). Such 
considerations do not prevent the formal imposition 
of physical conditions, however, which is the essential 
step in method (b). 

If Z 1 and Z 2 had been assumed to be vertex and pro­
pagator renormalization constants, as in (a), the ques­
tion of evaluation having been temporarily ignored, 
the standard Ward identity would have been recovered. 
In this sense, (a) and (b) lead to different Ward iden­
tities in massive Yang-Mills theory, in contradis­
tinction with the spinor electrodynamics case, where 
both methods yield the same result. The difference 
is due, of course, to the nonvanishing mass of the 
neutral particle. 

The new Ward identity has a simple meaning in con­
nection with the relation of Q to the I-spin generator 
T 3' The three conserved charges Qa' a = 1,2,3 
(Q3 = Q), corresponding to the currents which act as 
sources of the Da~ fields have commutators that may 
be computed from the canonical rules associated 
with Lagrangian (4.1) (recall that the charged and 
neutral fields are related to the D/ fields as describ­
ed in Sec. 2). These commutators turn out to be 

Since the generators of I-spin transformations Ta 
have the commutators 

it is possible to put 

or, because of the Ward Identity, Eq. (9. 4), 

In particular, 

(9.5) 

which is analogous to the usual relation between the 
charge and I-spin operators in an SU(2) theory with­
out baryons. 19 

It follows that assumption (8. 9) is equivalent to 

i.e., the "positively charged" particle state is the 
T3 = 1 member of an I-spin multiplet. Similarly, the 
"neutral" and "negatively charged" free particle states 
may be shown to be eigenvectors with T 3 = 0 and 
T3 = - 1, respectively, so they complete the T = 1 
multiplet. 

Equation (9.5) and its consequences are not unexpect­
ed; they merely show that the analogy with spinor 
electrodynamics, introduced to motivate the renormal­
ization conditions, is maintained throughout these 
formal manipulations. 

10. DISCUSSION 

A. Field Ordering 

Equation (7.4) must, of course, be true in each order 
of the perturbation series for llv~' This has an inter­
esting consequence in lowest order. The lowest-order 
neutal self-energy contribution must be constructed 
from the diagram in Fig. 13 according to DeL 4 
in Sec. 6; otherwise, Corollary 2 is inapplicable and 
Eq. (7.4) is not satisfied. The resulting diagrams are 
shown in Fig. 14. Diagrams of the type in Fig. 14b shall 
be called leafs. 

Leaf diagrams do not appear in the usual Dyson-Wick 
expansion of the S matrix, because contractions of 
two fields at the same space-time point are not usually 
allowed. But their presence seems desirable, since it 
simplifies the self-energy expression. EI-Ghabaty 
et al. 20 have also noticed, in another context, that the 
inclusion of leaf diagrams leads to simplifications. 

The modification of the traditional procedure necessary 
to produce these diagrams is minimal. One must only 
allow the time ordering operation in the interaction 
representation expansion of the S matrix to order the 
fields within each interaction Hamiltonian as well as 
the Hamiltonians themselves. The order of products of 
fields having the same time argument is then defined 
to be the limit of the time - ordered product of the fie Ids 
at different times as the times become equal. 

This prescription, in principle, also produces the diagram 
in Fig. 13 as part of the amplitudes in addition to the 
leaf diagrams; but a simple calculation shows that the 
expression for this diagram vanishes. The analogous 
diagram appearing in spinor electrodynamics when 
the new ordering rule is applied may be Similarly 
disposed of, so that well tested theory remains un­
altered. 

B. Divergences 

It is not yet known whether the renormalization con­
ditions of Sec. 8 remove the infinities from the theory. 
Although determinations of degrees of divergence by 
direct power counts seem to preclude this possibility, 
several papers have shown that power counting is 
misleading, 8,3, 21 so the subject is far from closed. 

In many investigations of renormalizability, propaga­
tors less divergent than DV~(p), Eq. (4.12), are pro­
duced by introducing scalar fields in the Lagrangian. 2 -4 

However, some of the single loop results thus found2 , 3 

0-------1-'-
FIG. 13. Primary diagram from which lowest order con­
tributions to n v ~ (p) are constructed according to Dei. 4. 

(0) 

11---0---1-'-
FIG. 14. The lowest-order contributions to Ilv r (p) (the 

charged and the neutral particle self-energy). 
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may be reproduced in a less sophisticated way with 
Lagrangian (4.1), by writing DU ~ as t..he sum of a more 
convergent propagator, for instance DUll, where 

_ i gUj.J _ (pUpll/ p2) 
DUll (p) = - -- z:l------

(21T)4 p2 - Zm 2 + iE 

and a correction oDu II. Then, when the external states 
are physical, it is found that while there are extra ex­
pressions in the amplitudes due to the oDVIlS, no term 
is more divergent (by power count) than the self­
energy in spinor electrodynamics. The only inputs 
needed to show this are the bare WTR's in Sec. 5. 
Therefore it is a matter of taste whether the extra 
terms are interpreted as loop diagrams for scalar 
particles or the consequences of an attempt to re­
write things such that the correct degrees of diver­
gence are manifest. In fact, Wong22 has reproduced 
a special case of Veltman's single loop Generalized 
Ward identity3 without recourse to scalar fields in 
the Lagrangian. It is not clear that the agreement is 
maintained for multiple loop diagrams; but evidently 
spurious scalars might be unnecessary elements in 
any proof or disproof of renormalizability. 

More recently, 't Hooft4 has developed a massive 
gauge theory based on the Yang- Mills Lagrangian, 
which appears to be renormalizable. However, the 
modifications introduced are sufficiently drastic that 
no conclusion can be drawn about the renormaliz­
ability of the simple Yang-Mills theory discussed 
here. 

The developments in this paper are expected to be 
useful in proving the theory much less divergent than 
it appears. For example, it may be shown from the 
Theorem and Corollary 2 in Sec.6 that the pupll/m2 
terms in the neutr al particle propagators can be dropped 
when physical amplitudes are computed. Although 
this fact does not completely explain the low orders 
of divergence found by Veltman3 or by Glashow,21 it 
illustrates one way WTR's reduce the number of in­
finities. 

That the WTR's found here are valid off the mass 
shell could prove important. For instance, Eq. (7.4) 
means the pUpll/m 2 terms of any propagator joined to 
a self-energy diagram may be omitted. Hence inter­
nal lines with self-energy bubbles do not contribute as 
many powers of the momentum as would otherwise be 
expected. Furthermore, by an actual calculation of the 
second order self-energy, the author has found that 
even off the mass shell it is only as divergent as its 
spinor electrodynamics analogue. From these obser­
vations, it is inferred that certain double loops, those 
which consist of loops on the internal lines of other 
loops, are also no more divergent than their spinor 
electrodynamics counterparts. 
The results mentioned in the last two paragraphs shall 
be discussed in more detail in a future paper, along 
with other matters related to the divergence question. 
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APPENDIX A: CONVENTION8-LSZ FORMULAS 

The free field expansions corresponding to £, F' Eq. 
(4.2), are 

AIl(X) = (21T)-3/2 J dk e(k o)0(k 2 - m2)~,\EAIl(k) 

x [a(k, A)e- ikx + a+(k, A)e ikx), 

BIl(X) == (21T)-3/2 J dk e(k o)0(k 2 - 11l2)~AE,\~(k) 

x [b(k, A)e- ikx + d+(k, A)e ikx ], 

where the three vectors EAIl(k), '11.== 1,2,3, satisfy 

kf1E~(k) = 0, whenk 2 = 111 2, 

~A E~(k)E~ (k) = -[gil U - (k ilk U / m2)], 

g~uE~(k)E~'(k) = - 0AA" 

and the creation, annihilation operators have these 
nonzero commutators 

(a (k, A), a ' (k', A')) = (b (k , A), b + (k ' , A') 

= (d(k, A), d+(k', A'» == 2k oOn,o(k - k'). 

With the standard LSZ procedure, the S matrix ele­
ments, minus contributions from processes that do 
not involve true scattering, are found to have the form 

Jdx(- i)[EIl (Pl)/(21T)3/2]eiPIX K (x)··· 
Al ~ ex 

x J dz(- i)[E~ (P3)/(21T)3/2]e iP3ZKpy(z)'" 
1 

X (0 I T(B ex(x)· •• B,B (y ) ••• A Y (z)· .. ) I 0) , 

where 

(A1) 

In and out states correspond to the factors in the above 
expression according to Table 1. 

A reference to Eq. (4. 9) and integrations by parts 
lead to this alternative form of the S-matrix elements: 

x (~e'Plx •.. r ~e'P2Y ••• (~e'P3z •.. 
. (21T)4 (21T)4 ~ (21T)4 

x (01 T(Ba(x) ... Bi/3(y) ... AY(z) ••. )10). 

The T functions introduced in Sec. 7 are now seen to 
be given by 

T~ ... U'" p'" (Pt·· .P2·· .P3··· )o(~Pin - ~Pout) 

= S~1(,(P1)' .• S}S(P2)" .S~~(P3)' •• 

x r ~eiPIX ••• I~eiP2Y ..• r~eiP3Z ..• 
. (21T)4 (21T)4 ~ (21T)4 

X ( 0 I T(B 0(X) • •. B + 0 (y). .. A Y (z) . .• ) I 0) • 
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TABLE 1. 

b partic Ie (charge + g) 
with momentum p 

d particle (charge - g) 
with momentum p 

a particle (neutral) with 
momentum p 

out state in state 

For reference in the text, it is noted here that the 
momemtum space propagator S'VJ1(p) is expressed in 
terms of time-ordered Wightman functions by 

S'VJi(p)6(p' - p) = I~ j -~eiP'XeiPY 
(21T)4 (211)4 

X (0 I T(Bv(x)B +Ji (y)) I 0) 

J ~ J ~ eip'xeiPY 
(211)4 (21T)4 

x <01 T(AV(x)AJ1(y) I 0). 

APPENDIX B: MATRIX ELEMENTS OF THE CUR­
RENT 

Suppose just one neutral particle in operator is con­
tracted out of an arbitrary amplitude. According to 
Appendix A, the result is 

(2IaIn(p,A)Il) =-i jdx[E,P(p)/(21T)3/2]e-iPxKJiv(X) 

x (2IA
V
(x)ll). 

The remaining in and out operators are contained in 
the state vectors 11) and 12) . 

Since the definition of KJiv(X), Eq. (AI), implies 

K (x)AV(x):== oVA + m 2A" t1 v ./ V ~ ~ 

+ iZlZ;}g?v(B~BIJ - B~Bv), 

the field equations derived from Lagrangian (4. 1) may 
be used to find 

KJ1v (x)AV(x) = JJ1 - (Z - 1)m 2AJi 

+ iZ1Z;}grJU(BbBJi - B~Bv) 
or 

(Bl) 

where JJ1 is the "electromagnetic" current given by 

JV = iZlZ;ig(B~BJ1V - BI'B+IJv) 
and 

J :== J + iZ Z-lgoV(B+B - B+B ) 
J1 IJ 1 2 v IJ J1 v· (B2) 

When Eq. (B1) is applied, the matrix element above is 
transformed into 

(2Iain(p, A) 11) = - i J dx[ E "IJ(P)/(21T)3 / 2]e- iPx 

x (2[JIJ-(Z-1)AIJ111). (B3) 

APPENDIX C: CONSTRUCTION OF NEUTRAL SELF­
ENERGY DIAGRAMS 

Consider the primary diagram in Fig. 15. Two of the 

configurations from which it may be constructed are 
shown in Fig. 16. 

In this appendix, the configurations in Figs. l6a and 
16b shall be denoted by 

(CIa) 

and 
(Clb) 

respectively, Le., the all inclusive symbol c introduc­
ed in Sec. 6 shall be replaced here by explicit indices 
corresponding to the relevant external line branches. 
These additional indices appear on the left of the 
semicolons in the expressions (CIa) and (Clb). For 
the purpose of Appendix C it is not necessary to dis­
play all the external momenta. 

The Feynman rules summarized in Sec. 4 may be used 
to find a momentum space function associated with 
Fig. 15. In terms of the expressions defined above, the 
result may be written in either of two equivalent ways: 
omitting numerical factors, they are the following: 

and 

j dql j dq2 DOI02(ql)Ga2alil;8 cx(Q2)D
cx8

(Q2). (C2b) 

When step two of the prescription given in Sec. 7B is 
followed, the secondary diagrams obtained from Fig. 
15 are seen to be those shown in Fig. 17. 

There is only one way to attach a neutral line to the 
left hand loop in Fig. 15, and Fig. l7a shows the re­
sulting diagram. According to Def. 4 in Sec. 6 and the 
definition of Ga a . Bcx(Ql)above, the appropriate 

2 l' 

(0) 

(3 .~V~. 

FIG. 15. The primary diagram from 
which self-energy contributions are 
constructed in Appendix C. 

(b) 

:2\/~ 
fL, p 

I 
I 
I 

0, ql {3 I • o,q2 

FIG. 16. Two of the configurations comprising the primary diagram 
in Fig. 15. In the text they are denoted by (a) G . 1 (ql) and (b) 
G

02 0
1

1';Ba(QZ). °2°1
,) ex 

(0) 

!I, p-----cx::::>- --J1-, P 
ql q2 //lI,p 

,-

~~~---fL'P 
ql q2 

C:X:;X::. - --- fL, P 
ql q2 '-" 

'v,p 

FIG.17 The secondary diagrams derived from Fig. 15 in accordance 
with the construction procedure illustrated in Appendix C. See ex­
pressions (C3) and (C4) for the relevant momentum space functions. 
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symbol for the left-hand loop in Fig.17a is 
Go 0 ·)ql' pl. Therefore, interpretation (C2a) of Fig. 

2 l' 

15 implies that a correct expression for the diagram 
in Fig. 17a is 

~~!)(P) '= f dqlf dq2G0201;v(ql,P)D01b(q2 + p) 

X V/l oy (Q2 + p, q2)DY 02(Q2)' (C3) 

Similarly, Def. 4 in Sec. 6, together with the definition 
of Goa'" 8 a(Q2) above and interpretation (C2b) of 

2 1 ... • 

Fig. 15, implies that the three diagrams in Fig. 17b 
sum to 
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The generalized quantum field theory which follows from Lagrangians containing arbitrarily high-order deri­
vatives is formulated in an indefinite metric space. 'Particular attention is given to conservation laws and 
canonical commutation relations. The Heisenberg equations of motion are derived. 

1. INTRODUCTION 

Because of problems encountered by quantum field 
theory associated with short distances, several theo­
ries have been proposed which are nonlocal over 
small space-time regions. Particularly promiSing 
are those similar to the generalized electrodynamics 
of Podolskyl and BOpp2 and the generalized meson 
field theory of Green, 3 in which the nonlocality re­
sults from the presence of higher-order derivatives 
in the field equations. In the present work we will 
concentrate on the mathematical properties of higher­
derivative nonlocal theories. The formalism we de­
velop can be shown to have a physical interpretation 
in terms of the form factors of particles. 4 

Higher-order field equations of the type we shall dis-
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cuss were first introduced in order to remove cer­
tain inconsistencies which arose in the traditional 
treatments of classical electrodynamics and in the 
early attempts to develop a quantum electrodynamics. 
When the use of propagator cutoffs and infinite-re­
normalization techniques produced a successful quan­
tum electrodynamics, interest in higher-derivative 
field theories temporarily subsided. 

However, if the same renormalization procedures are 
applied to other problems, such as those involving 
strongly interacting particles, they cannot always re­
move the infinities and divergences which beset many 
of the theories. For this reason a number of more 
recent works 5 have made essential use of higher­
derivative fields or the resulting regularization6 or 
indefinite-metric-space methods. It is therefore use-
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ful to develop a rigorous mathematical framework 
for use in such applications. 

The prototype equation for the generalized field the­
ory we shall discuss is the field equation of Podol­
sky's electrodynamics1: 

(1 - D/m2)DAIl "" 0, (1. 1) 

where we use the notation 

o = all all = v 2 - Utt, 'Ii = c = 1. 

This equation was also proposed by BOpp2 and ap­
pears in later treatments 7 of the electrodynamics 
suggested by Lande. 8 The classical theory of genera­
lized electrodynamics was quantized by Podolsky and 
Kikuchi,9 while Montgomery10 and Greenll investi­
gated the consequences of the theory.12 

The generalized meson field equation 

(1. 2) 

was proposed by Green,3 who later extended it to the 
more general form 13,14 

r D (1 - Q.)] (0 - mi)<P1l "" O. (1. 3) l!-2 m~ 

It is the mathematical treatment of equations of this 
type which is the major concern of the present inves­
tigation. 

The mathematics used to treat these higher-deriva­
tive field equations is based on the generalized clas­
sical mechanics of Ostrogradsky.15 The formalism 
was extended to include continuous-field equations by 
the above authors and also by Chang16 and de Wet. 17 

The development of generalized field theory which we 
will present in Sec. 3 will be more general than these 
early treatments in a number of ways. First, the for­
malism will be valid in indefinite metric spaces (dis­
cussed in Sec. 2), in which the norm of a vector can 
be positive, negative, or zero. There will be a detail­
ed treatment of such topics as the derivation of con­
servation laws, the relation between spin and statis­
tics, and the derivation of the generalized Heisenberg 
equations of motion. In Sec. 4 the formalism will be 
compared with similar discussions, particularly 
those by Misra 18 and by Barut and Mullen. 19 

2. INDEFINITE METRIC SPACES 

When higher-order field equations are quantized, it is 
often convenient, and sometimes necessary, to use an 
indefinite metric state space. For this reason we 
briefly review those mathematical properties of in­
definite metric spaces which we will need later. Ad­
ditional material and further references are given by 
Pandit20 and Nagy 2 1 and by several of the authors in 
Ref. 5. 

The use of an indefinite metric state space in quan­
tum field theory was suggested by Dirac22 and dis­
cussed in detail by Pauli. 23 In such a space the norm 
of a function lJ; is given by 

(2.1) 

or, in simpler notation, 

11lJ;11 = (1JI11111J1). (2.2) 

The metric operator 11 is chosen to be Hermitian, 

(2.3) 

where the asterisk (*) denotes complex conjugation, 
and the inverse 11-1 is assumed to exist. Here the 
vectors (1JI I and I x) have the usual complex scalar 
product and thus the basis vectors of the space can 
be chosen to be orthonormal: 

(2.4) 

The eigenvalues of 11 are not required to be pOSitive, 
so that the norm of a vector can be positive, negative, 
or zero. 

We will find it more convenient to work with the inde­
finite metric basis vectors (i \ and \ j ), which are 
usually chosen to be related to (i \ and I j) by 

(2. 5) 

We will make the more specific choice 

(il=(i\7), Ij) = Jj). (2.6) 

In an indefinite metric space the adjoint (or pseudo­
Hermitian conjugate) A * of an operator A is defined 
by 

(1JIIAlx)* = (xIA*IlJ;). (2.7) 

It is generally not the same as the Hermitian conju­
gate At, defined by 

since the two are related by 

A* = 7)-lA t7). 

(2.8) 

(2.9) 

An operator is said to be self-adjoint, or pseudo­
Hermitian, if it satisfies 

H =H*, 
or 

H = 11-1Ht7). 

The adjoint has the property that if 

Ala)""ala), 
then 

(aIA* = (ala*. 

(2. 10) 

(2. 11) 

(2. 12) 

(2. 13) 

Thus, if H is a pseudo-Hermitian operator with eigen­
values hand h I corresponding to eigenvectors \ h) and 
I h'), then we have 

(h* - h') (h Ih') = O. (2. 14) 

In many cases of interest we will find that although 
(h I h) can be either positive or negative, it will not be 
zero. It then follows that all eigenvalues of Hare 
real and eigenvectors corresponding to unequal 
eigenvalues are orthogonal. Therefore, pseudo-Her­
mitian operators with no zero-norm eigenvectors 
have the familiar properties possessed by Hermitian 
operators in a positive definite space. 
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If the pseudo-Hermitian operator H has eigenvectors 
of norm zero, the corresponding eigenvalues can be 
complex. However, the expectation value, defined by 

(H) = (l/IIHll/I), (2. 15) 

is real, since 

(H)*:= (l/IIHll/I)* = (l/IIHll/I) = (H). (2. 16) 

If Ih) is an eigenstate of H with complex eigenvalue, 
then we must have (h Ih) = O. Hence the expectation 
value of H with respect to a state with a complex eig­
envalue is always zero. 

In an indefinite metric space the transformations of 
greatest interest are pseudo-unitarity: 

A' = UAU*, 

Il/I') = ull/I), 

where the pseudo-unitary operator U satisfies 

U*U := UU* = 1 
or 

(2. 17) 

(2. 18) 

(2.19) 

Probability is conserved under pseudo-unitary trans­
formations since eigenvalues and scalar products 
preserve their values. 

With this brief review we now proceed to discuss 
higher-derivative field equations. 

3. QUANTUM DYNAMICS 

Quantum field theory involves both the vector-space 
formalism of the preceding section and the equations 
of motion and commutation relations for specific 
dynamical systems. We shall now develop the mathe­
matical formalism of higher-derivative fields based 
on the usual quantum dynamics of local fields. 

The use of higher-order-derivative Lagrangian densi­
ties provides theories which differ mathematically 
from the quantized theory of local fields in two res­
pects. First, the higher derivatives add mathematical 
complications for both classical and quantized fields. 
Second, such theories sometimes, but not always, re­
quire the use of an indefinite metric state space for 
quantization. Because of these differences, we must 
redevelop the basic formalism of quantum dynamics. 

Perhaps the best discussion of the quantum dynamics 
of local fields is found in the papers of Schwinger. 24.2 5 

Prior to the work of Schwinger the usual procedure 
was to develop a classical field theory and then quan­
tize it by introducing commutation (or anticommuta­
tion) relations. Schwinger, however, used quantized 
fields throughout and derived the commutation rela­
tions, rather than assuming them. This procedure is 
especially important in nonlocal field theory since 
many of the problems of interpretation center around 
the commutation relations. Since we can see preCise­
ly what assumptions are being made, we will know to 
what extent the theory can be modified, if necessary. 

Although there have been a number of discussions of 
higher-order-Lagrangian field theories, only a few 
have followed Schwinger's approach. In particular, 
Misra 18 extended Schwinger's work to include higher 
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derivatives, and Barut and Mullen19 assumed an inde­
finite metric space and also derived the generalized 
form of Hamilton's canonical equations. For reasons 
discussed in Sec. 4, their treatment differs from ours 
except for the initial definitions. However, their 
papers will serve as a useful guide since certain 
parts, notably those corresponding to our Eqs. (3. 10)­
(3.14), require little or no modification. Wherever 
practical, we shall use their notation, which is an ex­
tension of that used by Schwinger. In contrast to the 
work of Barut and Mullen, our results will be consis­
tent with those of the authors discussed in Sec. 1, in­
cluding the more recent works. 5 

Schwinger bases his development on the basic postu­
late that the operator 0 W which generates infinitesi­
mal transformations is obtained by variation of the 
action integral 

(3. 1) 

where a1 and a2 are spacelike space-time surfaces 
and £ is the Lagrangian density operator, or La­
grange function. Schwinger assumes that the space 
is positive definite and also that £ is a function only 
of a field operator ¢ (x) and its 4-gradient ¢,.. = 
a,.. ¢(x) := acpjh"'. We shall relax both of these re­
strictions by allowing the possibility of an indefinite 
metric space and also by allowing .£ to depend on de­
rivatives of arbitrarily high order, designated by 

(3.2) 

The vectors of the indefinite metric space describing 
the states of the system are 

(3.3) 

where ~ i represents the eigenvalues of a complete 
set of commuting operators ~ on the space-time sur­
face a l' We are using the notation of the previous 
section, so that the rounded brackets indicate an inde­
finite metric. 

The variation of a vector is defined by 

(3.4) 

where Iti(1) differs from Ig(1) by an infinitesimal 
pseudo-unitary transformation 

in which F(a1 ) is self-adjoint, or pseudo-Hermitian. 
Then 

and 
ol~lal) :=-iF(a1)1~].al) 

o(~J.all = (~].alliF(al)' 

so that 

(3.6) 

(3.7) 

o(Hall~2a2) = i(;ia11[F(a1) -F(a2)]1~2a2)' (3.8) 

Our fundamental assumption is that F(a1 ) - F(a2 ) is 
the variation of the operator W12 defined in Eq. (3. 1). 
Thus the variational principle is 

o(~i all ;2( 2) := i(;]u11 [F(cr1) - F(cr2)]1 ~2(2) 

:= i(g all oW12 1 ~2(2) (3.9) 

°1 

:= i(g all 0 f d 4 x£ I ~2(2)' 
°2 
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Since F is self-adjoint, £ must be also. This result 
differs from that of Barut and Mullen19 for reasons 
we will discuss in Sec. 4. 

Next we carry out the variation of the action integral. 
We break the variation into two parts: 

OW12 = 1°1 d4xoo£ + (1 - J )daJloXJl £. (3.10) 
02 0 1 °2 

The first term is the variation 00 W12 , which leaves 
the value of £ fixed on the boundary surfaces, while 
the second results from a displacement ox Jl of the 
boundary surfaces. By defining 

1 a£ 
LJl(n) =, "6 -a-- , 

n. permutations of Jl(n) ¢/l(n) 
(3. 11) 

the variation of £(¢, ¢Jl' ... , ¢/l(N») may be written 

N a£ 
00£ = "6 ~ 00¢Jl(n) 

n=O 'I'/l(n) 
N 

= "6 (- 1)n aJl (n)£I1(n)00¢ 
n=O 

(3. 12) 

where 
N-n 

rrfl(n) = "6 (- l)maA(m)LJl(n)A(m). 
m=O 

(3. 13) 

In the expression for 00£, the order of the operators 
cannot be changed. However, we will follow Schwin­
ger24 by assuming that identical contributions are 
obtained from terms which differ only in the position 
of 0o¢. By substituting Eq. (3.12) into Eq. (3.10) and 
using Gauss' theorem, we see that if oW12 vanishes 
for variations in which ¢(x) is held fixed on the boun­
dary surfaces, the Euler-Lagrange equations result: 

N 

"6 (-l)nafl(n)£I1(n) = O. 
n=O 

(3. 14) 

Also the generating function is found to be 

F(a) = J dafl (£OXfl + n~~ 7T fJT (n)a T(n)Oo¢)' (3.15) 

The variation o¢T(n) may be written as the sum of 
two terms: 00¢T(n), which is the variation at a fixed 
point, and ¢ vT(n)o X v , which corresponds to an infinite­
simal Lorentz transformation 

OXfl = aJl - EflVXv' 

in which 

(3. 16) 

(3. 17) 

If ¢(x) has some additional transformation proper­
ties, such as vector or spinor character, we symbolize 
these by the component ¢a (x). The variation then has 
an extra term: 

o¢~(n) = oO¢~(n) + ¢~T(n)oxv + tE'XBS~/3b¢~(n)' (3.18) 

For a scalar field ¢(x), we have S~/3b = O. For sim­
plicity we shall suppress the indices a and b on ¢(x) 
and SetS' 

USing 

(3. 19) 

the generating function may now be written 

F(a) = f daJl (£OXJl + n~: rrfJT(n)(o¢r(tI) 

- ¢vT(n)ox v - ~Eet/3SetS¢T(n»)). (3.20) 

Define the quantity 

ft~V = HrrfJT(n)SAV¢r(n) + rrVT(n)SAJl¢r(n) 

+ 7T Ar (n)svJl¢T(n)]' (3.21) 

From 

f
/lAV _ _ fA/lV (3.22) 
(n) - (n) 

we have 

EAvf~;; = ~EAv(f~;; - f~~)V) = ~7T/lT(n)SAV¢T(n)EAV 
( ill. v) A/l v (3 3) = aA f(n)ox v + aAf(n)oxv' .2 

Since, for a sufficiently large surface, 

J daflaA(f~;)vOxv) = 0, 

F(a) can be written as 

F(a) = J dafl(E: rrW(n)o¢r(n) + TflVOX v), 

where 
N-l 

T /lV _ n /lV _ '" ( flT(n)a V,+, + a f/lAU) - ""g L.J rr 'l'r(tI) A (tI) • 
n=O 

(3.24) 

(3. 25) 

(3. 26) 

The important operator Tflv is the stress tensor 
operator, or energy-momentum tensor operator. 
From it we can find the Hamiltonian density operator 

N-l 
JC = T44 = "6 (7T 4T (n)ci> + a fA44) - £ 

tI =0 T (tI) A (n) • (3.27) 

Conservation laws may be found corresponding to in­
variance principles. If the Lagrangian denSity opera­
tor £ is symmetric with respect to some transforma­
tion, then for variations which involve only that trans­
formation we have 

(3.28) 

For example, if £ is Lorentz invariant, then variations 
involving only Lorentz transformations can be written 
in the form 

and 
O¢T(n) = O. 

For this case the operator F(a) is 

Fox(a) = aflPJl(a) + hflVJJ.LV(a), 

where 

pU(a) = J daflTflU 

and 
JflV = J daA MAflV, 

Since OW12 = 0, we have 

(3.29) 

(3. 30) 

(3.31) 

(3. 32) 

(3.33 ) 

(3. 34) 
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PU(Ul) - pU(u2) == ° 
and 

JflU(Ul) - JflV (a2 ) == 0, 

(3. 35) 

(3.36) 

which are the conservation laws for momentum and 
angular momentum. The differential forms of these 
integral conservation laws are 

(3. 37) 

(3. 38) 

which imply that the stress tensor is symmetric: 

(3. 39) 

Conservation laws also result if £ is symmetric with 
respect to some modification of the field. For ex­
ample, the law of conservation of charge is obtained 
if £ is symmetric under the phase transformation 
¢ --'> e iq6A¢; Le., B¢ == - iqB'A¢. The generating opera­
tor is then 

N-l 

F 6A (a) ==-iq 1 dafl ~ 7Tfl T(n)¢T(n)B'A ==Q(a)B'A, 
n~O (3.40) 

where 

Q (a) == 1 dapjfl (3.41) 
and 

N-l 

jJl == - iq ~ 7Tfl T(n)¢T(n)' 
n=O 

(3.42) 

Thus phase invariance of £ implies the conservation 
law for the charge operator: 

(3. 43) 

It should be clear from the above that conservation 
laws and their derivations are essentially the same 
for a higher-order-derivative field theory as for a 
local field theory. 

It should be noted that if two Lagrangian density 
operators differ only by a 4-divergence, 

(3. 44) 

then the same Euler-Lagrange equations result, since 
the action integral operators will differ only by a sur­
face integral: 

"'12 == W12 + (1 -1 )da v p . (3.45) 
01 02 

We shall make use of this ambiguity in the choice of 
£ later. 

Next we derive the commutation relations for the field 
quantities. To simplify notation, we define 

dap == npda, 

where n is a unit vector. We shall abbreviate 
n 7Tfl T (n)flas 7T T (n) and write 

p 
N-l 

7T n¢n == 6 7T T(n)cpT(n)' 
n~O 

(3. 46) 

(3. 47) 

Thus for variations Bx v == 0, which hold the coordi­
nates fixed, the generating operator may be written 

N-l 

F 6¢(a) == 1 dafl 6 7T flT (n)B¢7(n) 
n~O 

== f da7T nB¢n' 
(3. 48) 
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Another form for the generating operator is obtained 
if £ is altered by adding the 4-divergence 

(3. 49) 

We then have 

B 1 davjV == - 0 1 da7T n¢n == - 1 da(7T nB¢n + B7T n¢n), 
(3.50) 

so that 

F(a)== F 67r (a) ==- 1 da¢7Tn¢n' (3. 51) 

In certain cases, it is possible that some of the 7T T (n) 

will be identically zero. These are called "variables 
of constraint," since their Euler-Lagrange equations 
have the form of equations of constraint. 

To obtain the commutation relation for the uncon­
strained variables, we consider the operator G(¢, 7T) 

and its variation B ¢ G: 

Wa\B¢G \ ~"a) == B(~'aIG 1 ~"a). (3.52) 

Since the variation B acts only on the commuting 
operator set ~ on a, we have 

B(~'al G \~"a) == [B(~'al]G 1 ~"a) + (~'ul G[B 1 ~lIa)] 
(3. 53) 

== - i(~'al [G, F 6¢]1 ~lIa), 
so that 

[G,F6¢] == iO¢G. 

Similarly we find 

[G,F67r ] == iB
7r
G. 

(3. 54) 

(3. 55) 

The special cases G == ¢p(k) and G == 7Tfl(k) yield 

[¢p(k)' 1 da7T nB¢n] == iB¢fl(k)' 

[7Tfl(k) , 1 da7T nB¢n] == 0, 

[1 dao7T n¢n,7Tfl(k)] == iB7TJl(k), 

[1 daB7T n¢n' ¢Il(k)] == 0. 

(3. 56) 

In order to make the correct choice of commutation 
versus anticommutation relations, we must examine 
the connection between spin and statistics. Following 
Schwinger,24 we note that for integral spin £ is in­
variant under time reversal, while the sign of £ is 
reversed under time reversal for half-odd-integral 
spin. Recall that in the derivation of the Euler-La­
grange equations it was postulated that terms which 
differed only in the position of Bo¢ would give identi­
cal contributions. Such terms occur with the same 
sign for integral spin and with opposite signs for 
half-odd-integral spin. Thus for the first case Boct> 
must commute with its neighbors while in the second 
case it must anticommute. Thus we have 

1 da'[cpp(k)(x),7T n(x')].B¢n(x') == iB¢fl(k)(X), 

1 da'[7T~(k)(x),7Tn(x')].B¢n(x') == 0, 
(3. 57) 

1 da' [57T n(X')] [ct>n(X'), 7T 1l (k)(X)]± == i57T fl (k)(x), 

1 da'[57T n(X')][¢n(X'), ct>1l(k)(X)]. == 0, 

where 
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[A,B]: = AB ± BA. (3. 58) 

We make the additional assumption that ¢Il(k) and 
7T vr(n) commute (anticommute) unless k = n. Then, 
for x and x' on the same space like surface a, we have 
the fundamental commutation relations 

[ () VT (n)( ')] . "vT(n)"3( ') n v ¢ Il ( k) X ,7T X ± = zn v v Il (k) v X - X , 

( ')] [ AIl(k)() VT (n)( ')1 - 0 
[¢Il(k)(X)' ¢T(n) x ± = nAn V 7T x ,7T X J1 - • 

Here 

T (n) ~ 1 
lill(k) == /0 

if T (n) is a permutation of Jl (k) 

otherwise 

(3.59) 

(3.60) 

and 1i3(x - x') is the three-dimensional delta function. 
From the above we see that ¢IJ(k) and n v7T VT(k) are 
canonical conjugates and also that the usual relation­
ship between spin and statistics holds. The commuta­
tion relations for the variables of constraint can be 
found by writing them as explicit functions of the 
canonical variables. 

Finally we shall find Heisenberg's equation of motion. 
Noting that the last term in the expression for TIJV is 
a 4-divergence, whose integral vanishes, we see that 
pv is given by 

(3.61 ) 

The variation, either 0 ¢ or orr, of the second term 
gives 

( 
N-l ) 

Ii J da v£ == J davofl n~o 7T IlT (n)OT(n}oep 

where we have used the expression for 00 £, Eq. 
(3. 12). Thus 

(3. 62) 

(3.63) 

By substituting pv for G and using the above expres­
sion in Eqs. (3. 59) and (3.60), we find the Heisenberg 
canonical equations of motion: 

oV¢fl(n) = i[¢fl(n),Pv], 

nil OV7TIlT(n) == infJ [7TIlT(n), pv]. 
(3.64) 

For most practical applications it will be convenient 
to choose nil to point in the 4-direction so that 

(3.65) 

and similarly for previous equations. The only one of 
the Heisenberg equations which is usually needed is 
the simplest one: 

i1> = [ep,H], (3. 66) 

where II = P4. 

4. DISCUSSION 

We have presented a treatment of higher-derivative 
fields which follows the quantum dynamics of Schwin-

1 B. Podolsky, Phys. Rev. 62, 68 (1942). 
2 F. Bopp, Ann. Physik 38,345 (1940). 
3 A. E. S. Green, Phys. Rev. 73,26 (1948). 

ger. 24 Application of the formalism and its physical 
interpretation will be given in another paper. 4 As 
noted previously, our results are consistent with the 
work of most authors, but differ from those of Misral8 

and of Barut and Mullen. l9 In this section we discuss 
what we feel are the advantages of our approach. 

The present investigation extends the work of Schwin­
ger to include indefinite metric spaces and higher­
derivative Lagrangians. In both cases the method of 
extension is different from that of Barut and Mullen. 
In our notation, the indefinite-metric-space equation 
AI Q') = 1 (3) and its dual, (Q' IA * = ({31, can also be 
written as A I Q') = I (3) and < Q' 11) A * = < (311) by using 
Eq. (2.6). In place of this last expression, Barut and 
Mullen choose to write < Q' 1 A *1) = < {31'IJ (our notation) 
which is apparently inconsistent. (Note that in their 
notation the adjoint of A is A t, while we follow the 
more common convention of designating it as A * .) 
As a result their variational principle takes the form 

(4. 1) 

In order to obtain the expression in our Eq. (3.9), they 
assume that £ and F are "metrically invariant," i.e., 
they commute with the metric. However, from Eq. 
(2. 11) we see that metrical invariance of a self­
adjoint operator requires the operator to be Hermi­
tian. Since Lagrangians which require an indefinite 
metric are not generally Hermitian, 4 the concept of 
metrical invariance appears to be of limited useful­
ness. In any case, the problems of misplaced metrics 
appear to be avoided in the present work. 

Barut and Mullenl9 also treat the higher-derivative 
fields differently. As a result they obtain different 
expressions for the fundamental operators TIlV and 
F(a) and for any result involving TIlV, F(a), or 7T1l(n). 

Their procedure follows that of Misra 18 and is based 
on the assumption that a derivative of ¢ can be varied 
independent of ¢ itself, but that since ¢ is fixed on 
the boundary surface, derivatives of ¢ tangent to the 
surface are not independent of ¢. Because of this 
they rewrite all 4-gradients in terms of tangential 
derivatives, making their formalism more cumber­
some with no apparent advantages. Their basic for­
mulas therefore differ from those of the other 
authors discussed in Sec. 1. 

We conclude that our treatment has the advantage of 
being a direct extension of the work of Schwinger, 
while avoiding the problems encountered by Barut 
and Mullen involving metrical invariance and tangen­
tial derivatives. We now have all the mathematical 
detail necessary for most applications. Specific ex­
amples and their phYSical interpretation will be given 
in another paper. 4 
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F. Riewe and A. E. S. Green 
University of Florida, Gainesville, FloYida 32601 

(Received 14 February 1972) 

Polynomial-type field equations are shown to have a realistic physical interpretation in terms of particle form 
factors, both for classical fields and for "dipole-regularized" quantized fields. Form factors ariSing from such 
field equations are found to give a reasonable description of the electromagnetic structure of the proton. 

1. INTRODUCTION 

The baSic mathematical formalism required by high­
er-derivative, or "generalized," quantum field the­
ories appears to be straightforward and free from in­
consistencies. l However, when particular higher­
derivative field equations are treated in detail, non­
physical results often appear. 2- 4 Usually the dif­
ficulties relate to negative-energy states and the cor­
responding lack of conservation of probability. It is 
our purpose to show that a generalized field theory 
can be constructed which is mathematically consis­
tent and which has a realistic phYSical interpretation 
in terms of the form factors of interacting particles. 

Our discussion will center around the Nth-order poly­
nomial meson-field equation introduced by Green. 5,6 

We begin by reviewing the procedure for the quanti­
zation of generalized free-field equations for the 
cases in which the roots of the polynomial are real 
and unequal, real and equal, or complex-conjugate 
pairs. We then present a physical interpretation in­
volving particle form factors which eliminates cer­
tain difficulties from classical generalized electro­
dynamics. It is shown that the higher-derivative field 
equation for the interaction of point particles is ma­
thematically equivalent to the usual equations des­
cribing particle interactions characterized by form 
factors. This correspondence is shown to hold for 
scalar source particles ,in agreement with Ueda and 
Green,7 and is extended to the case of spin -i par­
ticles. 

The only quantized higher-derivative theories which 
are generally believed to avoid nonphysical results 
are those involving "ghost particles."8 We will de­
monstrate that the ghost particles can be considered 
to be the intermediate particles characterizing the 
form factors of particle interactions, in contrast to 
the usual assumption that they are physically unob-
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servable. We then test the validity of this interpreta­
tion by comparing the form factors derived from phy­
sically admissible generalized field theories with ex­
periment. We show that the simplest charged -particle 
form factors consistent with generalized field theory 
give a realistic description of the electromagnetic 
structure of the proton. Hence the form-factor inter­
pretation of generalized field theory is both mathe­
matically consistent and physically reasonable. 

2. FREE-FIELD EQUATIONS 

A. General Formalism 

The polynomial free-field equation 

[il (1 - .Q.)~D -m I)<P (x) = 0, 
r-2 m; ~\ (2. 1) 

introduced by Green,5,6 has been frequently discus­
sed for the case in which the polynomial roots my 
(often called "regulator masses" when r > 1) are 
real and unequa1. 9 Hereweareusing 0 = y2 - a2 jat 2 

with Ii = c == 1. Certain more recent "regularized" 
models, such as those of Lee lO and Heisenberg, 11 

involve m 's which are complex conjugates or are 
equal in pairs. Quantization often requires the use of 
an indefinite metric space, as discussed by Nagy. 3,4 

We will now give a brief discussion in which the for­
malism used by Green is extended to include equal 
or complex regulator masses. Our basic purpose in 
this section is to present the mathematical treatment 
of polynomial free-field equations and to show the 
negative-energy difficulties encountered by the phy­
sical interpretation in terms of auxiliary fields. For 
general applications our treatment should be more 
convenient than other discussions 3 ,4 involving speci­
fic models. 

The Fourier solution of Eq. (2. 1) for unequal roots 
can be expressed as a sum of auxiliary fields, 
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1. INTRODUCTION 

The baSic mathematical formalism required by high­
er-derivative, or "generalized," quantum field the­
ories appears to be straightforward and free from in­
consistencies. l However, when particular higher­
derivative field equations are treated in detail, non­
physical results often appear. 2- 4 Usually the dif­
ficulties relate to negative-energy states and the cor­
responding lack of conservation of probability. It is 
our purpose to show that a generalized field theory 
can be constructed which is mathematically consis­
tent and which has a realistic phYSical interpretation 
in terms of the form factors of interacting particles. 

Our discussion will center around the Nth-order poly­
nomial meson-field equation introduced by Green. 5,6 

We begin by reviewing the procedure for the quanti­
zation of generalized free-field equations for the 
cases in which the roots of the polynomial are real 
and unequal, real and equal, or complex-conjugate 
pairs. We then present a physical interpretation in­
volving particle form factors which eliminates cer­
tain difficulties from classical generalized electro­
dynamics. It is shown that the higher-derivative field 
equation for the interaction of point particles is ma­
thematically equivalent to the usual equations des­
cribing particle interactions characterized by form 
factors. This correspondence is shown to hold for 
scalar source particles ,in agreement with Ueda and 
Green,7 and is extended to the case of spin -i par­
ticles. 

The only quantized higher-derivative theories which 
are generally believed to avoid nonphysical results 
are those involving "ghost particles."8 We will de­
monstrate that the ghost particles can be considered 
to be the intermediate particles characterizing the 
form factors of particle interactions, in contrast to 
the usual assumption that they are physically unob-
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servable. We then test the validity of this interpreta­
tion by comparing the form factors derived from phy­
sically admissible generalized field theories with ex­
periment. We show that the simplest charged -particle 
form factors consistent with generalized field theory 
give a realistic description of the electromagnetic 
structure of the proton. Hence the form-factor inter­
pretation of generalized field theory is both mathe­
matically consistent and physically reasonable. 

2. FREE-FIELD EQUATIONS 

A. General Formalism 

The polynomial free-field equation 

[il (1 - .Q.)~D -m I)<P (x) = 0, 
r-2 m; ~\ (2. 1) 

introduced by Green,5,6 has been frequently discus­
sed for the case in which the polynomial roots my 
(often called "regulator masses" when r > 1) are 
real and unequa1. 9 Hereweareusing 0 = y2 - a2 jat 2 

with Ii = c == 1. Certain more recent "regularized" 
models, such as those of Lee lO and Heisenberg, 11 

involve m 's which are complex conjugates or are 
equal in pairs. Quantization often requires the use of 
an indefinite metric space, as discussed by Nagy. 3,4 

We will now give a brief discussion in which the for­
malism used by Green is extended to include equal 
or complex regulator masses. Our basic purpose in 
this section is to present the mathematical treatment 
of polynomial free-field equations and to show the 
negative-energy difficulties encountered by the phy­
sical interpretation in terms of auxiliary fields. For 
general applications our treatment should be more 
convenient than other discussions 3 ,4 involving speci­
fic models. 

The Fourier solution of Eq. (2. 1) for unequal roots 
can be expressed as a sum of auxiliary fields, 
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N 

cP (x) = L; CPy(x) , (2.2) 
y=l 

where 

cP (x) = _1_ J d3k[cp)k)eikyX + (ji)k)e- ikyX], 
y (2n)3 

ky=(k,w y), Wy=(k2+m~)1/2. (2.3) 

Here ky and x are 4-vectors with the scalar product 
kyx = k-r - Wyt. This solution is identical to that 
given by Green 6 except that we have not specified the 
relationship between the field components CPr (k) and 
¢y (k). We will see that the relationship depends on 
whether the regulator mass my is real or complex 
and on whether quantization is carried out in an in­
definite metric space or in the usual positive definite 
Hilbert space. 

The field equation can be derived from the Lagran­
gian density 

.c = ~CP(x) r Q (1- iI.)J(D -mi)cp(x) (2.4) lr-2 m~ 

(or from any .c differing from this by a 4-divergence). 
Paralleling the procedure used by Green to find the 
Hamiltonian H, the expression for the Hamiltonian 
denSity can be obtained from .c,1 integrated, and the 
Fourier solution for cP (x) inserted to obtain 

N 

H = L; H y , 

y=l 

where 

and 

rn 1 N, ( rn ~) Yy=-fl 1--. 
rn~ s=l rn~ 

(2.5) 

(2.6) 

(2.7) 

The prime (') on the product symbol indicates that the 
factor with r =8 is omitted. The Heisenberg equation 
of motion 1 leads to the commutation relations 

(2.8) 

The operators CPy(x) are often interpreted as repre­
senting individual free fields having energies deter­
mined by H y' In this "auxiliary-field" interpretation 
the fields CPr(x) are given the alternative definition 

(2.9) 

which satisfies Eq. (2. 2). The fields then obey the 
equations 

(2. 10) 

which have Fourier solutions given by Eq. (2. 3). Thus 
the two definitions are equivalent. 

Because the fields CPy(x) obey the set of apparently in­
dependent equations (2.10), they are often viewed as 
actually being a set of independent fields. 2 Unfor­
tunately, when calculations are based on this assump­
tion, they yield unphysical results, such as negative­
energy states. In Sec. 3 we will show that for classi­
cal fields the equations are not independent, so that 

the difficulties do not occur. Similarly, quantized 
fields discussed in Sec. 2C have relationships among 
the CPy when the rn yare complex conjugates or are 
equal in pairs. In Sec. 4 we show that these quantized 
fields have a realistic physical interpretation. 

B. Real-Root Polynomial Equations 

For the special case in whi~h all of the rn 's in Eq. 
(2.1) are real and unequal, CPr(k) must be the adjoint 
¢;(k) of ¢y(k) in order that ¢(x) be self-adjoint. [Note 
that if the space used for quantization has an indefi­
nite metriC, the Hermitian conjugate ¢;(k) will not be 
the same as the adjoint cp;(k).J In particular, if the 
masses are numbered such that rn r+ 1 > rn r' then the 
y's alternate in sign: Y y = (_l)r+ll Yr I. Thus for 
even r, the component ¢r(k) obeys "wrong-sign" com­
mutation relations: 

(2.11) 

For odd r the normal commutation relations (with­
out the minus sign) obtain. 

There are two fundamentally different methods which 
attempt to overcome the problem of the wrong- sign 
relations: the formalism originally used by Green6 

and the use of an indefinite metric space suggested by 
Matthews,12 We will discuss each in turn. In the first 
method one defines the annihilation operators 

~12YyWyl1/2CPr(k), oddr, 
ay(k) = ) 

~ 12y rWr 11/2 CP;(k) , even r, 
(2.12) 

In this case ¢(x) can be taken to be Hermitian in a 
positive metric space so that CP;(k) = ¢: (k). 

If we make the usual Simplifying choice to work with 
a single value of k in a space with a countable number 
of degrees of freedom, the commutation relations 
take the form 

(2. 13) 

with all other commutators equal to zero. The Hil­
bert-space states are defined by 

aylO) =0, (010)=1, 

In y ) = (n y !r l/2 (a;)ny 10), 

Inyns" 'n t ) = Iny)lns)'" In t )· (2.14) 

The quantity n 1 is the number of "actual" particles, 
while ny, r> 1, gives the number of "auxiliary," or 
"regulator," particles. The Hamiltonian is 

N 

H = ~ '<>' (-l)Y+lw (a at + ata ) 2U r rr rr e 

y=l 
(2.15) 

We now see why there are difficulties of interpreta­
tion for even the free-particle field equations. Be­
cause the w's are positive, the expectation value of 
the Hamiltonian is not positive definite. Thus the 
field can exist in states of negative energy. For this 
reason the theory is often considered to be unaccept­
able. 

Just as the quantization of the electromagnetic field 
proposed by Gupta 13 and Bleuler 14 introduces an in­
definite metric space to overcome negative-energy 
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difficulties, it has been suggested 12 that an indefinite 
metric space be used in the quantization of higher­
derivative field equations. In such a space, the anni­
hilation and creation operators are 

dr{k) = (2Yr wr)1/2cf>r{k), 

d~{k) = (2Yrwr)1/2cf>;{k), 

which satisfy 

[dr,d~] = Ors-

Since the Hamiltonian 

H = i ~ wr(d~dr + drd~) 
r 

(2. 16) 

(2. 17) 

(2.18) 

appears to have a positive definite form, it might 
seem that there are no difficulties associated with it. 

However, from Eq. (2.16) we see that the operation 
denoted by an asterisk (*) cannot be the same as Her­
mitian conjugation since (2y rW) 1/2 is imaginary for 
even r, so that the field operator cf>(x) is not Hermi­
tian, and neither is the Langrangian from which the 
field equation is derived. Nevertheless, an indefinite 
metric vector space can be constructed in which ~(x) 
is self-adjoint. 

The space in which cf>(x) is self-adjoint is defined by 

drlo)=o, (010)=:1, 

In r ) = (n r !)-1/2{d:tr 10), (2. 19) 

Inrn s" 'n t ) = Inr) Ins>· .. In t )· 

In such a space the expectation value of the Hamilto­
nian with respect to the state In;) is 

(2.20) 

where 

0i = ~ 0, 

11, 
odd i, 

(2.21) 
even i. 

Unfortunately, the energy (H) is still indefinite. In 

fact, the factor (_I)n i ,\ which alternates in sign as 
more particles are added to the state, makes the re­
sult appear even less physical than before. The use 
of an indefinite metric does not lead to a physically 
reasonable expression for (H) in this case. 

To date, there does not appear to be a quantization of 
higher-derivative field equations with real, unequal 
masses which completely eliminates the problems of 
negative-energy states as long as the fields cf>r{x) are 
considered to be independent of one another. How­
ever, work with the Lee model lO and the Heisenberg 
unified field theoryll has shown that quantization is 
more successful if there is a relationship between 
the masses, such as equality or complex conjugation. 
We next discuss the free-field equations for such 
cases. 

C. Complex- and Dipole-Root Polynomial Equations 

If some of the m 's in Eq. (2.1) are complex, then the 
self-adjoint Fourier solution cf> (x) is of the form 
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N 

cf>{x) = ~ cf>r(X) , 
r o 1 

(2.22) 

For complex mr the Sign of wr must be chosen by 
convention. 

When one of the polynomial roots is complex, its com­
plex conjugate must also be a root for the energy to 
be real. If the two complex-conjugate roots are de­
noted by m 1 and m 2' the Hamiltonian is then 

The commutation relations for cf>1 (k), cf>2(k) are 

(2.24) 

where i and j take on only the values 1 and 2. 

Creation and annihilation operators are defined as 
before by Eq. (2.16) in an indefinite metric space 
characterized by Eq. (2. 19). The energy eigenvalues 
corresponding to the state In l n2) are complex, so 
that! (n1n2IHln1n2) = O. Hence the fields cf>l(X) and 
cf>2(X) do not contribute to the energy and the problem 
of negative energies does not arise. 

The "dipole" field equation, which is the limiting case 
with m 1 = fit 2' requires special attention since the 
Fourier solution has the unusual form 

cf>(X) = _1_ J d3 k[cf>1 + wtcf>2)eikx + (cf>i + wtcf>~)e-ikx) 
(21T)3 

N 

+ L:: cf>r' 
r=3 

k=(k,w), w = (k2 + m V 1/2 = (k2 + m ~) . (2.25) 

However, the Hamiltonian and commutation relations 
are similar to the complex-conjugate case. Although 
the state space has vectors of zero norm,3,4 a con­
sistent treatment is possible and the expectation va­
lue of H with respect to the state In1n2) remains 
zero. 

Both the complex-conjugate and the dipole free-field 
equations avoid the nonphysical results associated 
with negative energies. However, it can be shown that 
when certain higher-order interactions are consider­
ed, the complex-conjugate case allows transitions to 
negative-energy states and is therefore unsatisfac­
tory.15 Nevertheless, "dipole -regularized" equations, 
or "dipole -ghost" equations, of the type 

[ ,~ (1 - O2)2 J(o -m 1)cf>(X) = 0 
}-2 m j 

(2.26) 

appear to give meaningful results,16 particularly 
when applied to the models of Lee 10 and Heisen­
berg.1 1 We now turn to the question of the physical 
interpretation of such equations. 
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3. PHYSICAL INTERPRETATION OF CLASSICAL 
FIELDS 

A. Nonrelativistic Spinless Source Fields 

Since the existence of auxiliary fields and ghost par­
ticles is required by many field-theoretical models, 
it is important to understand their physical signifi­
cance. In this section we will consider the case of 
the generalized classical electromagnetic field and 
present a physically consistent interpretation in 
terms of particle form factors. In Sec. 4 the feasi­
bility of extending the interpretation to quantized 
fields is investigated. We will find that the problems 
of interpretation encountered with classical free 
fields will not occur if the source of the field is taken 
into consideration. 

First consider the case of a classical source particle 
characterized by a charge density p(r). It is assu­
med that the particle is radially symmetric and non­
rotating and also that it can be treated nonrelativisti­
cally. Spin and relativistic effects will be discussed 
later. 

As usual, the form factor of the particle is defined 
to be the Fourier transform of the charge density: 

F(k2 ) == 1.. J d 3r e ik'r p(r), 
q 

(3.1) 

where q is the total charge of the particle. Since the 
particle is radially symmetric, the form factor is a 
function only of k2 • 

For our purposes, form factors will be useful because 
of their connection with generalized field theory. We 
will show that applying generalized electrodynamics 
to classical point particles yields results identical to 
those obtained by applying the usual electrodynamics 
to particles having form factors. The present work 
is based on that of Ueda and Green,7 and extends it 
to apply to particles with spin ~. 

We will consider a generalization of electrodynamics 
in which the 4-vector potential A = (A, cp) obeys the 
classical field equation 

(3.2) 

where jll is the 4-vector current density j == (j,p) 
which is the source of the field. For the special case 
f(O) = (1- 0/A2) the theory is the same as that of 
Podolsky17 and BOpp.lS Our physical interpretation 
will, however, be different from that of the above 
authors. 

To determine the relationship between generalized 
electrodynamics and form factors, consider a gener­
alized field with a point-charge source. We will work 
in the rest frame of the particle, so that ¢ == O. The 
generalization of Poisson's equation for a point charge 
q located at the origin is then 

f (~2)~2CP (r) == - 41Tqb(r). (3.3) 

Defining cp (k) by 

cp(r) = _1_ J d3kcp(k)eik.-r 
(21T)3 ' 

(3.4) 

we find that the Fourier transform of Poisson's equa­
tion is 

or 
f(-k2)(-k2)cp(k) = -41Tq 

(-k2)cp(k) == -41TqF(k2 ) , 

where 

F(k2 ) = 1/f(-k2 ). 

Taking the reverse Fourier transform yields 

~2cp(r) = -41Tp(r) , 

where 

p(r) == f d 3 kqF(k2)e ik . r ; 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

i.e., F(k2) is the form factor corresponding to the 
density p(r). Thus the static potential of a point 
charge as calculated from generalized electrodyna­
mics is the same as the potential which satisfies the 
usual Poisson equation for Maxwell's theory of elec­
tromagnetism, provided that the Maxwell particle has 
the form factor f-l(-k 2). 

In the generalized classical electrodynamics we have 
thus far considered, there are no nonphysical results 
since the generalized Poisson equation, 

(3. 10) 

is mathematically equivalent to the usual equation, 

~2cp(r) = -41Tp(r). (3. 11) 

Given either of the equations, the other can be calcu­
lated from it. Since cp(rl can be calculated from the 
second of these equations, there can be nothing un­
physical about it, even though it is also a solution of 
the first. However, for free fields, the situation 
changes. 

A free field is a solution to the field equation in a re­
gion where jll == O. The two free-field wave equations 
corresponding to the pair of equivalent POisson equa­
tions are 

f(O)OAjl == 0 
and 

OA/1 =0. 

(3. 12) 

(3.13) 

Unfortunately, these two are not equivalent. The first 
has more solutions; given only the second, it is im­
possible to reconstruct the first. While Eq. (3. 13) is 
the usual form of the wave equation, some authors 
feel that the classical auxiliary-particle interpreta­
tion of Eq. (3. 12) is not physically reasonable. 2 If 
f (0) is an Nth-order polynomial in 0 with nonzero 
roots, then according to Eq. (2. 10) the generalized 
free-field equation (3. 12) is equivalent to 

OAW=O (3. 14) 

plus the set of N equations 

(3.15) 

If these equations are thought to be independent, their 
physical interpretation appears obvious. The first is 
the usual wave equation for the electromagnetic po­
tential, or, equivalently, the equation for a zero-mass 

J. Math. Phys., Vol. 13, No.9, September 1972 



                                                                                                                                    

1378 F. R lEW E AND A. E. S. G R E EN 

particle, while the others are the wave equations of 
particles of mass m r' Both A(~J and A(~) are solutions 
to the generalized wave equation so that the general 
solution for All is a linear combination of A(t) and 
A (~). As pointed out by Feynman,19 this violates phy­
sical experience since one particle will travel at the 
speed of light while the others must move more slow­
ly. A burst of light obeying a generalized wave equa­
tion would gradually separate into wavefronts mov­
ing at different velocities. Thus it would seem that 
generalized electrodynamics does not offer a reason­
able description of free fields, even classically. 

For classical fields a solution to the dilemma is to 
reexamine the concept of "free fields." If the usual 
Maxwell's equations are solved for the case that the 
source j~ is a moving point particle, the results are 
the well-known Lienard-Wiechert fields. The ex­
pressions for the fields contain two types of terms: 
the "near field" terms, which fall off like R-2 where 
R is the distance at the retarded time, and the "radi­
ation" terms, which fall off like R-1 and vanish when 
the particle is not accelerated. Although the near 
field can be thought of as moving with the particle, 
the radiation field propagates outward at the speed of 
light and does not depend on the future position of the 
particle. After its emission it is free of the particle 
and hence is often called a "free field." 

If the source is an extended particle with a charge 
density other than a 6 function, then at any point in 
space and time all of the components of j 11 will not 
generally be zero, so that the radiation field is part 
of the solution of OA ~ = - 41Tj ~. while the homoge­
neous equation OA 11 = 0 is not a valid field equation. 
For the same reason, we will take 

(3.16) 

where j p is nonzero, as the equation from which to 
determine the generalized radiation field, or free 
field. 

In analogy to the equivalence of Eqs. (3. 10) and (3.11) 
there is a function j~ such that 

OAp = -41Tj~ (3.17) 

has the same solution as Eq. (3.16). Thus the Lien­
ard-Wiechert radiation-field solution of Eq. (3. 17), 
which, of course, is physically reasonable, is also 
the "free-field" solution of the generalized equation 
(3. 16). Hence by treating free fields as radiation 
fields the paradoxes associated with classical auxi­
liary fields can be avoided. 

B. Relativistic Spin-~ Source Particles 

We next show that the same relationship between gen­
eralized fields and form factors is valid for relativis­
tic source particles with spin ~. For the present we 
will consider the Dirac equation as a "classical" 
wave equation in the sense that there will be no at­
tempt to quantize it by introducing commutation re­
lations. The discussion will be illuminating, not only 
because the form factor interpretation is being ex­
tended to the case of spin ~ , but also because we will 
employ an entirely different formalism from that of 
the preceding discussion. 
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For spin-~ particles like the proton, which are known 
to have form factors and anomalous magnetic mo­
ments, Foldy20 has suggested the following equation: 

& + m - i n~o (EnOnqi + Il nOna l1 vFI1 v») 1J;:::: O. (3.18) 

The constants En and Il n characterize the charge and 
magnetic-moment distributions of the particle. In 
particular, EO is the particle's charge and 110 is its 
anomalous magnetic moment. F~ v is the field tensor 

(3.19) 

(3.20) 

The equation was chosen to be the most general ex­
tension of the Dirac equation to describe a particle 
whose structure can be characterized by electric and 
magnetic moments, provided the additional terms are 
Lorentz covariant, gauge invariant, linear in the po­
tentials, and do not vanish for zero particle momen­
tum. It can be shown21 that En and Iln completely 
characterize the form factors of spin- ~ particles. 

We will now show that the Foldy-Dirac equation 
(3.18), combined with the usual electromagnetic field 
equations, is mathematically equivalent to the inter­
action of a Dirac particle with a generalized electro­
magnetic field. The magnetic moment terms can be 
rewritten in a more convenient form: a llV Fpv = 20 ~AI1 
-2iJ'4\. We will work in the Lorentz gauge, so that 

(3.21) 

The Foldy-Dirac equation can now be rewritten: 

~ + m - i n~ [Enpn.;X. + Il n¥2n(-21$)])1J; :::: 0, (3.22) 

or, by regrouping terms and choosing new constants 
0' m' 

(3.23) 

Let Ip(x) be a potential for which the spin-1 particle 
obeys the point-particle equation 

(p - ieJt + m)1J; :::: O. (3.24) 

It follOWS that 
00 

EDit = 6 O'l'llm;J... (3.25) 
moO 

We then find 

(3.26) 

The Fourier transform is 
co 

EO (-k 2 )Jt(k) :::: -4'IT L; O'm(i ¥)mj(k). 
rYL:::: 0 

(3. 27) 

Since the matrix It has the inverse (~)-1 = l/!/k2 . it is 
possible to determine the series expansion of the in­
verse of an arbitrary function of I/! , so that l(k) obeys 
the equation 

f(i N:)( - k2 f;f(k) = - 41T/(k) , (3.28) 

where 

!(i#)= EO(.,~O O'm(i¥)mr' (3. 29) 
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The inverse Fourier transform gives 

f(~)[J](x) = -4rr/(x). (3.30) 

We have thus shown that the Foldy-Dirac equation 
combined with the usual equations of electrodynamics 
is mathematically equivalent to the Dirac equation 
(3.24) if the electromagnetic potential is taken to 
obey the generalized wave equation (3.30). Hence the 
form-factor interpretation can equally well be applied 
to source particles with spin ~. No problems appear 
classically as long as the electromagnetic field is 
always considered to have an extended source. We 
next consider the effects of quantization. 

4. PHYSICAL INTERPRETATION OF QUANTIZED 
FIELDS 

The classical form-factor interpretation of the pre­
vious section carries over directly into quantum 
theory. In quantum field theory the form factor F(k 2 ) 

is a vertex operator, which describes the coupling 
between fields. For example, the vertex diagram for 
interacting scalar fields given in Fig. I(a) represents 
a process with amplitude (k 2 - m 2tlF(I?2). In the­
oretical calculations of actual form factors22 the 
lowest-order contributions come from intermediate 
states which are particle resonances. Figure I(b) 
gives such a form factor, characterized by a single 
intermediate particle with mass A. The amplitude 
for this diagram is the same as for Fig. I(a), so that 
the two processes can be considered to be equivalent. 

A third process having the same amplitude is illus­
trated in Fig. 1 (c). In this case there is a point ver­
tex and a generalized field which obeys 

(1 - U/A2)(D - m 2 ) = O. (4.1) 

We see that just as in the classical case the usual 
interaction of a field with a particle having a form 

(a) 

F (k2
)= 

(l+k 2/x
2

,-' 

(b) 

~----~.F--------------

( c) 

FIG. 1. Three vertex diagrams, each representing a process with 
amplitude (1 + ,,2/\2)-1 (1,2 + 1Jl2)·1. (a) Vertex with monopole form 
factor. (b) Vertex characterized by an intermediate particle of 
mass A. (c) Point vertex with a generalized field having a "ghost 
particle" of mass .\. 

factor is equivalent to a generalized field inter­
acting with a point particle. The auxiliary particles, 
or ghost particles, of mass A in Fig.l(c) correspond 
to the intermediate particles in Fig. 1 (b). For the 
general case of a polynomial field the same corres­
pondence applies. For example, a field with two re­
gulator masses Al and A2 corresponds to a form 
factor F(k 2 ) = (1 + k2/A~)-I(1 + k2/A~)-1. In this 
case the intermediate particle A2 is itself coupled 
to the source field via a second intermediate par­
ticle A l' 

For higher-order diagrams the interpretation can 
still be applied. However, as discussed in Sec. 2 
certain calculations involving such diagrams lead 
to nonphysical results unless the generalized field 
obeys the dipole-regularized field equation (2.26). 
Thus from Eq. (3.7) the only admissible form fac­
tors must be of the type 

FN(k 2 )=[}1 (1+~22Yll. (4.2) 

14 

o 
~ 13 
<l: 
::::> 1.2 
a 
if) 

) 

- -- -- SINGLE DIPOLE 

---DOUBLE DIPOLE 

o I.l L--_---+----!I'-.-
~ 
a: 1.0 
a: 
~0.9 
u 
~08 

~07 
o 
lL. 

0.6 

I 

05~_Luu_~~_-L~~-L~~_~-L_L~~ 

0.5 2 5 10 20 50 

k2(GeV/d 

FIG. 2. Form factors consistent with generalized field theory. 
Dashed line: single dipole with A = 0.702 (GeV /C)2. Solid line: 
double dipole with A1 = 0.744 (GeV/c)2 and A2 = 107.7 (GeV/c)2. 

2.0 I I I 
0 18 I w - ---SINGLE MONOPOLE I a: 
<l: 16 ::::> DOUBLE MONOPOLE / a 
if) 1.4 / 
Q 1.2 / /--
<l: 

! / a: I ! I 

a: 10 
i { 0 

! / I- 0.8 u £ II I <l: I l.L 
0.6 / :;; / a: 

0 04 / lJ... 
/ 

0.2 /' 
./ 

----00 i=J,.-t-r-.l± - --=-- .1 
05 I 2 5 10 20 50 

FIG. 3. Form factors not consistent with generalized field theory. 
Dashed line: single monopole with A2 = 0.033 (GeV/c)2. Solid line: 
double monopole with Ar = 0.701 (GeV/c)2 and A2 = 0.705 
(GeV /C)2. 
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The result that a form factor consistent with genera­
lized field theory must be a product of dipoles pro­
vides a test of the theory. Since the only charged 
particle with an experimentally well-known form fac­
tor is the proton, it will be used as the basis of our 
test. 

Following the procedure of Green and Veda,23 we 
will compare the square of the theoretical form fac­
tor with the experimental scattering cross sections, 
using SLAC 24 electron-proton scattering data. 

The simplest dipole form factor is the single dipole 

(4.3) 

which has one adjustable parameter. F I was first 
discovered empirically and is known as the Hofstad­
ter- Wilson dipole form factor. Hofstadter 25 and 
Wilson 26 choose 11. 2 = O. 71(GeV/c)2. 

The dipole form factor is often used as the standard 
against which others can be compared. Thus, in 
Fig. 2, we plot the ratios of the data and theoretical 
calculations to the dipole form factor. This method 
clearly shows any discrepancies between theory and 
experiment. In the figure we show the dipole form 
factor both for 112 = O. 710(GeV/c)2 and also for 112 = 
O. 702(GeV/c)2, which gives a best fit to the more re­
cent data. As a measure of the accuracy of the ag­
reement with experiment we use the usual quantity 
X2. The readjusted dipole gives X2 = 6. 96. The doub­
Ie dipole form factor, 

(4.4) 

gives a much better fit, shown in Fig. 2. The value of 
X 2 in this case is 1. 28. 
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We thus find that a satisfactory fit to the data can be 
obtained with only two adjustable parameters, if the 
form factor is derived from generalized field theory. 
In contrast, the form factor which is a product of mo­
nopole terms, 

F = /i1 (1 + ~:r1, 
) 

(4.5) 

was found by Green and Veda23 to require three 
parameters in order to obtain significant improve­
ment over the one-parameter dipole form factor. 
For purposes of comparison with the dipole case, the 
best fits to the data for monopole-type form factors 
for N = 1 and N = 2 are given in Fig. 3. The N = 1 
case gives a very poor fit, with X2 = 346.8. For N = 
2, the best fit essentially duplicates the (one-para­
meter) Hofstadter- Wilson dipole form factor, again 
with X 2 = 6.96. 

A similar situation occurs if Al and A2 are chosen to 
be a pair of complex conjugates, in which case the 
best fit requires Al and A2 to be approximately equal. 
It therefore appears that the requirement that the 
proton electromagnetic form factor be consistent 
with generalized field theory results in a very re­
alistic functional form. 

We conclude that higher-derivative quantum field 
theories have a realistic physical interpretation in 
terms of form factors, in which the "ghost particles" 
associated with generalized fields represent inter­
mediate states contributing to the form factor. 
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The scattering of a charged particle by two fixed charged centers is discussed. The scattering potential is 
long-range and spheroidal. It is pointed out that the general method for handling the short-range spheroidal 
potential is not directly applicable here. The integral differential equation for the Coulomb spheroidal phase 
shift is given in the text. The behavior of the phase shift is discussed in Born's approximation. A method for 
solving for the radial spheroidal Coulomb wavefunction is also given. 

1. INTRODUCTION 

Nonspherical, particularly spheroidal, scattering 
gives rise to interesting problems. It was introduced 
quite early in the classical scattering theory of sound 
and electromagnetic waves. The study of acoustic 
scattering1 by circular disks and apertures, which 
are spheroidal in form, was of importance for the so­
called Rayleigh-disk method of measuring sound in­
tensity. Furthermore, a great deal of work has been 
done on electromagnetic scattering by spheroids, 
disks, and apertures. For example, Meixner and An­
drajewski and Flammer2 treated the problem of the 
scattering of plane electromagnetic waves by a per­
fectly conducting circular disk. The effect of circu­
lar disks and apertures on the radiation from electric 
and magnetic dipoles was investigated by Meixner and 
Flammer.3 In addition, the problem of the scattering 
of plane electromagnetic waves incident on a perfect­
ly conducting prolate spheroid has been studied by 
Schultz, Siegel, and collaborators.4 

Spheroidal scattering is interesting not only from the 
point of view of classical physics, but also from that 
of quantum mechanics. It was shown in the early 
years of quantum mechanics by Burrau5 that the Cou­
lomb potential produced by a pair of fixed charges (of 
whatever relative sign) is spheroidally symmetric. 
Hence the scattering of an electron by the fixed 
charge pair is spheroidal. The scattering of slow 
electrons by diatomic molecules has been considered 
to be spheroidal by Stier and by Fisk.6 (See Naghara, 
Takayanagi and Hara 7 for extensions of Stier and 
Fisk.) 

The importance of spheroidal potentials can also be 
traced to the physics of elementary particles. At pre­
sent, elementary particles are not always treated as 
mathematical particles. In fact the elementary par­
ticles are neither elementary, nor particles if one 
employs a classical description. Rather, they are 
treated as a composite system with some structure. 
This view has been incorporated in the quark,8 par­
ton,9 and droplet models. lO Among them, the one 
most directly related to the spheroidal scattering is 
the droplet model, in which the high energy scattering 
process is treated as a wave passing through a Lor­
entz-contracted optical medium. The medium has 
either a disc or a pancake shape, both of which are 
spheroidal. In other words, even in high energy phy­
sics spheroidal scattering plays a significant role. 

Despite its importance, spheroidal scattering is not 
as well studied as is spherical scattering. Investiga­
tions to date have been mostly on the scattering from 
discontinuous spheroidal boundaries and on the nume­
rical calculation for comparison with observed ex­
perimental phenomena. Thus, any further study on 
spheroidal scattering should be of considerable inter­
est in physics. 

Scattering by a short- range spheroidal potential has 

been our main concern in an earlier paper. l1 The 
present work can be considered as a continuation of 
the above-mentioned, and is devoted to the long-range 
Coulomb potential. In Sec. 2 we point out that the Cou­
lomb potential produced by a pair of two equal 
charged centers is spheroidal. A general spheroidal 
phase shift expression for short range potential is 
given; it is a straightforward generalization of the 
one in the previous paper, in which the incident wave 
is limited to the z-direction of the coordinate system. 
This expression is shown to be unsuitable for the Cou­
lomb case. In Sec. 3 the spheroidal Coulomb phase 
shift is discussed and is expressed in term of an in­
tegro-differential equation. In Sec. 4 we deal with a 
Born approximation for the spheroidal Coulomb phase 
shift. It is shown that spheroidal and spherical high 
order Coulomb phase shifts are the same. In Sec. 5 
we present a method solving the integro-differential 
equation for the radial wavefunction and the validity 
of the solution is verified. 

2. POTENTIAL 

A pair of equal fixed point charges are located on z 
axis with coordinates ra = (0, 0,dj2) and rb = (0,0, 
- dj2, where d is the separation between the two 
charges. The potential V at distance r has the form 

(2.1) 

Q is the charge on each point. The above potential, 
although not spherically symmetric, does possess 
another type of symmetry. This can be seen through 
the introduction of the prolate spheroidal coordinate 
system,12 in which the distance r = (x,Y,z) is ex­
pressed as 

x = (dj2)[ (1 _1)2)(~2 - 1))1/2 coscp, 

Y = (dj2)[ (1 _1)2)(~2 - 1)]1/2 sinCP, (2.2) 

z = (dj2)1)L 

with 1 '" ~ < CI), - 1 '" rJ '" 1, ° '" cP '" 21T. The sepa­
ration d between the two fixed charges is now called 
the interfocal distance for such a spheroidal coordi­
nate system. Parameters L 1), cP are referred to as 
the prolate spheroidal coordinates. Under the limit, 

d --7 0, and 1) -7 cose, (2.3) 

the spheroidal coordinate system is reduced to a 
spherical one, where rand e are the spherical coordi­
nates. Potential V in Eq. (2. 1) in terms of prolate 
spheroidal coordinates can be expressed as 

V = (4Qjd)[U(~2 _1)2)]. (2.4) 

This is a potential with prolate spheroidal symmetry. 

The Schrodinger equation for describing a charged 
particle scattered by the potential in Eq. (2.4) has the 
form 
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where J.1. is the mass,q the charge, and k the momen­
tum of the incident particle. Equation (2.5) may be 
expressed simply in the prolate spheroidal coordi­
nates as 

I~ (1 -1/ 2 ) ~ + ~ (~2 - 1) ~ 
La1/ a1) a~ a~ 

+(_1 ___ 1_) ~ + (! kd)2(~2 -1/ 2) 
1-1)2 ~2 - 1 acp2 

- 2J.1.dQq ~J tf/ = O. (2.6) 
Ji2 

The above equation is separable, and can be solved 
through the spheroidal phase shift analysis method. 
This method has been extensively discussed in the 
classical scattering theories of sound and electro­
magnetic waves, and was used in the scattering of 
electrons by diatomic molecules. 6 ,7 The general 
method for describing scattering by a short-range 
oblate spheroidal potential can be found in a more 
recent paper. 11 In terms of the spheroidal phase 
shift analysis, the scattering amplitude may be ex­
pressed as 

1 "" (2 - 0om) , 
fk(e,cp) =-:- LiD Smn(c,1/) 

zk n m Nmn(c) 

x Smn(C, 1/)(e2iOmn - 1) cosm(cp - cp'), (2.7) 

where 

C = t kd, (2.8) 

During scattering, the incident particle is in the direc­
tion specified by polar angle e' == cos- 11/' and azimu­
thal angle cp'. Nmn(c) are the normalization constants 
of the prolate spheroidal angle functions Smn(c, 1/): 

for n ". n', 

forn = n. 
(2.9) 

The problem now is the determination of spheroidal 
phase shifts ° mn' It is the same problem as that en­
countered in the spherical phase shift analysis, which 
can be considered as a special case of the present 
analysis under the limit d -7 O. In the spherical ana­
lysis, the Coulomb potential is a particular one, and 
is considered separately as in contrast with short­
range potentials. 13 This is also true for the spheroi­
dal Coulomb potential; its peculiarity will be briefly 
explained as follows. 

For a general short range spheroidal potential, one 
can obtain an integral equation11 for the spheroidal 
phase shift 0mn 

io Joo (1) ) - )-e mn sino mn = - C 1 d~ Rmn(c, ~ U(~ Tmn(c, 0, 
(2.10) 

where R<;;/n (c, I;) is the spheroidal.!adial function, the 
spheroidal short-range potential V(~,1), cp) is ex­
pressed as 

(2.11) 

f (c, ~) is defined through the expansion of the 
sc~ttered wave tf/k) (r) 
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tf/(+)(r)=266i n(2-o om ) S (C 1)') 
k n m Nmn(c) mn' 

X Smn(C, 1) cosm(cp - cp') Tmn(c, 0 (2.12) 

and has the asymptotic expression 

T mn(c, 0 -----7 ~ e i
omn cos[c~ - t (n + 1)11 + 0mn]' 

g->oo c" 

(2.13) 
The Coulomb potential in Eq. (2.4) is long range in 
nature, and causes the integral in Eq. (2. 10) to be 
logarithmically divergent. On account of this, new 
formulations should be sought to describe the long­
range spheroidal Coulomb phase shift. 

3. COULOMB PHASE SHIFTS 

In this section we would like to derive an explicit ex­
pression for the spheroidal phase shifts from poten­
tial V in Eq. (2.4). We shall begin with Schrodinger's 
equation (2.6). By the usual separation procedure, 
its solutions can be obtained in the form of the Lame 
products: 

(3.1) 

where Smn (c, 1/) is the prolate spheroidal angle func­
tion as used in Eq. (2.7). Function T mn(c, 0 satisfies 
the ordinary differential equation 

~ (~2 - 1) ~ T (c 0) 
d~ d~ mn , 

( "-mn(C) - c2~Z + Ad~ +~) Tmn(c,~) = 0, 
~2 _ 1 

(3.2) 
where 

A = 2J.1.Qq /1i2 . (3.3) 

Constant m is an integer, which comes from the 
single value requirement of the wavefunction. Con­
stant "-mn (c) is the eigenvalue of function Smn (c, 1/) and 
can be expressed as 

"-mn (c) = 6 1;': c Z k. 
k 

The first two coefficients are found to be 

Ion = n(n + 1), 

I mn = t (1 _ (2m - 1)(2m + 1»). 
2 (2n - 1)(2n + 3) 

(3.4) 

(3.5) 

(3.6) 

By substituting c ~ =yand T mn (c, 0 = [(y2 - c2)jy 2] m/2 
X Y mn (y), Eq. (3.2) becomes as 

(y2 _ c2) d
2 

Y n(Y) + (2Y + 2m C2)~ Ymn(y) 
dy2 m y dy 

_ ("- (C)_y2 + 2A Y + m(m + 1)C
2 )ymn(y)=0. 

mn k 2 

Y (3. 7) 
Under the limit d -7 0, for which two fixed point 
charges coincide with each other, Eq. (3.7) is reduced 
to the form 

d 2 d 
y2 - Hn(Y) + 2y - Hn(Y) 

dy2 dy 

- [n(n + 1) - y2 + 2i1Y] Hn(Y) = 0, (3.8) 

where we have used 
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(3.9) 

and 

Tj = Ajk. (3.10) 

Equation (3. 8) is a radial Coulomb wave equation. 
Its general solutions are well known14 : 

(3.11) 

where eland c 2 are arbitrary constants. !n (Tj, y) is 
the regular Coulomb wavefunction and Gn (1], y) is the 
irregular (logarithmic) Coulomb wavefunction. From 
recurrence relations of Coulomb wavefunctions one 
obtains the following relations: 

dlln(Y) 1 _ __ = __ {(n2 + 1]2)1/211 _ (y) 
dy 2n + 1 n 1 

- [en + 1)2 + ~2)1/211n+l(Y)}, (3.12) 

y-1lln(Y) 

1 {n[(n + 1)2 + Tj2]l/211n+l (y) 
n (n + 1)(2n + 1) 

+ (n + 1) (n 2 + ~2)1/2 lln-l (y)- (2n + 1)~1ln<Y)}. 
(3.13) 

The radiation Green's function Gn(y,y') of the Cou­
lomb wave equation (3.8) satisfies the inhomogene­
ous equation 

d 2 - d -y2 - Gn(y,y') + 2y - Gn(y,y') 
dy2 dy 

- [n(n + 1) - y2 + 2~y]Gn(Y,Y') = o(y - y'), 
(3.14) 

the regularity requirement at y = 0, and the radiation 
condition 

lim Gn(y,y') = const x (ljy) exp[i(y -Tj ln2y)]. 
y-oo 

(3.15) 

Following the routine construction procedure for 
Green's function, we find 

Gn(y,y') 
_ i \ Fn(Tj,y)[Fn(Tj,y') - iGn(Tj,y')], 

= yy' t Fn (Tj,y')[Fn(Tj,y) - iGn(~'Y)], 
y <y', 

y'<y. 

(3. 16) 

Because of the long- range nature of the Coulomb 
force, the radial function T mn (c, ~) has the asymptotic 
form 

Tmn(c,O~ (1/c~)ei6mn cos[c~ -7jln(2c~) 
cs"""»OO 

- i (n + 1)1T + 0mn], (3.17) 

where 0mn is the spheroidal Coulomb phase shift. 
The asymptotic form for function Ymn(y) follows 
directly: 

Ymn(y) ~ (ljy) e iOmn cos[y -Tj In(2y) y_oo 

- i (n + 1)1T + 0mnl. (3.18) 

By using the Green's function Gn(y,y') in Eq. (3.16), 
the solution for Eq. (3.7), which is regular at y = c 

and satisfies asymptotic condition (3.18), has the 
form 

Ymn(y) = ~ eiOnFnCij,y) 

+ leoo 
dy'Gn(y,y')Umn(y')Ymn(y'), (3.19) 

where 

U (y')Y (y') = c2 ~ Y (y')_ 2mc
2 ~y (y') 

mn mn dy'2 mn y' dy' mn 

-I- (Amn(C) - n(n + 1) + m(m + 1)C2) Ymn(y'), 
y'2 

an = argr (n + 1 + i~). (3.20) 

a n is the spherical Coulomb phase shift. The factor 
e ion in Eq. (3.19) is used to guarantee the proper 
asymptotic behavior of function Ymn(y) in the limit 
C -? O. By utilizing the asymptotic forms of Coulomb 
wavefunctions14 

Fn(~'Y) - cos [y - ryln(2y) - i (n + 1)1T + an], y_OO 

Gn(ry,y)- - sin[y -Tjln(2y)-~(n + 1)1T + an], 
y~OO 

(3.21) 

the following equation can be obtained from Eq.(3.19) 
in the limit y -7 co: 

e i6mn cos[Y-~ln(2y)-t(n+1)1T+omn] 

= e ion cos[y - ry In(2y) - ~ (n + 1)1T + an] 

- i expiry - ijln(2y) - ~ (n + 1)1T + an] 

X fOO dy' Fn(~'Y') U (Y')Y (Y'). 
e y' mn mn (3.22) 

By equating the coefficients in front of the exponential 
expiry - Tj In(2y) - ~ (n + l)1T] at Eq. (3.22), we arrive 
at a simple formula 

i 6. ) J 00 F n (~, y ) 
e mn sm(Omn - an =- e dy y Umn(y)Ymn(y). 

(3.23) 
It is easy to see from Eq. (3. 23) that in the limit 
C ---70 the spheroidal Coulomb phase shifts 0mn re­
duces to the spherical Coulomb phase shifts an' 

4. BORN APPROXIMATION 

The Born approximation for spheroidal Coulomb 
phase shifts is discussed here. In the approximation, 
we make the following substitution: 

(4.1) 

Namely, only the zero-order approximation is made 
to the radial function Ymn (y) in the integro-differen­
tial equation (3.19). From Eq. (3. 23), one arrives at 
an equation for the Born phase shift o':;n: 

ei(6!!,n-on) sin(oB _ a ) = _ Joo dy(Fn(~,Y»)2 U ( ) 
mn n e y mn y . 

(4.2) 
By using Eqs. (3. 8), (3.12), and (3.13), one obtains the 
expression 

e i(6!!zn-on) sin (0 B - a ) 
mn n 

= _ c2 loo d; Fn(Tj,Y)[1 1(y)Fn +1(Tj,y) 
y 

+ 12 (y)Fn (i/,Y)]' (4.3) 
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where 

1
1
(y) = 2(m + 1H(n + 1)2 + ij2)1/2 , 

(n + l)y 

Am,,(C) - n(n + 1) 
12 (y)= -1 

C2 

2ij (n - m) (n - m)(n - m - 1) 
+ - + --------

Y (n + 1) y2 • 
(4.4) 

The Coulomb wavefunction F,,(ij,y) is bounded. This 
boundness makes the improper integral (4.3) defined. 
If, instead, one uses the short-range integral equation 
(2.10) to evaluate spheroidal Coulomb phase shift, 
then, under the Born approximation of Eq. (2.12) with 
Coulomb potential Eq. (2.4), one would have to deal 
with an integral 

(4.5) 

The asymptotic form of the radial function12 

R;;~ (c, 0 ----? (1/c~) sin[c~ - ten + 1)11] (4.6) 
1;-"00 

makes integral (4.5) logarithmic divergent. The rea­
son for such a difference between Eqs. (2.10) and 
(3.23) is not difficult to understand. The divergence 
in Eq. (2.10), in case of the Coulomb potential, is due 
to an improper handling of the asymptotic form of 
radial function Tm,,(c, 0 as expressed in Eq. (2.13). 
In the expression of the long- range contribution 
if In(2~) is neglected, and which is infinite at ~ --) co . 
In deriving Eq. (3.23), such a long-range contribution 
is first taken into consideration, and all short- range 
dependence, although involving differentiation, is 
treated as an effective perturbed "potential" u'n" (y). 
In this way the logarithmic divergence is avoided. 
The latter method is quite similar to the one for 
treating a modified Coulomb potential in the spheri­
cal phase shift analysis. 

Some estimates on the behavior of Coulomb spheroi­
dal phase shifts om" can be made through Eq. (4. 3). 
It is difficult to obtain an analytic expression for the 
integral in Eq. (4.3), instead an approximation will be 
used in the discussion. The integral involved is ex­
pressed in terms of the regular Coulomb wavefunc­
tion FJii,y) and the inverse powers of the integration 
variable y. For large order n, in different geometric 
regions, F" (1], y) has respective approximated forms. 
We shall divide such regions as y «n, y ~ n, and 
y » n. These forms in the lowest-order approxima­
tion are as follows 

Fn(ii,y) ~ (e-nii/2 /Ji e)(ey/2n)n"1, for y <~ n, 
(4.7) 

Fn(fj,y) '" t -/211Y e- nii/2 I n +1/ 2 (y), for y "'n, (4.8) 

Fn(1],Y)~ sin[y-1]ln(2Y)-nlr/2 + an], fory:?> n. 
(4.9) 

The function Fn(ii,y) in region y «n decreases quite 
rapidly according to the power of n. In region y »n, 
the function Fn(ij,y) oscillates according to its asymp­
totic form Eq. (3.21). From the behavior of the Bes­
sel function I n +1I2 (y), we can ~btain a detailed des­
cription14 of the function F n (1),y) in the transition 
region y "'n: 
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F,,(1),y) ~- e-n~/2 _ __ + ~_.--2 _ (11Y) 1/2 _ (2) 1/3(3-1/3 21/3 ~ ) 
2 3n rm r(1) , 

for y near n, (4.10) 

- ( ~ 1 )112 1 - I' 

F,,(1),y) '" 4(1 _ ~Vl/2 exp{- 2111) - (n + 2) ~2} 

for y < n, or n < y, (4.11) 
where 

~o = (2y - 2n - 1)/2nl/3, 

~ 1 2y / (2 n + 1), (4.12) 

~2 = 11 (1- /2)1/2 dt. 
£2 t 

For y near to n, Fn(ij,y) is smooth and does not vary 
too much. For y < n, ~2 is positive real and mono­
tonically increases with the decrease of variable y. 
Then F,Ji} , y) decreases with y to the region y « n. 
For y > n, ~2 is purely imaginary and its magnitude 
increases withy. This means that Fn(ij,y) starts to 
oscillate toward its asymptotic form in region y » n • 

Based on these properties of the Coulomb wavefunc­
Hon Fn (1], y), one can estimate the integration in Eq. 
(4.3) for the large order of n. Due to the smallness 
of Fn (1],y) in region y« Il, the contribution from this 
region is not important to the integration. Then the 
contribution mainly comes from regions y ~ n and 
y »n for which the approximations (4.8) and (4.9) 
are applicable. Now the estimation for integration in 
Eq. (4. 3) may be expressed as 

e i (6:;',,-0 n) sin(6 H _ a ) 
mn n 

11C 2 - JOO dy - 2 e-n~ c y I n+ 1/ 2 (y) 

X [11 (y)Jn +3/ 2 (y) + 12(y)Jn+1/2 (y)] 

+ c 2 J,<:ot!JI..{I Cv)[sin2 (v - n1T/2) 
"" y2 2 

- sin2 (y - ~ln(2y) - mr/2 + an)] 

- !/1 (y)[sin(2y - n11) 

- sin(2y - 2ijln(2y) - n7r + 2on )J} (4. 13) 
where nu is the boundary between the regions y ~ n 
and y » n. In arriving at Eq. (4.13) we have used the 
smallness of Bessel function in region y « n and its 
asymptotic form. Estimation of the various integra­
tions is not too difficult and yields 

ei(o/:!'n-o,,) sin(o::'" - an) ~ O(n- I ), for largen; 

(4. 14) 
however, the spherical Coulomb phase shift an in Eq. 
(3.20) has the asymptotic form 

an ~ ij In(n + 1). (4.15) 

Equations (3.14) and (3.15) reveal that the spheroidal 
Coulomb phase shift only deviates from the spherical 
one at small orders, and at large orders they are the 
same. 

5. RADIAL FUNCTION 

A further investigation of the spheroidal Coulomb 
phase shift 0 mn as expressed in Eq. (3.23) leads to a 
study of the radial function Y mn (y). A formal express­
ion for Ymn(y) can be obtained through Eq. (3.19) by 
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a direct iteration procedure. The resulting form is 
often called the Born expansion 

Ymn(y) == ye-ion Ymn(y) 

= Fn(ij,y) + f; l,"" dy' K~n(y,Y')Fn(Ti,y'), (5.1) 
i=1 

where 

K~n(y,Y')Fn(ij,y') = y Gn(y,y')Um .. (y')y-1Fn(ij,y'), 

(5.2) 

K:"+n1 (y, y') Fn (ij, y') 

= f'o dY"K~n (y, y")K:"n (y", y')Fn(ij,y') 

= Ieoo 
dY1'" Ie"" dYiK~n(Y'Y1) 

X K~n(Yl'Y2) ••• K~n(Yi ,y')Fn(ij,y') 

= ~oo dY1'" fc"() dYiyGn(y'Y1) 

X Umn (Y1)G n(Yl'Y2) ••• Umn(Yi)Gn(yi,y') 

X Um,,(Y')y'-1Fn(7i,y'). (5.3) 

By using Eqs. (3. 8), (3. 12), and (3.13), we can express 
the factors in Eqs. (5.2) and (5.3) in the following 
forms: 

Umn (y) y-1 Fn (ij, y) 

= e2y-1 [11 (y)Fn+1 (7i,y) + I 2(y)Fn(7i,y»), (5.4) 

Umn(y)Gn(y,y') = e 2y-2 o(y - y') 

- ie2 y-1 [11 (y)Fn+l (~,y) + I 2(y)Fn(ij,y)] 

X y'-1Fn(Tj,y') 

j
. y-1[I1 (y)Fn+1 (Tj,y) + 12(y) F,.(Tj,y)] 

X y'-1Gn(Tj,y'), y < y', (5.5) 

- e
2 

y-l[I 1(y)Gn+1(Tj,y) + 12(y)Gn(ij,y)] 

, xy'-lFn(Tj,y'), y'< y, 

where 11 (y) and 12 (y) are the functions given in Eq. 
(4.4). The above procedure eliminates the differen­
tiation which appears in Eqs. (5.2) and (5.3). In Eq. 
(5. 5) there is a 0 function, which comes from the se­
cond derivative term of the "pot~tiaY' Umn (y) with 
respect to the Green's function Gn(y,y'). The pre­
sence of such a term prevents the convergence of the 
formal Born expansion in Eq. (5.1). The reason is 
simple. The 6 function contributes a set of terms in 
Eq. (5. 1) of the form 

e2i-2 J;,"'" dYlY Gn(Y'Y1)Yi(2i-2) Umn(Yl)YilFn(ii"'Yl)' 

(5.6) 

The series formed by such terms does not converge 
for any constant e. This obscures the formal Born 
expansion in Eq. (5. 1) for the radial function Ymn (y). 

The obstacle is easy to circumvent through a slightly 
different approach. Let us return to the original 
radial integral equation (3.19). We observe that it is 
the second-order derivative of the "potential" Umn(y) 
which causes the Born expansion to diverge. To avoid 
this, we will consider a related integral equation, with 
the removal of the second order derivative, which 
arises from Eq. (3.19) by multiplying potential Umn(y): 

Y~n(Y) = Fr~(ij, y) + (e 2jy2) Y~n(Y) 

+ Ie"" dY'G~(Y'Y')Y~f/(Y')' (5.7) 

where 

y~" (y) = Umn(y) Ymn(y), 

F~(7i,y) = Umn(y)y-leiOnFn(ij,y), 

G~m(Y'Y') = Umn(y)Gf/(Y'Y')- (e 2jy2)o(y -Y'). (5.8) 

The regularity of the radial function Y mn (y) at point e 
yields 

F:(Tj, e) + Ie"" dy'G,:'m (e,Y') Y';:n(Y') = O. (5.9) 

From Eqs. (5. 7) and (5.9) we obtain 

Y~n(Y) = f~(ii" ,y) + fcoo dy'Kmn(y ,y') Y~n(Y'), (5.10) 

where 

g(r},y) = [y2j(y2 - e2)][F:(Tj,y)-F:(ij,e»), 

Kmn(y,y') = [y2j(y2 - e2)][G,:'m(y,y') - Gnm (e,y')]. 

(5.10') 

Equation (5.10) is a proper Fredholm's integral equa­
tion. Its kernel is regular and contains neither 6 
function nor derivative. By the iteration procedure a 
Born expansion can be obtained to yield the solution 

Y~n(Y) =f~(ij,y) + f; Icoo 
dY1 ... Ie"" dYi 

,=1 

X Knm (y, Y1)K n m (Y v Y2) ••• 

X Knm (Yi-1'Yi)f;:(~'Yi)' (5. 11) 

Now let us study the validity of the above equation. 
The regular Coulomb wavefunction is bounded, and 
goes to zero as yn+l as Y ~ O. These properties have 
been manifested in approximated forms of Eqs. (4. 7), 
(4.8), and (4.9). The factor Umn (y)y- 1Fn(ij,y) goes to 
zero at least like y-1 at y ~ co and cannot be more 
singular than y-2 at y = O. Then, along with Eq. (5. 10), 
we can find that the function f~ (Ti, y) is bounded by 

(5.12) 

where M is a constant. The irregular Coulomb wave­
function Gn (Tj, y) is unbounded only at the origin y = 0, 
and has the Singular behavior 

(5. 13) 

Such an unboundedness does not yield any difficulty in 
estimating each of the terms in the Born expansion 
(5. 11). The function Gn (ij, y) ~pears in the expansion 
through the Green's function Gn(y,y') and is accom­
panied by the function Fn(ij,y), which has (n + 1) zero 
as shown in Eq. (4. 7). In the combination the argu­
ment of the function F n (ij, y) is al.JIays smaller than 
the argument for the function Gn (r}, y). II!. other words 
the singular behavior of the function Gn (r} ,y) is sup­
pressed. Then the factor Umn(y)G~n(Y'Y') has the 
same type of singularity and asymptotic behavior as 
the factor Umn (y)y-l Fn (ij,y). Now it is easy to show 
that kerneIKmn(y,y') in Eq. (5.10) has the bound 

(5. 14) 
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where N is a constant. From Eqs. (5. 12) and (5. 14) 
one can conclude without any difficulty that the Born 
expansion is uniformly convergent for 

eN < 1. (5.15) 

The convergence verifies the validity of the Born ex­
pansion in Eq. (5. 11). 

From Eqs. (3.19), (5. 8), and (5.11) the final form for 
the radial function Y mn (y) can be expressed as 

Ymn(y) = (l/y)e iOn Fn(ij,y) 
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A lemma concerning irreducible representations contained in the decomposition of a direct product of irredu­
cible representations of simply reducible groups is generalized to arbitrary decomposable unitary and non­
unitary groups. 

I. INTRODUCTION 

In the application of group theory in physics the prob­
lem very often arises of decomposing a direct pro­
duct of two irreducible representation into a sum of 
irreducible parts. In the theory of solid state physics 
such a decomposition is required in defining selec­
tion rules in scattering processes in magnetic and 
nonmagnetic crystals. 1,2 A classical example of 
this is the addition of angular momentum in quan­
tum mechanics. Wigner,3 using a classification of 
irreducible representations given by Frobenius and 
Schur, proved a lemma concerning irreducible re­
presentations contained in the decomposition of a 
direct product of irreducible representations of 
simply reducible groups. The three-dimensional 
rotation group is a simply reducible group, and, for 
example, the fact that the addition of integer angular 
momenta does not contain half-integer momenta can 
be deduced directly from Wigner's lemma. 

The purpose of this work is to generalize Wigner's 
lemma. We first review the Frobenius and Schur 
classification of irreducible representations and 
Wigner's lemma for simply reducible groups. This 
lemma is then generalized to arbitrary decompos­
able unitary and nonunitary groups. 
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n. SIMPLY REDUCIBLE GROUPS 

Let ~ k denote the kth irreducible representation, and 
u the elements of a unitary group G. Frobenius and 
Schur have shown that the irreducible representa­
tions of the group G can be classified into three 
cases4 : 

Case A: ~k(u) is equivalent to ~k(u)* and poten­
tially real, Le., can be brought into real form. 

Case B: ~k(u) is equivalent to ~k(u)* and pseudo­
real, Le., can not be brought into real form. 

Case C: 6 k (u) is not equivalent to 6 k (u)*. 

For Cases A and B, ~k(u) is equivalent to ~k(U)*: 

~k(u)* = 13 k 1 (u )13 k 
and 

f3kf3k* = ekE, 

where C k = + 1 or - 1 for Cases A and B, respec­
tively. 

A group is called simply reducible if3: 

(1) Every element is equivalent to its reciprocal. 
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where N is a constant. From Eqs. (5. 12) and (5. 14) 
one can conclude without any difficulty that the Born 
expansion is uniformly convergent for 

eN < 1. (5.15) 

The convergence verifies the validity of the Born ex­
pansion in Eq. (5. 11). 

From Eqs. (3.19), (5. 8), and (5.11) the final form for 
the radial function Y mn (y) can be expressed as 

Ymn(y) = (l/y)e iOn Fn(ij,y) 
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cible representations of simply reducible groups is generalized to arbitrary decomposable unitary and non­
unitary groups. 

I. INTRODUCTION 

In the application of group theory in physics the prob­
lem very often arises of decomposing a direct pro­
duct of two irreducible representation into a sum of 
irreducible parts. In the theory of solid state physics 
such a decomposition is required in defining selec­
tion rules in scattering processes in magnetic and 
nonmagnetic crystals. 1,2 A classical example of 
this is the addition of angular momentum in quan­
tum mechanics. Wigner,3 using a classification of 
irreducible representations given by Frobenius and 
Schur, proved a lemma concerning irreducible re­
presentations contained in the decomposition of a 
direct product of irreducible representations of 
simply reducible groups. The three-dimensional 
rotation group is a simply reducible group, and, for 
example, the fact that the addition of integer angular 
momenta does not contain half-integer momenta can 
be deduced directly from Wigner's lemma. 

The purpose of this work is to generalize Wigner's 
lemma. We first review the Frobenius and Schur 
classification of irreducible representations and 
Wigner's lemma for simply reducible groups. This 
lemma is then generalized to arbitrary decompos­
able unitary and nonunitary groups. 
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n. SIMPLY REDUCIBLE GROUPS 

Let ~ k denote the kth irreducible representation, and 
u the elements of a unitary group G. Frobenius and 
Schur have shown that the irreducible representa­
tions of the group G can be classified into three 
cases4 : 

Case A: ~k(u) is equivalent to ~k(u)* and poten­
tially real, Le., can be brought into real form. 

Case B: ~k(u) is equivalent to ~k(u)* and pseudo­
real, Le., can not be brought into real form. 

Case C: 6 k (u) is not equivalent to 6 k (u)*. 

For Cases A and B, ~k(u) is equivalent to ~k(U)*: 

~k(u)* = 13 k 1 (u )13 k 
and 

f3kf3k* = ekE, 

where C k = + 1 or - 1 for Cases A and B, respec­
tively. 

A group is called simply reducible if3: 

(1) Every element is equivalent to its reciprocal. 
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(2) The direct product of any two irreducible 
representations contains no representation 
more than once. 

The first condition means that all irreducible re­
presentations of a simply reducible group are either 
Case A or Case B. 

The following lemma for simply reducible groups has 
been proven by Wigner 3 : 

Lemma 1: The direct product of two Case A or 
two Case B irreducible representations of a simply 
reducible group contains only Case A irreducible 
representations; the direct product of a Case A and 
Case B irreducible representation contains only Case 
B irreducible representations. 

ill. UNITARY GROUPS 

For an arbitrary decomposable unitary group G we 
prove the following lemma: 

Lemma 2: The direct product of two Case A or 
two Case B irreducible representations of an arbit­
rary decomposable unitary group G does not contain 
Case B irreducible representations; the direct pro­
duct of a Case A and a Case B irreducible represen­
tation does not contain Case A irreducible represen­
tations. 

The direct product, for example, of two Case A irre­
ducible representations contains only Case A or 
Case C irreducible representations, each represen­
tation possibly more than once. For simply reduc­
ible groups Lemma 2 is identical to Lemma 1. 

Proof of Lemma 2: We take the direct product 
t.(u) = t.i(u) x M(u), where t.i and t.j are either Case 
A or Case B irreducible representations, that is, 

(1) 

We show that if the decomposition of the direct pro­
duct contains the irreducible representation t.k equi­
valent to t.k *, 

then Ck = CPr 

The direct product t.(u) is decomposed via a simi­
larity transformation with a unitary matrix U: 

t.r(u) = U-1t.(u)U. 

We assume that t.r is in the following form 

t. = r 

(2) 

where t. k appears n times and is assumed to be equi-

valent to t.k*, i.e., is either a Case A or Case B irre­
ducible representation. 

Using (1), we have 

t.r(u)* = U-1t.(u)*U* 

= [U-l(f3i x {3j)U*]-lt. r (U)[U-l(f3i x {3j)U*]. 

Denoting U-l ({3i x [3 )U* by {3, we write the preceeding 
relation as 

t.r (u)* = {3-1t.r (u)[3, 

where [3[3* = CiCjE. 

(3) 

[3 is subdivided into blocks corresponding in dimen­
sion to the irreducible representations appearing in 
t.r: 

... " .) 
From (3) we have for i,j = 1,2, ... ,n 

The [3ij for i ::: n andj > n, andj ::: nand i > n, are 
zero for they connect nonequivalent irreducible re­
presentations. [3 therefore is of the form 

(31n o 
o [3n+l,n+l •.. 

(4) 

We consider now only the submatrix of [3 containing 
the_matrices {3ij' i,j = 1,2, ... ,n, and denote this 
by [3. From the properties of [3 we have 

and 

-
We will show that [3 can be transformed into the 
quasidiagonal form: 

From (2) and (5) we then have t.k* = QI- 1 t.kQl and 
QlQI* = CkE, and from (6) that QlO!* = CiC.E, thus 
giving Ck = CiCj proving Lemma 2. J 

(5) 

(6) 

The matrix ~ of relation (5) is not unique. (5) will 
remain unchanged under any similarity transforma­
tion with a unitary matrix of the form A x E, where 
E is of the same dimension as the irreducible re­
presentation t.k and A is an arbitrary unitary matrix 
of dimension n, the number of times t.k appears in 
(5).5 

J. Math. Phys., Vol. 13, No.9, September 1972 
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-
The matrix (3 can be replaced by 

(A x E)~ (7) 

without changing the form of relation (5). 

We seek a matrix A that will put (7) in the required 
quasidiagonal form. To ~o this, we look at the 
structure of the matrix f3. From (4) for i = j = 1 and 
for a general i and j 

~k(U)* = (3i"i~k(U)f311' 
~k(u)* = {3i/~k(U){3ij 

from which we have 

giving, by Schur's lemma, 6 {3 .. = A··(311,where A .. is a 
- 'J 'J 'J 

constant. f3 can be written now as 

Since both (3 and (311 are unitary matrices, A is also 
unitary. Finally, by choosing A = A-l, (7) takes on 
the required quasi diagonal form and the proof of 
Lemma 2 is complete. 

IV. NON UNITARY GROUPS 

A nonunitary group M contains elements half of 
which are unitary and half antiunitary. The unitary 
elements form ap invariant subgroup G of index two, 
and we can write M as 

where ao is a fixed antiunitary element. 

Corepresentations Dk of a nonunitary group Mare 
constructed in one of three ways depending on the 
following classification of the irreducible represen­
tations ~k of the unitary subgroup G 7 : 

Type I: ~k(U) is equivalent to ~k(a(luao)*' 
~k(a(luao)* = {3kl~k(u)(3k and (3k(3: = ~k(a15)· 

Type II: ~k(U) is equivalent to ~k(a(luao)*, 
6 k(ac/ua o)* = (3kl~k(u){3k but (3k f3 / = _~k (a (5). 

Type ill: ~k(u) is not equivalent to ~k(a(?uao)*. 

The three types of corepresentations corresponding 
to the above classification of the irreducible repre­
sentation of the unitary subgroup G are 7 

Type I: Dk(u) = ~k(U), 

Type II: 

Dk(U) = (~k(U) ), 
~k(U) 

J. Math. Phys., Vol. 13, No.9, September 1972 

T ABLE I: The number of times the corepresentation Dk is con­
tained i~ the direct produ.ct Di x Dj, denoted by C:j' is given in terms 
of the dij'the number of tImes the irred~cible representation llk is 
contained in the direct product lli x llj. Primed suffices, as in d

i 
•. , 

denote that the IrreducIble representation ll'(a-1ua )* replaces J 

lli(u) in the direct product. 0 0 

d~j 
II ~dtj 
III d~ 

II I 2dtj 

II II d~ 
II III 2d~ 

III dtj + dfj' 

III II Ylfj + !dfjl 
III III d~j + dfi' 

II II 4d~ 

II II II 2dfj 

II II III 4d~ 

II III 2d~ + 2d~, 
II III II d~ + dfj' 

II III III 2dtj + 2dtj, 

III III I dfj + dkij' + df, j + dt, i' 

III III II ~fj + !d~jf + !df'j + '2d~ljl 
III III III di~ + dfjl + df'j + df'jl 

The decomposition of direct products of two corepre­
sentations of a nonunitary group M can be analyzed 
in terms of the decomposition of direct products of 
irreducible representations of the unitary subgroup 
G. 

Let ct be the number of times the corepresentation 
Dk is contained in the direct product Di x Dj. qj is 
calculated froms 

6X(Di (u» X (Dj(u» X (Dk(u))* 
u ct = ------------------------

6X (Dk(U» X (Dk(u»* 
u 

(9) 

where X(Di(U)) is the trace of Di(u). The number of 
times an irreducible representation ~k of the sub­
group G of M is contained in the direct product ~i x 
M is denoted by di~ and calculated from 

dfj = (l/n) 6X(~i(1l)h(~j(u»X(~k(u))*, (10) 
u 

where lk is the dimension of ~k and n the order of 
the group G. 

By using the explicit form of the corepresentations 
(8), the qj defined by (9) can be written in terms of 
the di1 defined by (10). The explicit form of the rela­
tion depends on the type of the corepresentation 
Di,Dj, and Dk. The relations between the Cfj and the 
di;, taken from Ref. 9, are listed in Table I. 

We prove the following lemmas: 

Lemma 3: The direct product of two Type I or 
two Type II irreducible representations of the sub-
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group G of an arbitrary decomposable nonunitary 
group M = G + Gao does not contain Type II irre­
ducible representations; the direct product of a 
Type I and a Type II irreducible representation does 
not contain Type I irreducible representations. 

Lemma 4: The direct product of two Type I or 
two Type II corepresentations of an arbitrary de­
composable nonunitary group M does not contain 
Type II corepresentations; the direct product of a 
Type I and a Type II corepresentation does not con­
tain Type I {!orepresentations. 

Proof of Lemma 3: We take the direct product 
l:J, = l:J,i X l:J,j, where l:J, i and l:J,j are each either Type 
I or Type II irreducible representations of the sub­
group G of a nonunitary group M: 

1 R. J. Elliott and R. Loudon, J. Phys. Chern. Solids 15, 146 (1960). 
2 A. P. Cracknell, Prog. Theoret. Phys. 38,1252 (1967). 
3 E. P. Wigner, Amer. J. Math. 63,57 (1941). 
4 M. Hamermesh, Group Theory (Addison-Wesley, Reading, Mass., 

1962), p.139. 
5 G. F. Koster, Phys. Rev. 109, 227 (1958). 
6 Reference 4, p. 98. 

l:J,i(ao1ua o)* = f3ill:J,i(u)f3p 

l:J,j(ac?ua o)* = (3?l:J,j(u)(3j' 

f3; (3/ = Ci l:J,i(a5), 

(3jf3/ = Cj l:J,j(a5)' 

If the decomposition of the direct product contains 
the irreducible representation l:J,k(u) equivalent to 
l:J,k(aclua o)*, possibly more than once, 

then Ck = CiCj" The remainder of this proof is 
parallel to the proof of Lemma 2. 

The proof of Lemma 4 follows immediately from 
Lemma 3 and Table 1. 
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It is shown that the symmetrization of N particle states by means of the orthogonal units of the algebra of the 
symmetric group SN yields the Gel'fand basis states of the irreducible representations of U(3). The existence of 
generalizations of the Dirac identity is demonstrated, and a connection between the symmetrized two- and three­
body eXChange operators and the invariants of U(3) is established. 

INTRODUCTION 

The study of the unitary group U(3) and, more gene­
rally, of U(n) is of great interest to present day 
physics. Most well known is the successful classifi­
cation of the elementary particles according to the 
octet model as proposed by Gell-Mann and Ne'emanl 
in 1962. A physically different application of the 
theory of the unitary groups has been to the many 
particle system. In fact, a great deal of the develop­
ment of the theory-associated with the names of 
Racah and Wigner2-has been done towards the goal 
of classifying the electronic states in the atom. More 
recently, the theory of the unitary groups has been 
used to obtain approximate solutions of the nuclear 
many-body problem.3 

The study of the many-body system leads, in a rather 
natural manner, to consideration of the operations 
which permute the particles and, thus, to the introduc­
tion of the symmetric group SN' The connection be­
tween the two groups U(n) and SN has been known 
since the work of Young and Frobenius around 1900. 
Later, recognizing the importance of the concepts 
for quantum mechanics, Weyl4 continued research 
along these lines and laid the foundation for our pre­
sent understanding of the subject. He formulated the 
concept of duality and gave it an expression in a num­
ber of theorems. These early investigations have 
been concerned with the irreducible representations 
and have used the characters as tools. It was only 
within the past decade that a systematic investigation 

of the basis states has been taken up, pursued mainly 
by Biedenharn5 ,6 and also by Moshinsky7,8 and their 
collaborators. Yet, the relevance of the symmetric 
group for the Gel 'fand 9 states has been considered to 
a limited extent only. Moshinsky 1 0 showed that a 
certain class of Gel'fand states had a definite per­
mutational symmetry, and Ciftan and Biedenharnll 
and Ciftan12 used the concept of "hooks" (which origi­
nally has its proper meaning in the symmetric group) 
to construct the Gel'fand states of U(4). 

In the present paper we show that the duality between 
U(n) and SN can be extended to the individual basis 
states defined by the subgroup decomposition 6 U(n) ::> 
U(n - 1) J ... J U(l) on the one side and by an analo­
gous chain on the other side. It will be shown that the 
Gel 'fand states can be obtained by use of operations 
of SN only, thus supplying a link to the understanding 
of the hook structure concept for the unitary groups. 
In addition to their transformation properties under 
the unitary groups, the Gel 'fand states will be seen 
to transform like the basis states of the irreducible 
representations of SN' The situation will be pictured 
by introducing a "combined Young-Weyl tableau." 
As a first step we shall demonstrate the existence of 
generalizations of the Dirac identity13 which emerge 
naturally by considering the operations of both groups, 
U(n) and SN' in the same space. In this way we are 
led to explicit expressions for the fully symmetrized 
Majorana operator and the analogous three-body 
exchange operator in terms of the invariants of U(3). 

J. Math. Phys., Vol. 13, No.9, September 1972 
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group G of an arbitrary decomposable nonunitary 
group M = G + Gao does not contain Type II irre­
ducible representations; the direct product of a 
Type I and a Type II irreducible representation does 
not contain Type I irreducible representations. 

Lemma 4: The direct product of two Type I or 
two Type II corepresentations of an arbitrary de­
composable nonunitary group M does not contain 
Type II corepresentations; the direct product of a 
Type I and a Type II corepresentation does not con­
tain Type I {!orepresentations. 

Proof of Lemma 3: We take the direct product 
l:J, = l:J,i X l:J,j, where l:J, i and l:J,j are each either Type 
I or Type II irreducible representations of the sub­
group G of a nonunitary group M: 

1 R. J. Elliott and R. Loudon, J. Phys. Chern. Solids 15, 146 (1960). 
2 A. P. Cracknell, Prog. Theoret. Phys. 38,1252 (1967). 
3 E. P. Wigner, Amer. J. Math. 63,57 (1941). 
4 M. Hamermesh, Group Theory (Addison-Wesley, Reading, Mass., 

1962), p.139. 
5 G. F. Koster, Phys. Rev. 109, 227 (1958). 
6 Reference 4, p. 98. 

l:J,i(ao1ua o)* = f3ill:J,i(u)f3p 

l:J,j(ac?ua o)* = (3?l:J,j(u)(3j' 

f3; (3/ = Ci l:J,i(a5), 

(3jf3/ = Cj l:J,j(a5)' 

If the decomposition of the direct product contains 
the irreducible representation l:J,k(u) equivalent to 
l:J,k(aclua o)*, possibly more than once, 

then Ck = CiCj" The remainder of this proof is 
parallel to the proof of Lemma 2. 

The proof of Lemma 4 follows immediately from 
Lemma 3 and Table 1. 
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It is shown that the symmetrization of N particle states by means of the orthogonal units of the algebra of the 
symmetric group SN yields the Gel'fand basis states of the irreducible representations of U(3). The existence of 
generalizations of the Dirac identity is demonstrated, and a connection between the symmetrized two- and three­
body eXChange operators and the invariants of U(3) is established. 

INTRODUCTION 

The study of the unitary group U(3) and, more gene­
rally, of U(n) is of great interest to present day 
physics. Most well known is the successful classifi­
cation of the elementary particles according to the 
octet model as proposed by Gell-Mann and Ne'emanl 
in 1962. A physically different application of the 
theory of the unitary groups has been to the many 
particle system. In fact, a great deal of the develop­
ment of the theory-associated with the names of 
Racah and Wigner2-has been done towards the goal 
of classifying the electronic states in the atom. More 
recently, the theory of the unitary groups has been 
used to obtain approximate solutions of the nuclear 
many-body problem.3 

The study of the many-body system leads, in a rather 
natural manner, to consideration of the operations 
which permute the particles and, thus, to the introduc­
tion of the symmetric group SN' The connection be­
tween the two groups U(n) and SN has been known 
since the work of Young and Frobenius around 1900. 
Later, recognizing the importance of the concepts 
for quantum mechanics, Weyl4 continued research 
along these lines and laid the foundation for our pre­
sent understanding of the subject. He formulated the 
concept of duality and gave it an expression in a num­
ber of theorems. These early investigations have 
been concerned with the irreducible representations 
and have used the characters as tools. It was only 
within the past decade that a systematic investigation 

of the basis states has been taken up, pursued mainly 
by Biedenharn5 ,6 and also by Moshinsky7,8 and their 
collaborators. Yet, the relevance of the symmetric 
group for the Gel 'fand 9 states has been considered to 
a limited extent only. Moshinsky 1 0 showed that a 
certain class of Gel'fand states had a definite per­
mutational symmetry, and Ciftan and Biedenharnll 
and Ciftan12 used the concept of "hooks" (which origi­
nally has its proper meaning in the symmetric group) 
to construct the Gel'fand states of U(4). 

In the present paper we show that the duality between 
U(n) and SN can be extended to the individual basis 
states defined by the subgroup decomposition 6 U(n) ::> 
U(n - 1) J ... J U(l) on the one side and by an analo­
gous chain on the other side. It will be shown that the 
Gel 'fand states can be obtained by use of operations 
of SN only, thus supplying a link to the understanding 
of the hook structure concept for the unitary groups. 
In addition to their transformation properties under 
the unitary groups, the Gel 'fand states will be seen 
to transform like the basis states of the irreducible 
representations of SN' The situation will be pictured 
by introducing a "combined Young-Weyl tableau." 
As a first step we shall demonstrate the existence of 
generalizations of the Dirac identity13 which emerge 
naturally by considering the operations of both groups, 
U(n) and SN' in the same space. In this way we are 
led to explicit expressions for the fully symmetrized 
Majorana operator and the analogous three-body 
exchange operator in terms of the invariants of U(3). 
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The methods used draw from expositions of the 
properties of the algebra of 5N by Lowdin,14 and some 
applications to branching diagram functions by 
Goddard.15 

GENERALIZED DIRAC IDENTITIES FOR U(3) 

The Dirac identity13 constitutes a relation between 
operations of 5N and of 5U(2). It reads 

P 12 '= HI + a{I)' a(2)], (1) 

and expresses the permutation operator P 12 in terms 
of the generators of 5U(2). A well-known application 
is to the theory of ferromagnetism where the ex­
change energy is represented by the scalar product 
of spin vectors leading to the Heisenberg Hamiltonian. 
The Dirac identity has been discussed in various 
papers, and we may, e.g., refer to Lowdin,14 and to 
Biedenharn 16 for elementary discussion of the sub­
ject. Biedenharn, in fact, also indicates the possibility 
of generalization to three- and many-particle ex­
change operators. 

A different interpretation can be given to the Dirac 
identity by considering the operator for the total 
spin, which for an N -particle system is 

(2) 

Since L;Pij is the sum over all transpositions of 5N , 

it 1S useful to introduce the class operator C[2] as the 
"arithmetic mean" of all elements in the class, Le., 

C[2) '= [2/N(N - 1)] L; Pi' 
i<j J 

(3) 

and rewrite Eq. (2) as 

52 '= - iN(N - 4) + ~N(N - I)C[2). (4) 

Equation (4) constitutes an identity between the fully 
symmetrized exchange operator and the invariant 
of 5U(2). In the following we want to show that similar 
identities relate the class operators C(2) and C[3) to 
the invariants of U(3). 

Before we discuss the subject we define an explicit 
realization of the basis functions in terms of a Boson 
or a Fermion calculus. The possibility of this real­
ization is well known from the work of Jordan17 and 
has been used and further developed by Schwinger,IS 
by Baird and Biedenharn6 and by Moshinsky7 and 
others. The generators of U(3) can be expressed in 
terms of Boson or Fermion operators, 

N 

Eij = L; a-;(k)~(k), i,j = 1,2,3, 
k~l 

(5) 

and, by use of the commutation relations 

[ai(k), a/(l)]± = 0ijo kl' (6) 

can be shown to fulfill the defining relations for the 
Lie algebra 

[Eij,Ekd-'=0jkEi/-OilEkj' (7) 

An appropriate basis on which the generator as de­
fined by Eq. (5) act is given by 

li1 i 2 '" iN) '= a-;Y)ai
2
(2)'" aiN(N) I 0), (8) 

J. Math. Phys., Vol. 13, No.9, September 1972 

where ill i2 , ••• , iN = 1,2,3. In addition let us intro­
duce the operations U(T), T E 5N , which permute the 
particles. Explicitly19 

U (T ) IiI i 2 • • • iN) = liT (1)' i T (2)' ••• , i T (N) ) , 

for all T E SN' 

(9) 

Returning now to the invariants of U(3) we recall that 
there are two independent invariants, the second­
order Casimir invariant 

1~3) = 2[HI(HI + 1) + 3H2(H2 + 1) 

+ E21E12 + E 31E 13 + E 32 E 23 ], (10) 

where 

HI '= ~(Ell - E 22 ), H2 '= HEll + E22 - 2E33 ), 

(11) 
and the third-order Biedenharn5 invariant 

1~3) '= (2H2 + I)(HI -H2){HI + H2 + 1) 

+ (2H 1 + I)E21E 12 + (HI -H2)E31 E 13 

- (HI +H2)E32E23 + E12E31E23 + E21E32E13' 

(12) 
defined by means of the symmetric coupling coeffi­
cients. By introducing the class operators 

C[2] '= [2/N{N - 1)] L; U{ij), (13) 
i<j 

C[3) = [1/2(~)] L; [U(ijk) + U(jik)], (14) 
i<j<k 

it can be shown that the following operator identities 
hold: 

1~3) '= - t N(N - 9) + N(N - 1) 0 2), (15) 

1(3) '=.!.. N(4N2 - 27N + 63) - !N(N -1)(2N - 9)0 2) 
3 54 6 

+ t N(N - 1)(N - 2) C[3) . (16) 

The proof of these relations can be given by explicit 
application to all basis states. Here, we only remark 
that it is sufficient to check the result for the states 
IiI"'; i2 .,,; ... .,,; iN)' The rest of the basis can be 
obtained by the operations U(T), T E 5N which commute 
with the invariants on account of their being sym­
metric functions. 

The relations (15) and (16) constitute generalizations 
of the Dirac identity equation (4). In physical appli­
cation the emphasis may be put on reading the equa­
tions from right to left. Solving for C[2) and C[3] we 
obtain expressions for the symmetrized Majorana 
operator and for the three-body eXChange operator in 
terms of the invariants of U(3).20 

THE GEL'FAND BASIS 

The task of the representation theory is to reduce the 
N -particle space as defined by the basis states equa­
tion (8) into its irreducible components. It is well 
known that the reduction of the tensor space can be 
achieved by the operations of the symmetric group. 
Graphically this is expressed by using the Young 
frame to characterize the irreducible representations 
of U(3). The basis states within the various irre­
ducible representations are known as the Gel'fand 
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states and are defined by means of the subgroup de­
composition5 U(3) J U(2) J U(I). The appropriate 
quantum numbers are defined by the weights and by 
the eigenvalues of the invariants of the group and its 
subgroups and may be pictured by means of the Gel' 
fand pattern 

where the mij are positive integers limited to the 
range m i+1 ,j+1-'S mij -'S m i ,j+1' Alternatively, the mij 

(17) 

may be visualized in the Weyl tableau, which is a 
Young frame lexically filled with the integers 1,2,3. 
For further development, it is important to note that 
the Weyl tableau as defined is a mnemonic device to 
label the states in a manner equivalent to the Gel'fand 
pattern and does not give a prescription for construct­
ing the states explicitly as a boson or fermion opera­
tor polynomial. The constructive aspect, however, is 
an important one. For U(3), Baird and BiedenharnB 
solved the problem by showing that the" semimaxi­
mal" state (m 11 = m 12) is a single monomial in the 
boson creation operators and obtained the general 
state by use of the lowering operator E 21 • More gene­
ral methods have been devised by Moshinsky and 
Nagel,8 and also by Ciftan and Biedenharn.11 

In the present paper we want to show that the Gel 'fand 
states can be obtained by appropriate symmetrization, 
thereby extending the concept of duality to the indivi­
dual states of the basis. We make use of a set of 
idempotents which are known as the orthogonal units 
of the algebra of SN' Discussion are found in many 
books21 ,22 on the algebraic treatment of SN' We 
briefly recall some of their properties. The orthogo­
nal units are linear combinations of permutation 
operators, in which the matrix elements of the irre­
ducible representations of SN figure as coeffiCients, 
Le., 

Ofs = /11 6 Dfs(T)U(r). (18) 
TESN 

The notation, which is essentially that of Ruther­
ford,21 is as follows: IJ. is a partition of N and charac­
terizes the irreducible representation of dimenSion 
p. The individual matrix elements Dfs (T) are labeled 
by means of lexical Young tableaux rand s. A basic 
property of these representation matrices (and hence 
of the orthogonal units) is that they decompose into 
irreducible submatrices upon restricting SN to SN-1' 
Numerical values for the matrices of the generating 
elements (k - 1, k) are given in the textbooks. The 
fundamental multiplication rule for the orthogonal 
units is the following: 

(19) 

We are now prepared to show that the states 
Ofsl i1 .. , iN) are the Gel'fand basis states I (m) apart 
from a normalization factor, i.e., 

(20) 

where (m) is a short-hand notation for the Gel'fand 
pattern (17). The proof of this assertion is straight­
forward and makes use of the operator identities (15) 

and (16) and the property of the orthogonal units to be 
eigenoperators of the class operators,14 Le., 

(21) 

where X1Al is the character of the class [,\] in the 
irreducible representation IJ. of SN' With the forms 
(15) and (16) of the U(3) invariants, it is immediately 
clear that the states are eigenstates as should be. In 
order to identify the states as the correct Gel'fand 
states, the crucial test is to show that they are also 
eigenstates of the U(2) invariant I~2). Since this does 
not seem to be as obviOUS we sketch the proof. 

Proof: Let the state Ofs \ i 1 ... iN) be such that N 1 
indices have the numerical value 1, N 2 the value 2, 
and N 3 of them the value 3. As shown in the Appendix 
we may choose i1 ::0 i2 ::0 ••• ::0 iN without loss of gene­
rality. Thus, the first set of N' = N 1 + N 2 indices has 
the numerical values 1 and 2. We should remark now 
that the class operator C[ 2l which occurs in the Dirac 
identity Eq. (4) is defined over the subgroup SN' of 
SN' and not over SN' We may write 

C[2l= (1/N'!) 6 U{T')U(12)U(T'-1), (22) 
T'ESN , 

where (12) stands typically for a transposition. With 
this form for C[2l and the expansion (18) for Ofs' we 
can investigate the product C[2]0,Ps' Making use of 
the group property of U(T), U(T')U(12)U(r'-1)U(r) == 
U[T'(12)T'-1r ], and changing variables a = r'(12)r'-1r , 
we are led to 

C[ 2lOfs == (f~/N'!) 6 6D;:.Jr'(12)r'-1]D~s(a)U(a). 
a, T' U 

(23) 
For further evaluation we write this expression as 

6 Dfu[r'(12)r'-1] =6 6Dfk')D¥v(12)D~u(r'-1). (24) 
T' T' t.v 

At this point it is essential to note that the represen­
tation matrices Dil are so constructed that they de­
compose into irreducible submatrices-Le., blocks on 
the diagonal, zeros elsewhere-upon restricting SN to 
any of its subgroups in the chain SN J SN-1 :::) ... J S1' 
This property holds in particular for all r' E SN" 
Thus, in the expression above the sums over t and v 
are effective only over the states of the irreducible 
representations of the subgroup SN' and can be worked 
out, using 

'" DIl' (r')DIl' (r'-1) = (N" Ifll')o 0 L.J rtf v'u °IJ t'v' ru· 
T' 

Here, IJ.' is the irreducible representation of SN' 
which occurs in the sum IJ. == 6IJ.' and has r among 
its basis vectors. The primes have been added to t 
and v to indicate their restricted ranges. Inserting 
the result into Eq. (23) we find 

(25) 

which proves Ofs to be an eigenoperator of C[2] and, 
hence, the states Ofs I i 1 ... iN> to be eigenstates of 
I~2). 

Equation (20) states that the Gel'fand states can be 
obtained by means of the orthogonal units and, in fact, 
possess a further property: In addition to the m. 

'J 
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which identify the states within the unitary group, the 
Young tableau r defines their permutational symmetry. 
The situation may be pictured in a tableau which 
indicates the symmetry properties by the name oj 
the indices ("Young tableau") and the unitary proper­
ties by their numerical values ("Weyl tableau"). For 
clarity we give an example 

GT~) 
Young tableau Weyl tableau 

Combined 

We call the tableau defined above a combined Young­
Weyl tableau. It defines the properties of the state 
under transformations of SN as well as under trans­
formations of U(n) and stresses the concept of duality 
at the level of states. 

We can now apply the operator identities (15) and (16) 
to the properly symmetrized states and obtain by use 
of Eq. (21) a relation between the eigenvalues of the 
invariants of U(3) and the characters of SN' 

We conclude by remarking that we expect the results 
to generalize to the case of U(n) also. For U(4), in 
particular, the Gel'fand states have already been 
proven to have a definite permutational symmetry, 
since it is clear that the states 0t'sl i 1 •.• iN)' 
ill ... , i N= 1, 2, 3, 4 belong to a U(4) multiplet, the 
rest being dedUCible from the generalized Dirac 
identities of U(3) and U(2). 
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APPENDIX 

For practical purposes it is useful to adopt several 
conventions. Given a certain state 1 i1 i2 ... iN> the 
fully reduced basis is obtained by application of all 
possible 0fs' An entirely equivalent reduction re­
sults, if instead we apply 0fs to U(T)I i1 ••• iN> = 
1 i T (1)' ••• , iT (N»' In other words, we see that the 
reduction is unique only up to an equivalence. In 
order to make a specific choice we use 

(AI) 

A further convention seems useful. First we note that 
the states Ofsl i1 ... iN> for fixed s transform accord­
ing to irreducible representation of SN' i.e., 

U(a)Ofslil'" iN> = ~ Dty(a)Otslil'" iN>' (A2) 
u 

* This work was carried out in part during the author's stay at the 
Sektion PhYSik, Universitlit Munchen, Munich, Germany. 
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Let the indices il' i 2 , ••• , iNtake on all the values 
1,2, ... ,N. Then,it is clear that 0fslil'" .,iN > con­
stitutes the reduction of the regular representation 
of SN as s is varied over all possible standard Young 
tableaux (r of course also). In general, however, if 
the numerical values of iI' ... ,iN are restricted as 
in the U(3) case, we cannot expect to find all possible 
symmetry classes present. More explicitly, it will 
be found that certain Ofsl i 1 ••. iN> may be zero; 
others may be proportional to one another. The rules 
are as follows and can be proven straightforwardly. 14 
Let s stand for a standard Young tableau consisting 
of N boxes with the numbers 1,2, ... ,N inserted 
lexically. Now, if we insert the num erical values of 
ill i 2 , ••• ,i N in place of 1,2, ... ,N a Weyl tableau is 
obtained. Moreover, (i) 0fsl i1 ... iN) = 0 if the Weyl 
tableau has two identical integers in the same column, 
and (ii) 0fslil'" iN> = const 0fslil'" iN> if the two 
Weyl tableaux resulting from sand s' are identical. 

The situation may be visualized by using a tableau 
similar to the combined Young-Weyl tableau which 
shows both the name of the index and its numerical 
value in each box. We give two examples to demon­
strate the rules above: 

i2 = 2 I 
= 0 according to (i). 

f-l_'1_=_1---j __ i 3_-_-_
3-1)' 

i2 = 3 

according to (ii). 

In order to obtain a unique set of nonzero states, we 
adopt the following convention consistent with (AI): 
We draw a Weyl tableau according to the Gel 'fand 
pattern (m) and insert the indices il' i 2 , •.• , iN to 
yield a Young-Weyl tableau. The first few indices 
will be associated with the 1 's in the first row, the 
next set with the l' s in the second row, etc., until all 
the 1 's are saturated. Then we start with the 2's in 
the first row and continue as before, and finally, we 
proceed with the 3' s in the same manner. The follow­
ing example should make this clear: 

i 1 = 1 i2 = 1 i3 = 2 I i5 = 3 J 
i4 = 2 is = 3 

i 7 = 3 

From the tableau so obtained, we deduce sand (m) 
such that 
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It is shown that the Lauricella functions FD in n variables transform as basis vectors corresponding to irredu­
cible representations of the Lie algebra sl(n + 3, C). Group representation theory can then be applied to derive 
addition theorems, transformation formulas, and generating functions for the FD • It is clear from this analySis 
that the use of SL (rn, C) symmetry in atomic and elementary particle phySics will lead inevitably to the re­
markable functions FD • 

INTRODUCTION 

In a recent paper, 1 Ciftan has shown that the Appell 
function F1 arises naturally from a study of the re­
presentation theory of the special linear groups. The 
author proved in Ref. 2 that this was due to the fact 
that SL (5, C) was the dynamical symmetry group of 
Fl' Here we generalize this observation by demon­
strating that SL (n + 3, C) is the dynamical symmetry 
group of the Lauricella functions FD in n variables 
(Recall that F1 is an FD with n = 2). We further show 
that exploitation of the SL(n + 3,C) symmetry yields 
elegant and simple derivations of addition theorems, 
transformation formulas, and generating functions 
for the FD • It follows from this analYSis that the 
implementation of SL (m, C) symmetry in atomic and 
particle physics will necessarily lead to the func­
tions FD • 

The methods employed in this paper are rather 
straightforward generalizations of those employed 
in Refs. 2 and 3. 

1. THE DYNAMICAL SYMMETRY GROUP 

The Lauricella function FD is defined by the series 

FD(a;b1 ,.· .,bn;c;xlI •• .,xn) 

I; (a,ml + ... + mn )(b1 ,m1 )" ·(bn,mn ) 

ml ... mj~O (c,m1 + ... + mn )m1 !" 'mn ! 

convergent for I Xli < 1, ... , I xn I < 1.4 •5 

Here, 

(a, n) = a(a + 1) .•• (a + n - 1) = (a)n' 

(1. 1) 

(1. 2) 

and it is assumed that C '" 0,- 1,- 2,···. We de­
fine the following partial differential operators act-

ing on a space of functions of 2n + 2 complex vari­
ables,s,u1,··· ,un,t,x1,.· "xn: 

Ea = s( t xjax . + sas), E aBky = S1t kta
xk

, 
]=1 J 

EBk = Uk (xkax + Ukau), E_y = t-1(t XjO x + lat - 1), 
k k J~l J 

Eay = st(.t (1 - x).)ax . - sOs), 
)~ 1 ) 

E_a = s-l( t xj (l - Xj)ax . + tat - Sa s - t Xpj au.), 
j ~1 ) j ~1 J 

E-B = u-;'l(Xk(1 - xk)a + Xk 6 (1 - x.)a . k Xk j t'k ) x) 

+ tat - xksas - t lIha ), 
h~l Uk 

EBky =ukt«(xk -1)a
xk 

+ukaUk )' 

E_ a._ y = s-lt-l( t xj (1 - x).)a . - t x.uau . + lat - 1), 
j ~l x) j ~1 J) J 

JB = u,,0u - ttat + t 6 uJ.ou.' 
k k jik J 
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Jy = tOt - ~(sas + t ujou_ + 1), k,P=I,2, ... ,n. 
J=l J 

(1. 3) 

We define basis functions fc,.13 l' .•. • Iln.y (s, u1' ••• , un' 
t,xv ... ,xn) in this space by 

fa.1l1 ..... 8n.Y(S'UI' ••• ,un,t,xI ,· •• Xn) =fal3jy(s,t~,t,Xj) 

= [r(y - a )r(a)/r(y)] F D (a; f3:t, ••• , f3n; y;Xv ... , xn) 

xsau~l ••• u~n(Y, (1.4) 

where y ;" 0, - 1, - 2, ... and r(z) is the gamma 
function. 6 The action of the above operators on the 
basis functions is 

Eafa.13j'Y = (y - a - l)fa+I .13j'Y' 

EaBk"/a.BpY = f3kfa+ I •Bk ,"y+l, 

E13kfa,l3j'''I = f3kfa,sk'Y , 

E_./a.13j''1 = (y - 01 - l)fa'13j'y-l, 

Eayfa.B',r =( t {3j - y)fa+1.B .. }'+V 
J )=1 J 

Ey!a.Il .• y = (y - t (3)fa .Il .• y+1' 
J J =1 1 J 

E-a f a.13j'y = (01 - 1)fa-up)" 

KBkfa.llj')' = (Y - Rl !3i)fa.Bk .y , 

E8k Y!a.Sj'Y = f3"fa •Bk,y+l' 

E-a.-yfa.sj'Y = (01 - 1)fa- l •sj'r l , 

E-a.-Bk.-yj~.f3j'Y = (1- 0I)fa-1.Bk.)'-1, 

Kl3knfa.sj'Y = (01 - Y + l)fa•f3 k.y-1' 

'Eak.-Bpfa.llj.y = f3 kf a.81' .... 8k+1. ... .I3p-I ..... l3n.}' , 

J !, - (01 - 1....,)!, a a.8j'Y - 2 I a.Bj'Y' 

Jskf a 8-.'1 = (13k - -h + t L; (31)fa 8 ·.y' 
• J Ilk' J 

Jafa.l3j'''I = [')I - t(a + ~f31 + I)Jfa•8j ."I' 

k,p = 1,2, ... ,no (1. 5) 

(Here the E operators and the J operators are inde­
pendent of the parameters 01, 13 j ,y. The subscripts 
merely indicate the action of these operators.) The 
symbols i k and $k are defined by 

i k = f3:t •••• ,f3k-l>{3k + 1, {3k+l> ••• ,{3n' 

13k i3t .... , 13k-I' 13k - 1, f3 k+ l' ... , f3n • (1. 6) 

Relations (1. 5) can be verified by routine computa­
tion. Furthermore, it is straightforward to show that 
the operators (1. 3) form a basis for a simple Lie 
algebra of dimension (n + 3)2 - 1, i.e., a baSis for 
sl(rt + 3,C). 

To determine the group action of SL(n + 3,C) induced 
by the operators (1. 3), we note that each of the trip­
lets 
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{J+,J-,J3} == {Ea, E_a,..r.}, 

{ESk' K Sk, Js), {E.y, E_ y ' Jy}, 

{EaSkY ' E_a .-l3 k ._y' Ja + Jek + Jy}, 

{Eay , Kan,Ja + Jy}, {E13ky , KSk.-y,JSk + Jy}, 

k = 1, ... ,n, 1 :s 1 < p :s n, 
(1.7) 

satisfies the commutation relations 

(1. 8) 

and forms a basis for a subalgebra of sl (n + 3, C) 
isomorphic to sl(2, C). Furthermore, each triplet 
generates a local Lie subgroup of SL (n + 3, C) iso­
morphic to SL(2, C) and the subgroups so obtained 
suffice to generate the full group action of SL(n + 3, 
C). 

We pass from the Lie algebra action generated by 
{J+,J-,J3} to the group action via the relation 

T(A) = exp[- (b/d)J+) exp(- edJ-) exp(TJ3), 

e T / 2 = d- l , 

where 

A = (~ ~) E SL{2,C), ad - be = 1; 

see Ref. 7. We find that the triplet {Ea ,E_a,Ja} 
generates the group action 

T1 (A)f(s,ul' ••• ,un,t,xl , ••• ,xn ) 

(
as + e uj(as + e) ts 

=f d + bs ' as + e(l - x:.}' as + e ' 
J 

x·s 

(d + bs)(a~ - cXj + e) ) 

and the triplet {E)3 k E_Jj k ,J)3 k } 

T 2.k(A )f(s, Uj, Uk' t, Xj' Xk) 

f. s(auk + e) Uj aUk + e 
=\aUk + e(l - Xk) , Uk (aUk + C), d + bUk ' 

ukt aukxj + e(xj - Xk) 

auk + e' aUk + e(l - Xk) , 

(1. 9) 

(1.10) 

(1.11) 

XkUk ) 
(d + buk)(au

k
- eX

k 
+ e) • (1.12) 

In (1.11) the indexj runs from 1 to n, but in (1.12) j 
runs from 1 to n excluding k. The triplet {Ey ' Ky,Jy} 
generates 

T 3(A)f(s, uj , t,xj ) 

= (a + i-)-1 f(S(d + btl, uj(d + btl, ~t ++b~' 
[dxj - bt(1 - Xj)] (a + 7-)) , (1.13) 

the triplet {EaSkY' E- a .-)3k.-y,Ja + JBk + Jy} generates 

T4•k(A)j(s,ujluk , t,xj,xk) 

( 
e(1 - Xk»)-l ( eXk l asu/ - eXk ) 

= a+ ukts fas-u/'Uj\aSukt+e(~-Xk)' 
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CXk (asui + c(1 - Xk») (asukt + c(1 - Xk») 
au -- t x· k st' asukt - cXk 'J asukt + c(Xj - xk) , 

(x kd - bsukt)(a + C - CXk») , (1. 14) 

the triplet {Eay,E-a.-y' Ja + Jy} generates 

T5 (A)f(s, Uj, t, x) 

= (a - s~yl fe _Sbst 

(dxj - bst)(ast - C») 

(ast - cx)(d - bstj , 

the triplet {E13ky , K Bk.-r,J13k + Jy} generates 

T6 ,k (A)f(s, Uj , Uk, t, JS, Xk) 

( C)-l (sukt Uk 
= a + ut f aUk t + CXk 'Uj'd + bukt' 

(1.15) 

c xj(aukt + c) (dx k + bukt)(aukt + C») 
at + Uk' aukt + CXk ' (d + bukt)(aukt + CXk) , 

(1. 16) 

and the triplet {Eo _0 ,Ko 0 ,Jo - JQ } generates 
"k' "p "k '''p "k "p 

T7 ,k,p (A)f(s, uj , up, t, Xj' Xk , Xp) 

( 
UkUp Up Uk 

=f S, Uj' du + bu 'au + cu ,t, 
p k k P 

dxkup + bXpuk aXpuk + CXkUp ) 
Xj , du + bu 'au + cu ' P k k P 

l~k<p~n. (1.17) 
Let 

1 ~ k ~ n. (1.18) 

It is straightforward to check that the solutionf of 
the simultaneous equations 

{f = (0' -h)f, J13 / = (13k - h + ~"6 {3~f, 
If k 1 

Jyf = [Y - ~ (0' + ~{31 + 1)] f, 
Ckf= 0, k = 1, ... ,n, (1. 19) 

analytic in a neighborhood of xl = Xz = . .. = xn = ° 
is 

f = F D(O'; {3l! ••• , {3n; Y; xl! ••• ,xn)saufl. .. u:nta , (1. 20) 

unique to within a multiplicative constant. In fact the 
first n + 2 equations imply 

f = F(x1, ••• ,xn)saUf1 ••• u~ntY 

and the last n imply 

I.(t xj 3x . + 
~ J=l J 

= 0, k = 1, ... ,n (1. 21) 

which are the partial differential equations for F D. 4 

The operators C k do not commute with all the ele­
ments of sl(n + 3, C), but each such element maps a 

solutionf of Ckf = 0, k = 1, ... , n, into another solu­
tion. It follows that the operators Tj(A) also map 
solutions into solutions. Furthermore, iff(s,uj, t,xj ) 
is a solution of C kf = 0, k = 1, ... , n, which has a 
Laurent expansion 

f ="6 gafJ.Y (x)sau~l. .. u:ntY, (1. 22) 
a,l3j ,y J 

and iff is analytic at Xl = Xz = ... = xn = 0, then it 
follows from the above remarks that 

gal3.y = k(O'{3/y)FD(O'j {3l' ••• , {3nj yjXv ••• ,xn ), 
J 

(1. 23) 

where k(O'{3jY) is a constant. 

Let 0'0, {3F, I' 0, 1 ~ j ::0 n, be fixed complex numbers, 
not integers, and let 0' = 0'0 + h, {3j = f3F + nj , I' = 
y0 + m, where b,nj , m run over all integers. The 
basis vectors {f afJjY}, (1. 4), and operators (1. 3) de-

fine an infinite-dimensional irreducible representa­
tionp(O'o,{3F,yO) of sl(rl + 3,e). Using operators 
(1. 10)- (1. 17), we can extend this Lie algebra repre­
sentation to a local group representation of S L (n + 
3,e). 

In order to compute the matrix elements of this 
group representation with respect to the basis func­
tions {fal3jy }, it is useful to consider the following 
simple realization of p(O'o, f3F, 1'0) in terms of differ­
ential operators in n + 2 complex variables: s, uI , 

••• , un' t. The basis functions in this new model are 

(1. 24) 

and the Lie derivatives are 

E = s-lt- 1 (s3 - 1) -a,-y s' 

JfJ =uk 3u -~tat+~"6uzau 
k k 11k k' 

Jy =tOt-~(sas +t uz3u + 1). 
/= 1 

(1. 25) 

As is simple to verify, these operators and basis 
functions satisfy relations (1. 5), so that they deter­
mine a model of p(O'0, f3j O, 1'0). We extend this model 
to encompass the group action by computing the 
operators ~ (A) analogous to (1. 11)- (1. 17): 

Tl (A)f(s, l), t) 

= (d - bS)-l(a -f)-l f(c;/--b~ ,uj ' t(d - bS»), 
J. Math. Phys., Vol. 13, No.9, September 1972 
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T2.k(A)!(s,uj ,Uk,t) =!(s,Uj(a + l~J,:U; ;U: 'au:£~ e)' 
T3(A)!(s,uj ,t) = (a +f)-1 !(at~ e ,uj(d + bt),~t+\~), 

T4 •k(A)!(s, Uj , uk' t) 

= (a + SU:t r1f
(as + U:t ' 

T5 (A)!(s, l~, t) 

( C) -1 (e t ) = a - Sf ! as -T' u/d - bst), d _ bst ' 

T7•k ,p(A)!(s, Yj,U k , Up' t) = (d _ ~;k r1 

(a - e ~t:y1 
x !(8, Uj , aUk- CUp, dup - bUk' f). (1.26) 

The matrix elements corresponding to a representa­
tion T(A) of SL (2, C) induced by a triplet {J+, J-, J3} 
acting on a basis! m according to the rule 

J±!m=(-w±m)!mtl1 J3!m=m!m' WEC, (1.27) 

have been computed many times before.7 The result 
is 

w+ m +,,"' w-m -n n-n' r(w + mo + n + 1) 
Tn",(A) = a 0 dOe r(w + 1110 + n' + 1) 

2l'i (- w - 11'lo - n',- w + mo + n;n - n' + 1; be/ad) 
x--------------~~--~~~--------------r(n - n' + 1) , 

where 
(1. 28) 

n = 0, ± 1, ± 2, ... , 

(1. 29) 

and A is in a sufficiently small neighborhood of the 
identity element. From this result it is easy to com­
pute the matrix elements of each of the operators 
(1.11)-(1.17). 

For more complicated group elements, however, the 
model (1. 26) is very convenient. Consider the (2n + 
3)-dimensional complex Lie algebra G with basis 
{J+,J-,J3, ~+, ~-, j = 1, ... ,n} and commutation 
relations 

[J3,J±] = ± J±, [J+,J-] = 2J3, 

[J+, E;J = - EJ+, [J-, EJ+] = - Ej-, 

[J+,~+] = [J-, E;] = 0, 

[J3,EJ±] = ±~EJ±,[E/ ,Ei;J = 0, 

[~+,Ek]= [Ei ,Ek ]= 0, j,k = 1, .•• ,n. (1.30) 

This is the Lie algebra of the group G of (n +2) X 
(n + 2) matrices 

(
Ai g(1), ... , g(n») 

{A, g(l), .•• ,g(n)} ~--1------~:-----' 

A S (2 ) (k) 
E L ,C, gl EC, 

J. Math. Phys., Vol. 13, No.9, September 1972 

(1. 31) 

and multiplication law 

{A, g(j)}{A', g' (j)} = {AA', Ag' (j) + g (j)} • (1. 32) 

Here g (j) = {g ij), g~j)} is a column 2-vector and En is 
the n x n identity matrix. The Lie algebra g is rela­
ted to G by the expression 

{A, gU)}= exp(gi1)E~ + g2(1)E~) . .• exp(gl(n)E; + g2(n)En-) 

X exp[- (b/d)i] exp(- edJ-) exp(TJ3), 

(1. 33) 

The Lie algebra g can be embedded as a subalgebra 
of sl (n + 3, C) in many distinct ways, but for purposes 
of illustration we consider only the example {J+, J-, 
J3,E/,Ej-} == {Ea' E-a,Ja,Eal3{y,EI3/}' Using this 

embedding, we compute the action of G in our (n + 2)­
variable model: 

(1. 34) 

00 

T{A (j)}+ - "" T(A (j»k'nf,m' f ,g 'h.n.m - L..J ,g kn.m Jh'nk'm" 
J k'nk.m~-oo J 

(1. 35) 
or 

n 
unless nJ::=: nj , j = 1, ... ,n, and m' - m = 6 (n'; - nj); 

}~1 

(1.36) 

T(A, g(J»:;/,;,n k + Ik,m+J;lj = (- f3ql; ~) ... (- f3no z:: nn) 
x r(1 - k - a O - h) [_ g~I)]ll ••• [_ g~n)]ln aa-1dy-a-1 

r(1 - a O - h) 

(a/e)k 11. . 
x r(1 _ k) FD~ - k - a,-ll"" ,-In' a - y + 1, 

(1) (n) 

l-k' ~ -g1 e be) 
, (1) , ••• , (n) 'ad' 

g2 a g2 a 

The group property (1. 32) leads immediately to the 
addition theorem 

T{AB,Ah(j) + g(J)}::~mf = 6 T{A, g(j)}:~:~m' 
J HNsM 

x T{B h(j)}HNsM (1. 37) 
, k"jm 

for the FD • 

Equation (1. 35) with matrix elements (1. 36) is also 
valid for the (2n + 2)-variable model. In this case 
the basis functions are given by (1. 4) and the opera­
tor T{A, g (j)} by 
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(
as + e 

T{A,g(j)}!(s,uj,t,xj ) =! d +bs' 

l~(as + c) is 

as (1 - g?)ujt) + e (1 - Xj - gf>Sujt' as + e' 

J 01"7 "'2"J 
s(x- + (j(j)s1d -(J'(j)1d) ) 

2. TRANSFORMATION FORMULAS AND 
GENERATING FUNCTIONS 

We next show that the transformation formulas for 
the Fn are consequences of the SL(n + 3,C) sym­
metry. Let 

I =(_ ~ ~)E SL(2,C). (2.1) 

Expressions (1.4) and (1. 11) imply 

Tl (I)!afl-y = (- l)a+r [r(-y - a)r(a)/r(y)] 
J 

xFn (a; f3j ;y,x/(x] - 1»(1 - x1 )
J3
1.·· 

X(l-x )-Bns-a'Yufl 1 ••• uflntY 
n 1 n' (2.2} 

However, Tl (I)!aB.Y is a simultaneous eigenfunction 
J 

of Ja,Jfl , ••• ,JB ,Jr, analytic at xl = ... = xn = O. 
I n 

Thus, 

T1(I)!aBy = kFD(y - a;Pj;y;Xj)s-a+Yufl ••• u~n(Y. (2.3) 
J 

Setting Xl = ... = x" = 0 in (2.2) and (2.3), we can 
evaluate the constant k and obtain the transformation 
formula 

(1 - x1rB1 ••• (1 - xnrBnFD(a ;Pj;y;x/(x
j 

- 1) 

=Fn(y-a;f3j ;y;x).4 (2.4) 

Similarly, T2 •k(I)!a6.y yields the formulas 
J 

(1 - xk)-aFD(a; !3j , (3k; y; (xk - X)/(Xk - 1), x/(x k - 1» 

k::::l, ••• ,n. 
(2.5) 

The remaining transformation formulas for the FD 
can be obtained by composition from (2.4) and (2. 5). 

Computing T3 (I)!aJ3Y' we find that 
J 

F n(a; f3j; a + 6 f3j - y + 1; 1 - Xj) 
J 

(2.6) 

is a solution of Eqs. (1. 21), analytic at xl :::: ••• == Xn 
= 1. Computing T 5 (I)faB.y ' we see that 

J 

X;:Bl • • ,x,~B" Fn (6f3z - y + 1; Pj ; 6!31 - a + 1; x/) 
Z I 

(2.7) 
is another solution of (1. 21). Similarly, T6.k(I)j~5 y 
yields the solution j 

(2.8) 

For A close to the identity in SL (2, c) the expres­
sions 'lj,k(A)!aBjY can be expanded by use of the 

matrix elements (1. 28). However, for A far from the 
identity, say A :::: I, these expansions are no longer 
valid. For example, 

( 
s Xj +est) 

(expeEay)f(s, uj , t,xj ) =! 1 + cst' uj ' t, 1 + cst . 

For I c I small we find 
(2.9) 

(expeEay)!aB.Y = i3 (i(f3hl - y)! a+h.B .. y+h e h, 
J heQ J 

i.e., 

(1 + e)-aFn(a; f3j ;y; Xi : cJ= h~Q (PP~ - y) 

x i;i~ FD(a + h;{3j;Y + h;x)e h
, lei < 1. (2.10) 

If c = 1 and IT I < 1, where T = s-lt- l , then (expEar ) 
(Q isnotanalyHcatx1 ='" =X =T=O. However 

J"''"'jY n' 
we can apply expEa8 to the solution (2.6) and use 
(1. 22), (1. 23) to obtain 

(1 + T )-a Fn(a; Pj ; a + 6!3l - y + 1; T(1 - xj )/(1 + T») 
00 

=6 ChFD(-h;f3j;y-a-h;xj)Th. (2.11) 
heQ 

To evaluate the constants Ch , we set Xl = ... xn = 0: 

(1 +T)-aFn(a,f3j;a +6{3I-y + 1;T/(1 +T» 
z 

= (1 + T)-a 2 F1(a,6{3z; a + 6f31 - y + I;T/(1 + T» 
1 I 

Thus, 

Ch =( h a) 2 F1(- h, i( f31;a + i(f3z- y + 1; 1) 

(
_ a) (a - y + 1)11 

= h (a + 6 {31 - y + 1) h 
(2.12) 

from Ref. 7, p. 211, and Vandermonde's theorem. 

Expanding Tl (A)!aB.l' as a power series in T = s-~, 
we obtain J 

X Fn (a;!3.;y; XjT ) 
J (b + dt)[a + eT(1 - Xj)] 

00 

= h"'f:Q kh FD (- h; !3jiy;Xj )T h• (2.13) 

Setting Xl = ... = xn = 0 and using identity (5.124), 
Ref. 7, p. 206, we find 

k" = (;) a a-y-h e\-h) 2F1 (- h, aiyj- l/bc), 

ad - be = 1. (2.14) 

If a = d = b = 1 and c = 0, the identity becomes 

J. Math. Phys .• Vol. 13, No.9, September 1972 
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\T\ < 1, (2.1~) 

and, if a == C == 1, b == - w-l, it reduces to 

(1 + T)"+
L13

0 [1 + (l-whfct r1[1 + (l-x)Tr BI 

1=1 

x FD (a;(3j;Y; [1 + (1_w)~]71T: (l-Xj)T]) 

== h~O (h Y) 2Fl (- h, a;y;w)FD(- h; (3j;y; Xj h
k

, 

\T\ < min(l, \1-x)-l, \1- w\-l). (2.16) 

More generally, we can derive generating functions 
for the F D through the characterization of a solution 

! of Cj ! = 0, j = 1, ... , n, by the requirement that! is 
a simultaneous eigenfunction of n + 2 independent 
operators constructed from sl(n + 3,C). Such a 
characterization of!ctl3

j
Y is given by (1.19). 

As an example we compute the solution! of the 
simultaneous equations 

Eaf =f, J13/ = (flk + i j~flj - iY)!, 

(Jy + iJa)J =( h - i yfll - i )f' 

Ckf = 0, k = 1, ... ,n, (2. 17) 

which is analytic at Xl = ... = xn = 0. The first n + 2 
equations have the general solution 

f = h(xl/s, ••• ,xn/s) exp (- s-l)U~I .. . u~ntY, 

where h is an arbitrary function. Substitution of this 
expreSSion into C kf == 0, 1:s k :s n, yields 

h(xv" .,xn) == <I>(f3l'" .,fln;y;xl ,·· .,xn) 

i3 (f3l) ml ••• (fln) mn Xli ... Xnlnn 

mi" ·mn=O (Y)m
l
+ ... +m

n 
m l t ••• mn t 

= lim FD( aj/3J.jyj 2), 
Cl~OO a 

(2.18) 

unique up to a constant multiple. Expanding T1 (A) f as 
a power series in T = s-1, we obtain 

exp C (dT++ b)~ (a + CT) L13n A [a + CT(1 - xl)]-131 
[Vi CT~ 1=1 

X <I> (flj;Y; (a + CT)[aX~T CT(l- X)]) 

== i3 rkFD(- kifljiy;xj)T\ ad - bc = 1. (2.19) 
k=O 

Setting xl = . .. = xn = ° and using the generating 
function for Laguerre polynomials [(5.101), Ref. 7, 
p.190], we find 

r k = a-Y e- b1a (*) k L~Y-l)(;c)' (2.20) 

where L~ct)(x) is a generalized Laguerre polynomial. 
If b = C = 0, a = d = 1, the identity simplifies to 

exp(-T)<I>(f3
j

;Y;XjT)=I; (-k~)k FD(-kj{3jjyjXj )T k • 

k=O . (2.21) 
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If a = C = d- l == w- 1/2 , b = 0, we find 

exp (; :~) (1 + T)LBO [1 + 7(1 - x1)r l
\ ••• 

x [1 + T (1 _ X )]-Bn<I> I p. • XjW7 ) 
00 n (j' y, (1 + T)[1 + T(1 - Xj)] 

= 6 L(y-l)(w)F (- k·fl··y·X.)T k 
k=O k D' J' 'J ' 

\T\<min(I,\xj -l\-l). (2.22) 

If b = - C == 1, a == d = 0, then Tl (A)f becomes 

e
S
(1 - x1fi31 ... (1 - xnfBns Y <I> ~j; Y 1 ~s Xj ) 

X uBI u 13n t Y 1 ... n • 

Expanding this function in powers of s, we obtain 

Although the derivation of these generating functions 
is completely routine, an exhaustive classification of 
such generating functions awaits the claSSification 
of all algebraically irreducible representations of 
sl(n + 3, C). 

The various confluent forms of the functions FD have 
symmetry algebras corresponding to contractions of 
the algebra gl(n + 3,C) ~ sl(n + 3,e) EB (8). For 
example, consider the confluent function 

00 

!J;(a;f31,·· .,{3n-l;Y;xl", .,xn ) == 6 
m

l
, ...• mm::O O 

(Y)m + +m Xl mi •• • Xnm" 
I'" n 

( ) (f3l)m ." (f3n-l)m I I Y m
l
+ ... +m

n 
1 n-l ml ,.· .nln' 

= B~i!!~,F D(O!; I'll' ... , {3n-l' fln ; yiXl' ••. ,Xn- l , ;: ). 
(2.24) 

To obtain the symmetry algebra, we introduce new 
operators 

E' - 1 E 
ctBnY - B ctl3ny' 

'n 
E' =~ E y {3n y 

k '" n, Ee. y =,; EB y' 
n fJn n 

Jj, == (l/fln )J13 and E~ = Et for all other elements of 
n n 

sl(n + 3,C). 

Formally letting fln ~ co, we obtain a contracted Lie 
algebra not isomorphic to sl(n + 3,e). The opera­
tors which raise and lower un are now redundant. 
Dropping these operators, we are left with an (n + 
2)2-dimensional non-semi-simple Lie algebra, the 
symmetry algebra of !J;. This algebra can be used 
to derive identities for the !J; functions in a manner 
analogous to that for F D' 
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Vilenkin's method of integral transforms and the 
(n + 2)-variable model (1. 26) can be used to derive 
Mellin-Barnes integral identities for FD and its con-
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Averages of the Components of Random Unit Vectors 

J. F. McDonald 
Department of Mathematics, University of Windsor, Windsor, On/ario, Canada 
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It is shown that a parametrization of the orthogonal and unitary groups due to Hurwitz can be used to evaluate 
averages of components of random unit vectors for those two spaces. Explicit results are given for moments 
which are general enough to include most cases of interest in applications. 

1. INTRODUCTION 

Several years ago, Ullah developed a method for eval­
uating averages of components of random unit vec­
tors. 1 The technique is applicable for an N-dimen­
sional orthogonal, unitary, or symplectic space. 2 How­
ever, the method as given is restricted to the even 
moments of a single vector for the unitary and sym­
plectic spaces and is restricted to moments involving 
at most two orthogonal unit vectors for the orthogonal 
space. Unfortunately, it does not seem possible to 
extend the method to averages which involve a larger 
number of vectors. 

A possible alternative to Ullah's method is the expli­
cit parametrization of the group of transformations 
involved. The advantage to this approach is that in 
principle there is no restriction on the number of 
vectors involved. 

It would appear that the major obstacle is the para­
metrization itself. That is, one must parametrize the 
group in such a way that the calculation is tractable. 
In particular, one must be able to express any ele­
ment of the rotation matrix explicitly in terms of the 
parameters, and one must be able to determine the 
corresponding volume element in the parameter 
space. 

Fortunately, such a parametrization for the orthogonal 
and unitary groups is known. These parametrizations 
are due to Hurwitz. 3 

We shall show that these parametrizations are indeed 
satisfactory for the explicit evaluation of averages 
which involve any number of vectors. 

2. THE GENERAL ROTATION MATRIX 

The general rotation matrix for an N-dimension orth­
ogonal or unitary space can be built up out of succes­
sive two-dimensional rotations as follows. Let the 
N x N matrices O'/s) be defined as 

[O'}S));j = Dij , i;ot r, r + 1, 

= aNSf)-r Djr + bN~flr Djr+!> 

= CN~ey Djr + dN~i~r Djr+!, i = r + 1, (1) 

where 8 = 1, 2, ... ,N - 1 and r = N - 8, N - s -
1, ... ,N - 1. 

The matrix 0'(;) is a rotation in the corresponding 
two-dimensional subspace. For the orthogonal space 
0' (:) a (:) = 1, and for the unitary space O'(~) 0'(:)+ = 1. 
These matrices will be parametrized below for the 
orthogonal and unitary spaces. 

Next we define the matrices E(s) as 

(2) 

where iLl means that successive factors are to the 
left. It follows easily from mathematical induction 
that 

E(S) = [;-S-1 ~(sJ. (3) 

where IN- s - 1 is the (N - 8 - 1) x (N - 8 - 1) unit 
matrix, and T(s) is the (8 + 1) x (8 + 1) matrix with 
elements 

T (S) - a(s) 
11 - 5-1' 

T 
(s) (s) s-1 
1J' = a s-J' II 

r=s-j+1 
j? 2, 

i ? 2, 

T ~s) = a(S) , d (S) Siii b (S) 
'J S-J s-H1 r=s-j+1 r , j> i> 2, 

i ? 2, 

TW = 0, i>j+1. 

In the above equations a-1 == 1. 

Finally, the general rotation matrix A is given by 

N-1 

A= TRT E(s), 
s=1 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

where f'R·, means that successive factors are to the 
right. It follows easily from the definition of T (S) that 
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N>i~2, (12) 
and 

The Ail can now be expressed in terms of the ar(S) , 

br(s), c r(s), and dr(s) by combining Eqs. (4)-(9) with 
Eqs. (11)-(13). The resulting expressions for those 
Aij to be used below are 

A (N-1) 
11 = a N- 2 , 

N-2 
(N-1) n b(N-1) 

A 1j = a N- 1 - j r=N-j r ' 
j ~ 2, 

(N-i) i-1 (N-r) 
Ail = aN- i -1 n cN- r -1' N> i ~ 2, 

r= I 

N-1 (N-r) 
ANI = n c N- r -l' r =1 

A - a(N-2) a (N-I) d(N-I) b (N-l) 
23 - N-3 N-4 N-2 N-3 

+ a (N-2) b(N-2) a (N-l) d(N-l) 
N-4 N-3 N-4 N-3 

- a}:.;2) b }.f-~2) b }:.;2) c }.f-~I), 

and 

A - _a(N-3)c(N-2)a(N-l)d(N-l) 
32 - N-4 N-3 N-3 N-2 

_ a (N-3 ) a (N-2 ) d(N-2)c (N-l) 
N-4 N-4 N-3 N-3 

+ a~~;3) b~~43) C~~42 )c~~;l). 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

It should be noted that AA = 1 for the orthogonal 
space and AA + = 1 for the unitary space, because of 
the corresponding conditions on the O!~s). 

3. THE ORTHOGONAL SPACE 

We now introduce the explicit parametrization of the 
orthogonal group due to Hurwitz.3 Let cp;, r = 0,1, 
2, ... , s - 1, s = 1,2, ... ,N - 1, denote a set of 
N(N - 1)/2 variables. The general rotation matrix 
is then given by the above expressions if we define 

a~s) = d~s) = coscp;, 

b~S) = - c~s) = sinCP:, 
where 

o ~ CPt> < 21T, 0 ~ CP: ~ 1T, r> O. 

The explicit results for the nonzero 1iY) are 

T (s) "'s 
11 = cos'!-'s-l> 

s-l 
T(s) = coscps _. n sincp;, s + 1 ~ j ~ 2, 

1) S ) r=s-j+l 

T (s) . "'s 
ii-I = - sln'!-'s-i+1' 
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(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

T (s) _ "'s "'s s-n1 
ij - COS'!-'5-i+1 co S'!-' s-)" "sinCP:, 

r=5-)+1 

S + 1 ~ j > i ~ 2, (28) 

where cp~~) == O. The resulting expressions for those 
Aij to be used below are 

N-2 
Ali = coscp~=l_j II sincp~-l, N ~ j ~ 2, 

r=N-] 

i-I 

(29) 

(30) 

Ail = ( - 1)i-1 cosCP~::l-1 n sinCP~::~-I' 
r=1 

N ~ i ~ 2, 
(31) 

A22 = coscp§:~ coscp§:~ coscp~:~ 
- sinCp~::~ coscp~:~ sinCp~:j, 

A 23 = coscp~::~ sincp~:~ cosCP~:l coscp~:~ 
+ coscp~:~ sincp~:~ coscp~::l coscp~::~ 

- cos</>§::g sin</>~::~ sin</>§::~ sincp§::l, 

An = - coscp~::~ sin</>~:~ coscp§:~ coscp~::~ 

- cos</>§:~ coscp§:~ coscp§:~ sincp~:~ 

+ sinCP~::~ coscp~:~ sincp §:~ sin</>§:~, 

where CP21 == 0 in (31). 

(32) 

(33) 

(34) 

The volume element dVNfor this parametrization can 
be chosen as3 

dv' = n (sincpS)rd</>s. 
N r,5 r r 

It is easily verified that 

1)N == J dV N = 2-N(N-I)/4. 

Further iff(A) is any function of the Aii we define 
its average as 

(35) 

(36) 

(37) 

Here we wish to consider f(A) of the form ni,jAiinii, 

where the n ij are nonnegative integers. For definite­
ness we consider only quantities of the form 

(38) 

where n,p,q,and all of the Ii and m i are nonnegative 
integers. It should be noted that the power of All 

isl l +ml· 

From Eqs. (29)-(34) it easily follows that 

N z N-I Z z' .n Alii = n (cosCP~:D N-r (sincp~:i) .. -I, (39) 
t=1 .. =1 

N ~1 I 

n Ami = (- I)Om n (COScp;_1)m N- .. (Sincp;_I)m .. -1, 
i=l t1 r=l (40) 

A~2 = L) (n; n 1 , n2 )( - 1) n2 

n 1,n2 

X (cosCP ~:~ coscf>§:~ coscp %::~) nl 

X (sincp~:~ coscp~::~ sincp§::~)n2, ( 41) 

A~3= L) (P;P1,P2 ,P3 )(-1)P3 
PI,P2,P3 

X (cosCP§:~ sinCP%=?3 cos</>~:l coscp~:~)PI 
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TABLE 1. Definition of the k YJ • 

N-4 N-3 N-2 

m 3 +ql+q2 
n 2 + P2 + q2 

13 + PI + P2 

m 2 + n 1 + PI + q2 
12 + 111 + P2 + ql 

TABLE II. Definition of the k; j • 

r N- 5 N - 4 

N-3 0 m N-4 + q3 
N - 2 0 P3 + q3 
N-l IN-4 + P3 

x (coscp ~:~ sincp ~:~ coscp ~:1 coscp ~:~) P2 

X (coscp~:g sincp~:~ sincp~:~ sincp~:1)P3, 

Aj2 = ~ (Q;ql,q2,q3)( _1)ql+ q
2 

q) ,q2 ,q3 

X [coscp ~:4 sincp ~:~ coscp ~:~ coscp ~:~F 1 

X [coscp ~:~ coscp ~:~ coscp ~:~ sincp ~:~F2 

(42) 

X [sincp~:~ coscp%::~ sincp~::~ sincp%::~F3, (43) 

where Y 

n; == o~ nN - i , (44) 
'00 

N 

am == L: (i - I)m i , (45) 
il 

and 

(n;nU n2, ... ,nm) =(n!/n nil) I\n tn +"'+n (46) 
,=1 '12m· 

Combining Eqs. (38)-(43) we obtain 
N-l 

Q = ~ Bn,p,q )11 Q(Y), 
n,p,q 

where 

(47) 

Bn p q == (- l)o(n; n1 , n2)(p;Pl,P2,P3)(Q; Qu Q2, Q3)' 
. . (48) 

I "" r "" N - 4, 
(49) 

r=N-3,N-2, 

and 

The kYi are given in Table I, and the k~) are given 
in Tab e II. 

(50) 

Since the cp~ are statistically independent, it follows 
that 

N- 3 

m N-3 + 112 + P2 + P3 + ql 
IN-3 + 112 + h + q2 + q3 

where 

Q(1) = J ,/Joo m N-l m O ' 

N-2 

l~-2 + m~-2 

2"" r "" N - 4, 

(53) 

(54) 

(55) 

y-l 
= n (Ikk,+)/Io)), r = N - 3,N - 2, (56) 

j=N-5 Y) Y) 

and 

In these equations 

n 
I pq == 1 cosPcp sinqcpdcp 

o 

=f:lpr[i(p + l)]r[i(Q + 1)]lr[~(P + Q + 2)], (58) 
and 

2n 
Jpq = Ia cosPcp sinqcpdcp = 2f:l/pq , (59) 

where 
f:lp == [I + ( - I)P]/2. (60) 

Combining Eqs. (54)-(59) we obtain 

Q = CN[rci(l~-4 + N - 3))r( t(ml~-4 + N - 3)J-1 

N 

X n f:lm f:ll rci(m y + 1)r( ~(lr + 1) 
r =-4 r r 

x ~ Bnpq n f:lk rci(kYj + ]))r(t(k~) +) + 1) 
n,p,q "Y,) Y) 

X rct(kYj + k;j + ) + 2», (6Ia) 

where 

CN == (}o r(t(N - i»)/r20(N - 4»r2N+2(i). (62) 

The product over rand) includes only those (r,)) for 
which kYj a~d k;j were defined above. It should be 
noted that Q = 0 unless ly,my,r = 4,5, ... ,N are all 
even. If n = p = q = 0, the res:.rlt Simplifies to 

l)]r[i(m y + 1)] r[.l(l' + N _ l)]r[.l(m' + N - l)]r[.l(I' + m' + N)]r2N-l(.l)· 
2 N-2 2 N-2 2 N-l N-1 2 

Clearly Q = 0 in this case unless II + m 1, and all the 
ly and my, r "" 2 are even. 

(6lb) 
1 o~~. 

In Appendix A we have listed explicitly averages for 
n Anij with "Lni)O "" 6. In particular, those averages 

') 

which are nonzero are given. 
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4. THE UNITARY SPACE 

Again we use a parametrization due to Hurwitz. 3 Let 
CP;.If.;~.xs. s = 1.2 •...• N-1. r = O.l •...• s-l. 
denote a set of N2 - 1 variables. The general rota­
tion matrix is then given by the above results if we 
define 

b (s) = _ c(s)* = e ix s6ro sin'!'S 
r r \f'r' 

where 

0.,,; X S < 21T. o .,,; If.; ~ < 21T. o .,,; cp~ .,,; 1T/2. 

The explicit expressions for the nonzero 1i)s) are 

T (s) = e ilJi ~-I cos,!,s 
11 ~s~. 

( ) . s s-1 . s6 
TIs = e'lJis-j coscp~_. n sincpse tx rO 

J J r~s-j+l r • 

S + 1 ~ j ~ 2. 

T(s) = ei(IJi~-rlJi~-j+l) cos'!'s . cos'!'s . 
JJ ~S-J ~S-J+1> 

S + 1 ~ j ~ 2. 

T(s) = ei(IJi~- k-lJi~-J+l) cos,!,S cos,!,S 
Jk ~s-k ~s-J+l 

x sif eiXsOro sincps s + 1 ~ k > j ~ 2. 
r=s-k+ 1 r' 

s + 1 ~ j ~ 2. 

where CP:l = If.;.\ =: O. 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

The volume element for this set of parameters can 
be chosen as 

dVN = n coscp~ (sincp~)2'Y+l dCP~dlf.;~dxs. (71) 
r.s 

where 

(72) 

If now f(A) is any function of Aij and ATj • we define 
its average as 

f(A) == TIll J f(A)dVN' (73) 

Here we wish to consider f(A) of the form .n 
- '.J 

A7jiA~/ij. where the n ij and nij are all nonnegative 

integers. For definiteness we consider only quan­
tities of the form 

- N - -
Q == A" A *n n Al j A* I j Am} A * m j 

22 j ~ 1 1 j Ij j 1 j 1 • 
(74) 

where n. n. and ZJ' 0.mj' mJ• j = 1 •... ,N, are all non­
negative integers. Note that the po~er ~ All is 
11 + m l while the power of A~\ is II + mI' 

From Eqs. (11)-(13) and (66)-(70) it follows easily 
that 

. N-l 
A = e'lJiN-2 COS,!,N-l 

11 ~ N-2' 
· N-l j = e'lJiN-l-j COScpN-l . n sincpN-l 

N-I-J r=2 N-'''' 

N - 1 ~ j ~ 2. 

iXN-1 N . N-l 
AIN = e n smcp N-r' 

r~2 

j 

n sincp~::~+1. 
r~2 

N> j:;c: 2. 

and 
· N-2 N-l N-I 

A22 = e'(I/IN-3+lJi N-3- lJi N-2) coscp~:~ coscp~:~ coscp~::~ 
.. N-2 

- e' '" N-4 coscp ~::~ sincp ~::~ sincp §:~. 

From these equations one easily obtains 

N-2 N-l '1'+1 
X n (ei(ll.IN-l-rlJir +ll.mM-l-rl/ir » 

'1'=0 

X (COSCP!,-I)LN-l-r (sincp~-I)L~ (CosCP~+I)MN-l-r 

X (sincp~+I)M~ L:; Bkk 
k 1 .k2·;;;·k2 

· N-2 N-l N-l N-2 
X e ,[ll. ki (I/J N- 3+ '" N-3-I/JN-2)+ll. k2 I/JN-4} 

X (cosCP~::~ coscp§::~ coScp§:~)Kl 

x (COSCP §:~ sinCP ~:~ sincp %:~)K2, 
where 

N 

a == L:; (j -1)M j • 
.i~l 

lilr == 1'1' - i r , 

(75) 

(76) 

(77) 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

(85) 

(86) 

Once again since all of the variables are statistically 
independent. the averaging process is straightforward. 
The result can be written as 

rrtcK2 + 2)]rWL:t + Ml + Kl + 2)]rr~(M2 + Kl + 2)]rr~(L2 + Kl + 2») 
x------------------------------------------------------

r[~(2N - 4 + K 2)Jr[!(2N + Kl + Llv-l + Mlv-l)] 

x r[!(2N - 4 + Llv-3 + K2»)r[~(2N- 4 + Mlv-3 + K 2»), 

r(N)r(N - 1)r(N - 2)r(!(2N - 2 + Llv-2 + Mlv-2)) 

- r(N - 2 + Zlv-3)r(N - 2 + mlv-3)rr~(2N - 2 + n + n + Llv-2»)rri(2N - 2 + n + n + Mlv-2)] 
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If n = m 1 = 0, the result simplifies to 

N r(N)r(N - 1)r(l~_2 + m~-2 + N - 1] 
= 15 1 T r(ll + 1) II 15 1 I 15 m Tn r(lr + 1) r(rn + 1) . 

11 r=2 r r r r r r(lN-1 + m/v-1 + N]r[lN-2 + N - 1]r[m/v-2 + N - 1J 
(89) 

Note that Q = 0 unless lr = fro r == 1, ... ,N, and 
mr == mr' r = 2,3, ... ,N. 

In Appendix B we have listed explicitly averages for 
II At'/iA7Ji with "L(n ij + nij ) ~ 4. In particular, those 
averages which are nonzero are given. 

5. DISCUSSION 

It is clear from the calculations of the previous two 
sections that the evaluation of moments becomes 
more and more complex (for both the orthogonal and 
unitary spaces) as more and more Aij (i > 1,j > 1) 
are involved. 4 For this reason we have not attempted 
to evaluate the most general moments (i.e., all n ij 
arbitrary). Instead, we restricted our discussion to 
moments which were special enough so that the cal­
culations were tractable; but at the same time the 
moments were general enough so that the results 
given probably include most cases of interest in app:­
lications. Clearly, any particular case which is not 
included in the above results can be evaluated in a 
straightforward manner using the expressions given 
above for the parametrization of the Aij and the vol­
ume elements. 5 

There are various possible applications of the re­
sults given in the previous two sections. Ullah used 
such averages to investigate the implications of the 
invariance hypotheSis on matrix element correla­
tions for an ensemble of random matrices. 1 •6 The 
results given above enable one to consider the ef­
fects of the invariance hypothesis on higher correla­
tions of Hamiltonian matrix elements. 

Another obvious application of the above parametri­
zations is to the problem of the distribution of eigen­
values and eigenvector components of random matri­
ces. 7 

For example, for an ensemble of Hamiltonian matri­
ces which satisfies the invariance hypothesis, the 
distribution of widths for both the orthogonal and uni­
tary spaces can be derived in a trivial manner. For 
such an ensemble the corresponding distribution of 
widths p(X) is given by8 

(90) 

Via the parametrizations given above for the ortho­
gonal and unitary spaces, one finds easily that 

POriX) =[01-2 { I5(X-N cos2<p§:~)(sin<p§:2)N-2 
Xd<pN-1= 1--r(~N) (X)(N-3)/2 

N-2' v'rrNX ra(N - 1» N ' 

and 
(91) 

( -1 I n
/

2 
Punit X) == J 1 2N-3 0 O(x - N COs2¢§:~) 

x cos¢§:~ (sin¢§:~)2N-3d<p§:~ 

=- N - 1 (1 _ ~)N-2 
N N' (92) 

I 
These results agree with those previously 
obtained. 9 .10 

In addition there has been recent interest in the prob­
lem of how a small time-reversal odd term in the 
Hamiltonian of a complex system would influence the 
statistical properties of the energy levels and 
widths. 8.10-17 Such investigations have led to inte­
rest in ensembles which are not representationally 
invariant. 

We feel that the above parametrizations (and/or 
moments) will turn out to be very valuable in future 
investigations of the distribution of eigenvalues and 
eigenvector components for such ensembles. 

APPENDIX A: SOME PARTICULAR ORTHOGONAL 
AVERAGES 

In this appendix we give the results for (wA7ji> with 
"Ln ij ~ 6. In particular, 

(AL) = ~, (Ah) = N(N
3 
+ 2)' 

16 1 
(A~l) = N(N + 2)(N + 4) , (Aj\AY2) = N(N + 2)' 

( 22) N+l 
A12A 21 = N(N - l)(N + 2)' 

3 
(AhA Y2) = N(N + 2)(N + 4)' 

3(N + 3) 
(AhA~I) = N(N - l)(N + 2)(N + 4)' 

1 
(ALAI2A I3) = N(N + 2)(N + 4Y 

N+1 
(AI1A I2A h) = N(N - I)(N + 2)(N + 4) , 

(AI2AI3A~I) = N(N - 1~; ! 2)(N + 4)' 

NZ + 3N - 2 
<A~lA~2AI3) = N(N - l)(N + 2)(N - 2)(N + 4)' 

1 
(AllA12Az1A22) = - N(N - l)(N + 2)' 

1 
= - N(N - l)(N + 2)(N - 2)(N - 4)' 

Every other nonzero average with "Ln ij ~ 6 can be 
obtained from these by appropriate permutations of 
the labeling of rows and columns. 

APPENDIX B: SOME PARTICULAR UNITARY 
AVERAGES 

In this appendix we give the results for (1TA .~ijA,!,nij) - 'J 'J with "L(n ij + n ij ) ~ 4. In particular, 
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<IAllI2) = liN, <IAll I4) = 2/N(N + 1), and 

<IAllI2IA2212) = I/(N - I)(N + 1), 

1 N. tnlah, Nucl. Phys. 58, 65 (1964). 
2 F. J. Dyson, J. Math. Phys. 3, 140 (1962). 
3 A. Hurwitz, Math. Werke 2,546 (1933); reproduced in R. E. Bellman, 

A Collection oj Modern Mathematical Classics; Analysis (Dover, 
New York, 1961). 

4 In principle the problem itself is not more difficult. However, the 
notation becomes extremely complex. 

5 It should be noted that the results are invariant under any permu­
tation of the labeling of rows and columns. This can often be used 
to simplify the evaluation of a particular moment. For example, 
(A~2AP3A~2Ah) = (AhAr2A~lA~2),obviouSly the moment on 
the right involves a simpler calculation than the one on the left. 

6 N. tnlah and C. E. Porter, Phys. Letters 6,301 (1963). 
7 This problem arose in connection with the distribution of energy 

level spacings and level widths in nuclear spectra. See, for 

<AllA'izA~lA 22) = -I/N(N - I)(N + 1). 

Every other nonzero average with ~(n" + n.) .:;: 4 
. '1 '1 

can be obtamed from these by appropriate permuta-
tions of the labeling of rows and columns. 

example, C. E. Porter, Statistical Theories oj Spectra: Fluctua­
tions (Academic, New York, 1965) (Note: Refs. 1,2,5,6, and 9 are 
included in this collection). 

8 N. Rosenzweig, J. E. Monahan, and M. L. Mehta, Nuc!. Phys. AI09, 
437 (1968). 

9 C. E. Porter and R. G. Thomas, Phys. Rev. 104,483 (1956). 
10 N. tnlah, J. Math. Phys. 4,1279 (1963). 
11 M. L. Mehta and N. Rosenzweig, Nuc!. Phys. AI09, 449 (1968). 
12 M. L. Mehta, Nuovo Cimento 65B, 107 (1970). 
13 L. D. Favro and J. F. McDonald, Phys. Rev. Letters 19,1254 (1967). 
14 L. D. Favro and J. F. McDonald, J. Math. Phys. 9, 1429 (1968). 
15 J. F. )VIcDonald, J. Math. Phys.10, 1191 (1969). 
16 J. F. McDonald and L. D. Favro, J. Math. Phys.ll, 3103 (1970). 
17 J. F. McDonald, J. Math. Phys. 12, 542 (1971). 
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The small amplitude periodic classical motion of a lattice of particles about their equilibrium positions in a 
lattice is considered. The effect of random masses and random spring constants upon the coherent or mean 
motion is treated by using an equation for the coherent motion derived previously by Keller and others. From 
this equation the dispersion equation for coherent wave motion is determined. It is solved for the case in 
which the spring constants are not random but the masses are random. Explicit results are obtained in the 
One-dimensional case for both uncorrelated and exponentially correlated mass defects. They show an altera-
tion of frequency or of wavelength and of phase velocity, as well as an attenuation due to scattering by the defects. 
In addition new highly attenuated modes are found. These results are utilized in Part II in which various reflec­
tion and Green's fUnction problems are treated. 

INTRODUCTION 

We consider the small amplitude time periodic clas­
sical motion of a collection of particles about their 
positions of equilibrium, which form a lattice. The 
masses of the particles and the coupling constants 
which determine the forces between them are assu­
med to be random quantities having a prescribed joint 
probability distribution. We call the ensemble of pos­
sible lattices, with this distribution, a random lattice, 
and consider it to be a model of a crystal with imper­
fections. However, the results also apply to other 
physical systems. Our purpose is to study wave pro­
pagation in such a lattice. To do so we assume that 
the masses and coupling constants differ by small 
random amounts from constant values, and we employ 
a perturbation theory to analyze the mean wave mo­
tion. 

A suitable perturbation method for such problems 
has been devised by Keller, 1 Bourret,2 and Tatarski 
and Gercenstein. 3 It yields an equation satisfied by 
the mean wave, which is correct through terms of 
second order in the random quantities. In Sec. 1 we 
use this method to derive the dispersion equation for 
the mean or coherent wave in a lattice with one par­
ticle per unit cell. In the Appendix we treat the gen­
eral case. In Sec. 2 we simplify and solve this equa­
tion for certain one-, two-, and three-dimensional 
cubic lattices in which only the masses are random. 
In Sec. 3 we obtain more explicit results for the one-
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dimensional case. The results show that even in the 
pass bands of the perfect lattice the propagation con­
stant or wavenumber of the mean wave is complex, 
so that the wave attenuates. The attenuation is a con­
sequence of scattering by irregularities. The phase 
velocity of the mean wave is also affected by the ran­
dom irregularities, and may be either greater or less 
than that in a perfect lattice, depending upon the fre­
quency. The dispersion equation involves the corre­
lation function of the masses, and we consider both 
correlated and uncorrelated mass variations. 

In Paper 1I4 we analyze the dispersion equation for 
two- and three-dimensional lattices. We also con­
sider reflection of a plane wave from the plane in­
terface between a perfect and an imperfect crystal 
and from a slab of imperfect crystal of finite thick­
ness. In addition, we construct the Green's function 
for an infinite imperfect crystal and for a semi­
infinite imperfect crystal joined to a semi -infinite 
perfect one. 

Previously Koster,5 Lifshitz,6 and others have treat­
ed scattering of waves by localized irregularities in 
crystalS. In addition various authors have considered 
the effect of irregularities on the vibration frequen­
cies of crystals. 6 However, Rubin 7 ,8 seems to have 
been the first to have investigated wave propagation 
in an infinite one -dimensional crystal with randomly 
distributed mass defects. He has investigated the 
mean of the logarithm of the amplitude transmission 
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INTRODUCTION 

We consider the small amplitude time periodic clas­
sical motion of a collection of particles about their 
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masses of the particles and the coupling constants 
which determine the forces between them are assu­
med to be random quantities having a prescribed joint 
probability distribution. We call the ensemble of pos­
sible lattices, with this distribution, a random lattice, 
and consider it to be a model of a crystal with imper­
fections. However, the results also apply to other 
physical systems. Our purpose is to study wave pro­
pagation in such a lattice. To do so we assume that 
the masses and coupling constants differ by small 
random amounts from constant values, and we employ 
a perturbation theory to analyze the mean wave mo­
tion. 

A suitable perturbation method for such problems 
has been devised by Keller, 1 Bourret,2 and Tatarski 
and Gercenstein. 3 It yields an equation satisfied by 
the mean wave, which is correct through terms of 
second order in the random quantities. In Sec. 1 we 
use this method to derive the dispersion equation for 
the mean or coherent wave in a lattice with one par­
ticle per unit cell. In the Appendix we treat the gen­
eral case. In Sec. 2 we simplify and solve this equa­
tion for certain one-, two-, and three-dimensional 
cubic lattices in which only the masses are random. 
In Sec. 3 we obtain more explicit results for the one-
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dimensional case. The results show that even in the 
pass bands of the perfect lattice the propagation con­
stant or wavenumber of the mean wave is complex, 
so that the wave attenuates. The attenuation is a con­
sequence of scattering by irregularities. The phase 
velocity of the mean wave is also affected by the ran­
dom irregularities, and may be either greater or less 
than that in a perfect lattice, depending upon the fre­
quency. The dispersion equation involves the corre­
lation function of the masses, and we consider both 
correlated and uncorrelated mass variations. 

In Paper 1I4 we analyze the dispersion equation for 
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sider reflection of a plane wave from the plane in­
terface between a perfect and an imperfect crystal 
and from a slab of imperfect crystal of finite thick­
ness. In addition, we construct the Green's function 
for an infinite imperfect crystal and for a semi­
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perfect one. 

Previously Koster,5 Lifshitz,6 and others have treat­
ed scattering of waves by localized irregularities in 
crystalS. In addition various authors have considered 
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been the first to have investigated wave propagation 
in an infinite one -dimensional crystal with randomly 
distributed mass defects. He has investigated the 
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coefficient for a section of the crystal containing N 
defects ,for N large. A similar study was made by 
Matsuda and Ishii,9 who also gave references to re­
lated work. One of the results of Rubin and Matsuda 
and Ishii is compared with one of ours in Sec. 4. 

1. DERIVATION OF THE DISPERSION EQUATION 

Let us consider an infinite crystal in n dimensions. 
Each particle of the crystal is labeled by an index q 
which is a set of n integers. The equilibrium posi­
tion of particle q is the lattice site x(q) • We suppose 
that the particles are undergoing small amplitude 
periodic motions with angular frequency w about their 
equilibrium positions. Let the real part of u(q)e- iwt 

be the displacement of particle q from its equilibrium 
position. We assume that u satisfies the linear equa­
tion of motion 

-M(q)w 2u(q) + L; <I>(q,q')u(q') = f(q). (1.1) 
q' 

Here M(q) is the mass of particle q, f(q)e- iwt is the 
external force on particle q, and the matrix <I>(q, q') 
determines the force on particle q exerted by a dis­
placement of particle q'. 

We wish to study those solutions of (1. 1) which re­
present either propagating or standing waves. In 
particular, we shall determine the effect of random 
defects or impurities in the crystal upon the waves. 
Thus we assume that the masses M(q) , the coupling 
matrices <I>(q, q'), and the forces f(q) are random 
quantities with a given joint probability distribution. 
As a consequence a solution u(q) of (1.1) will also be 
random. The mean value of u(q), which we denote 
(u(q» , is often referred to as the coherent wave and 
the difference u - (u) as the fluctuating or incoherent 
wave. We shall consider only the coherent wave and 
attempt to determine it. 

For this purpose it is convenient to introduce the 
linear operator L defined by 

L = F, [<I>(q,q') - w2M(q)Oqq,j. 

Then (1.1) can be written in the form 

Lu = f. 

(1. 2) 

(1.3) 

The solution of (1. 3) can be written formally as u = 
L -If and then (u) = (L -If). We now assume that Land 
f are statistically independent so that (u) =(L-l) (f). 
Next,following Keller we multiply by (L-l)-l to obtain 

(1. 4) 

This is an exact equation satisfied by (u), although in 
this form it is not yet useful. 

We now assume that the lattice is statistically homo­
geneous,which means that the operator (L-l) is in­
variant under the translations which leave the lattice 
invariant. We also assume that (f) = O. Then (1. 4) 
possesses plane wave solutions. For a lattice with 
one particle per unit cell a plane wave has the form 

(u(q» = Aeikox(q). (1.5) 

Here x(q) is the position of the qth lattice site. The 
case in which there are more than one particle in 

each unit cell is treated in the Appendix. By using 
(1. 5) in (1.4) with (f) = 0 and multiplying by e-t"k'X(q), 

we obtain 

(1. 6) 

In order that (1. 6) have a solution A different from 
zero, the coefficient matrix must be singular, 

(1. 7) 

Equation (1. 7) is the exact dispersion equation relat­
ing the wave vector or propagation vector k of the 
mean wave to the frequency w. The matrix in it is of 
nth order in n dimensions. It is independeQt of q as a 
consequence of the translational invariance of (L-l); 
in fact, this independence could be taken as the defi­
nition of such invariance. 

To make (1.7) useful we assume that L is the sum of 
a nonrandom operator Lo and a small random opera­
tor EV, where E is a small parameter. Thus we write 

L = Lo + EV. (1. 8) 

We also assume that (V) = 0, which can always be 
made so by choosing Lo = (L). Then by using (1. 8) 
we obtain, to second order in E, 

(1. 9) 

Upon using (1. 9) in (1. 7) and omitting 0(E3) we obtain 
the dispersion equation in the following useful form: 

More terms can be obtained in (1. 10) by keeping 
more terms in (1. 9). 

In order to apply the result (1.10) we assume that M 
and <I> are of the forms 

M(q) =m[1 + EIl(q)j, 

<I>(q,q') = <l>o(q,q') + E<p(q,q'). 

(1. 11) 

(1.12) 

Here the constant m and the matrix <l>o(q, q') are not 
random and pertain to the perfect crystal. The de­
fects are described by the random functions Il(q) 
and <p(q, q') which are assumed to have zero mean 
values: 

(Il(q» = 0, (<p(q,q'» = O. (1.13) 

The small parameter E is introduced to indicate that 
the random imperfections are small. We can now 
write L given by (1. 2) in the form (1. 8) with Lo and 
V defined by 

Lo = ~ [<I>o(q,q') - w2moqq,], (1. 14) 
q' 

V = L) [<p(q,q')- w2m ll(q)Oqq,j. 
q' 

(1. 15) 

To use (1. 10) we must calculate Li?, which can be ex­
pressed by means of the Green's matrix G(q, q', w) of 
the perfect crystal. This matrix is the outgOing solu­
tion of LoG = 0 ,1, where I is the unit matrix. By 
using (1. 14) we q'ban write this equation as 
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-w2mG(q,q',w) + I; rpo(q,q")G(q",q',w) = 0qq,I. 
qll 

(1.16) 

In terms of G we can write the dispersion equation 
(1.10) explicitly as follows: 

det{-w 2mI + I; rpo(q,q')eik-[X(q')-x(q)] 
q' 

X G(q' ,q" ,w)[ cp(q", q"') w 2m/l(q")oqllqlll]) 

X eik.[x(qllf)-x(q)]} =: O. (1.17) 

This is the dispersion equation which we shall sim­
pIify and solve in the next section. 

2. SlMPlJFlCATION OF THE DISPERSION 
EQUATION 

We shall now assume that the coupling matrices 
rp(q ,q ') are not random so that cp(q, q') = O. Then 
(1.17) becomes 

det(-w2mI + ~(k) - E2 w 4 m 2 

x I; G(q,q"W)(/l(q)/l(q'»eik'[X(q')-X(q)~ = O. 
q' (2.1) 

Here we have introduced the matrix i(k) , the dis­
crete Fourier transform of <po(q, q'), defined by 

~(k) = I; <po(q,q')eik.[x(q')-x(q»). (2.2) 
CI' 

~ecause <Po is invariant under lattice translations, 
<p(k) is independent of q. 

It is convenient to introduce R(q,q'), the two point 
correlation function of jJ., defined by 

R(q,q') =: (/l(q)JJ.(q'». (2.3) 

In view of the assumed statistical homogeneity of the 
crystal, R is invariant under lattice translations. 
Then the sum in (2.1) can be recognized as the dis­
crete Fourier transform of GR. We shall denote it 
GR(k,w) since G depends upon wand the transform 
variable is k. Thus this matrix is defined by 

GR(k,w) =I; G(q,q',w)R(q,q')eik'[x(q,)-x(q)]. (2.4) 

We note that Gii. is independent of q because both G 
and R are invariant under lattice translations. Now 
by using (2.4) we can write (2. 1) in the compact form 

det{w2mI -¥(k) +€2w 4 m 2GR(k,w)}=O. (2.5) 

To study propagating waves we must solve (2. 5) for 
k as a function of w, with w real, while for standing 
waves we must solve for w as a function of k with k 
real. In each case the solution will also depend upon 
E2, so we can write the solutions as k(w, £2) and 
w(k, (2). When E = 0, (2.5) becomes the dispersion 
equation for the perfed crystal, which is 

det[w 2 mI - ~(k)] = O. 

Let us denote the solutions of (2.6) by ko(w) and 
wo(le). Then because of the random defects these 
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(2.6) 

solutions will be modified,and we can write the modi­
fied solutions in the forms 

k(w, E2) :::: k o(w)[1 + EZkz(w) + 0(E4)J, 

w(k, EZ) =: wo(k) + EZwz(k) + 0(E4). 

(2.7) 

(2.8) 

In (2.7) we have chosen the direction of k to be the 
same as that of ko, so that k2 is a scalar. 

In order to find k2 we substitute (2.7) into (2. 5), equ­
ate to zero the coefficient of E2, and solve the result­
ing equation. To find wZ ' we use (2.8) in (2.5) and 
proceed similarly. The results can be written in 
terms of derivatives of determinants or in terms of 
cofactors. Upon using them in (2.7) and (2.8) we can 
write the solutions in the following two forms: 

k(w, E2) ::: ko(w) - E2k o(w)[O(2 det[w 2 mI <P(ko)] 

+ £2 w4 m 2 GR(ko' W)]€2=O 

x [kO·Oko det[w2 m 21 i(ko)]]-l + 0(£4) 

= ko(w) + E2k o(w)w 4 m 2 4 [GR(kO,W)]ij 
'J 

x cof[w2 mI - ~(konJI; [kO·Ok ~rn(ko) 
-yn 0 

X cof[w2 mI - i(ko)]rn}-l + 0(£4), (2.9) 

w(k, E2) == wo(k) - £2[0<2 det[w3mI 

- i(k) + £2wgm 2GR(k, w o) JJE2= 0 

x [Ow det[w3mI - i(k}]J-l + 0(£4) 
o· 

= wo(k) - ~£zw5m I; [GR(k, wO)];j cof[w3mI 
'J 

- i(k)li] {I; cof[w3mI - ~(k)Jnn}-l + 0(E4). 

n (2.10) 

The EZ term in (2.9) is generally complex when w is 
real. The real part of the correction represents a 
change in the wavelength of the wave and, therefore, 
also a change in its phase velocity. The imaginary 
part represents an attenuation of the coherent wave 
due to scattering of its energy into the incoherent 
wave, which gradually grows as the coherent wave de­
cays. Similarly the real part of the £2 term in (2.10) 
represents a frequency shift due to scattering by the 
impurities and the imaginary part represents a cor­
responding damping of the coherent vibration. 

The dispersion equation (2.5) and the results (2.9) 
and (2.10) can be simplified in the one-dimensional 
case. Then the matrix in (2. 5) is a scalar so that 
(2. 5) becomes 

wZm - ~(k) + E2 w4 m 2GR(k,w) := O. (2.11) 

The results (2. 9) and (2.10) are now simply 

~ (a~(ko»)-l 
k(w, (2) == ko(w) + E2 w4 m2GR(ko' w) ----ak; 

+ 0(E 4 ), (2.12) 

w(k, £2) ::::: ±{[m -1~(k)P/2 - (£2/2m liZ) [¥(k)]3/2 

XGR.(k, wo) + 0(€4)}. (2.13) 

Here wo(k) =: m-1/2 [~(k)F/2,and ko(w) is the solution 
of ~(ko) = w 2 m. These results will be made more 
explicit in Sec. 4, where a crystal with nearest neigh-
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bor interactions and two special forms of the cor­
relation function R will be considered. 

In addition to the above solutions of the dispersion 
equation, which are perturbations of the solutions for 
the perfect crystal, there are generally other solu­
tions. They represent new waves or modes which 
occur only when imperfections are present in the 
crystal. We shall see an example of such solutions 
in Sec. 4. 

3. UNCORRELATED DEFECTS 

An important special case of an imperfect crystal is 
that in which the defects are uncorrelated. In that 
case the correlation function R is given by 

(3.1) 

Then if we note that C(q, q, w) is independent of q, (2. 4) 
yields 

CR(k,w) = (J1. 2)C(0,0,w). (3.2) 

For a simple cubic crystal with suitable symmetry in 
n dimensions, the matrix G( 0, 0, w) is a scalar multi­
pIe of the nth order unit matrix. This is also so for 
certain other crystals. Therefore we now assume 
that 

G(O, 0, w) = g (w)I , 

where g(w) is a scalar. Then the dispersion equation 
(2. 5) becomes 

det{[w 2m + E2w4 m 2(/l2) g(w)]I - cP(k)} = 0. (3.3) 

This dispersion equation (3.3) is the same as Eq. 
(2. 6) for a perfect crystal with m replaced by an ef­
fective mass me(w) given by 

(3.4) 

Alternatively we may say that w is replaced by [w 2 

+ E2w4 m(J1.2) g(w)J1/2. Thus the solution of (3.3) for 
k(w, (2) can be written as 

This result shows that no new modes of propagation 
occur in this case. Instead the solution for k in the 
presence of uncorrelated impurities is just that for 
a perfect crystal at a shifted and, generally, complex 
frequency. To expand (3.5) we set ko(w) = koko(w), 
where ko is a unit vector independent of wand ko(w) 
is a scalar. Then (3.5) yields 

A (E2 ako) k(W,E2) =ko ko(w) + - w3 m(/l2)g(w) - + 0(E4) . 
2 aw 

(3.6) 

We note that the correction to ko(w) is proportional to 
the reciprocal of the group velOCity a w / a k for the 
perfect crystal. 

In order to solve (3.3) for w(k, (2), we first use the 
solution w o(k) for the perfect crystal to write 

(3.7) 

Then by expanding w(k, (2) about w o(k) we obtain 

(3.8) 

In addition to the solution (3.8), (3.7) may have other 
solutions. 

4. PROPAGATION CONSTANT FOR A ONE-
DIMENSIONAL CRYSTAL 

To illustrate the preceding results we shall apply 
them first to a one-dimensional crystal, Le., to a 
linear chain with the qth particle at x(q) = qd, q = 
0, ± 1, .... Let us assume that only nearest neighbors 
interact, with spring constant 0::::: 0. It follows that <l> 
is given by 

<l>(q,q') = -a if q' = q±l, 

= +20: if q' =q, 

= ° otherwise. (4.0 

Then (1. 14) yields for Lo the result 

(4.2) 

Here b,2 is the second central difference operator 
defined by 

b,2u(q) = u(q + 1) - 2u(q) + u(q - 1). (4.3) 

When cp(q,q') = 0, (1.15) yields V = -EmoW2J1.(q). 

The Fourier transform (2.2) becomes, when (4.1) is 
used in it, 

cP(k) = -o:(e- ikd - 2 + e ikd ) = 2a(1 - coskd). (4.4) 

The Green's function of Lo given by (4.2) is easily 
seen to be 

w '" 0,(4a/m)1/2. 
(4.5) 

Here ko(w) is the solution of the dispersion equation 
(2.6) for the perfect crystal, which becomes, when 
(4.4) is used, 

We see that the prinCipal solution of (4.6) yields 
ko(w) = ° at w = O,and that ko remains real and in­
creases to the value 1T/d at the cut-off frequency 
Iwl = we = (4a/m)1/2. For Iwl > we' ko is imagin­
ary. Thus in the perfect crystal with w real, waves 
propagate for ° < I w I < we and are evanescent or 
nonpropagating for I wi> we' The correlation func­
tion R defined by (2.3) is a function of Iq - q'l in the 
present case, R = R( I q - q' I). Thus (2. 4) becomes 

CR(k,w) = -(2ia sinkod)-l 2:; R( Iq I) ei(kolql+ kq)d. 

q ~.~ 
Now we use (4.7) and (4.4) in (2.11) to obtain the 
dispersion equation 

(4.8) 

By solving (4.8) for k or for w,or by using (4. 7} and 
(4.4) in (2.12) and (2.13), we obtain the results 
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W(k,€2) = :±wcW1 - coskd)1/2 - (i€2/sinkd) 

x t(l - coskd)3/2 'B R{ iq \)eikd(lql+q) + 0(€4)]. 
q (4.10) 

Taking the real and imaginary parts of (4.9) and 
(4.10) yields 

€2(W2 )-1 Rek(w, (2) = Reko(w) - - _c - 1 
d w2 

00 

x 'B R(q) sin2qkod + 0(€4), (4.11) 

Imw(k, €2) ±w [_ ~ (1 
c sinkd 

x (R(O) + t1 R(q) (1 + COS2qkd») + 0(€4)]. (4. 14) 

Imlkdl 

0.4 

q~l 0.3 

€2 (W2 )-1 
Imk(w, (2) = ImRo(w) + - ~ - 1 

d w 2 

X(R(O) + ~ R(q)(1 + COS2qkod~+ 0(€4) , (4.12) 
q-l 'J 0.2 

Rew(k €2) = ±w + ._-[(
1 - COSkd)1/2 €2 

, c 2 sinkd 

Re!kd)x7r 

0.9 

04 

02 

01 

0.1 02 03 04 05 06 08 09 1.0 

%c 
FIG.t. Rekd is shown as a function of w/wc for waves in a one­
dimensional crystal with nearest neighbor interactions and uncor­
related mass defects for three values of Ii = (2(1J.2). The curves 
are based on the "exact" dispersion equation (4.15). The approxi­
mation (4.16) is independent of E2(fl2) and yields only the perfect 
crystal curve for which € = O. 
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O~~~~C=~~~~~~~~·--~~~ 
o 0.1 0.2 0.3 0.4 06 0.7 09 10 

w/wc 
FIG. 2. fmkd vs w/wc for the same case as in Fig. 1 

based on (4. 15),with four values of Ii = E2(fl2). 

{R~!kJ/(~: ) 
105,.-----------------------, 

0.95 

1 I I I _L_ -'L.LJ...l1-

o 0.1 0.2 0.30.4 05 06 07 0809 1.0 

kd x 7T' 

FIG. 3. The phase velocity w/Rek, divided by the perfect crystal 
velocity w/Reko,vs.w/we for the same cases as in Fig.2 based on 
(4.15). Only velocities for frequencies below the cut-off frequency 
we are shown. 
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The results (4.11) and (4. 12) determine the phase 
velocity w/Rek and the attenuation coefficient Imk of 
the mean wave. For propagating waves the attenu­
ation coefficient is positive because w2 < w;, and the 
expression in braces in (4. 12) is also positive. This 
is so because it is the sum of R(O) and the Fourier 
transform of the correlation function R evaluated at 
zero and at 2kod, all of which are positive. Similarly 
(4.13) and (4.14) determine the frequency and decay 
rate of a standing wave. 

As an example, let us consider uncorrelated mass 
defects. Then R(q) = 0 for q 7' 0, R(O) = (f.l2) and the 
dispersion equation (4.8) becomes 

(
w) 2 2iE 2(f.l2)(w/we)3 

coskd = 1 - 2 - - . 
we [1- (w/we)2)1/2 

(4.15) 

From (4.15),or from (4. 11}-(4. 14),or from (2.12) 
and (2.13), we obtain 

Rek(w, (':2) = Reko(w) + 0«(,:4}, (4. 16) 

Imk(w, E2) = Imko(w) + (':;(Il:) ] + 0(E4}. 
d[(we w) - 1 

(4.17) 

Rew(k, (':2) = ±we [i(1 - coskd)l/2 + 0«(':4)], (4.18) 

Imw(k, E2} = ±we [-«(,:2(f.l2)/sinkd) t(1 - coskd)3/2 

+ 0(E4}]. (4.19) 

Upon rationalizing (4. 15) ,it becomes a cubic equation 
in (w/we )2. Therefore in addition to the solutions 
±w(k, E2) given by (4.13) and (4.14), there are two 
other pairs of solutions. One of them, which corres­
ponds to the vanishing of the denominator of the E2 
term, is readily found to be 

(4.20) 

The other is spurious, since it does not satisfy the 
unrationalized equation. We note that the solution 
(4.20) is real to the orrler shown. 

Graphs of Rekd and Imkd as functions of w/we for 
several values of E2(Jl2) are shown in Figs. 1 and 2. 
Figure 3 shows the corresponding phase velocity 
w/Rek. Figures 4 and 5 show Rew/we and Imw/we as 
functions of kd based on (4. 15) and also on (4. 18)­
(4.20). 

As a second example let us treat mass defects with 
the exponential correlation function 

(4.21) 

Here a is the correlation length of the random de­
fects. Now (4.7) can be summed to yield 

GR(k,w) = _(g2) [(1 _ e-d/a+i(ko+k)df 1 

2ia sinkod 

+ (ed/a+i(ko+ k)d _ Ifl] 

(f.l2) sinKd 
2a sinkod (coskd - cosKd) , 

(4.22) 

where K is defined by 

K(w} = ko(w} + (i/a). (4.23) 

0.1 

0.1 0.2 03 0.4 0.5 0.6 07 0.8 0.9 1.0 
k d x rr 

FIG. 4. Rew/wc vs. kd for the same case as in Fig.l based on 
(4.15), with four values of 0 = (2(1-'2). The approximate result 
(4.18) yields only the perfect crystal curve for which ( = O. 

1.0,--------------------.--,----, 

Imiwl 
We 0.9 

0.8 

0.7 

o 6 

o 5 

04 

o 3 

0.2 

0.1 

0L-~~~~~~c=~~ __ L__L~~ 
o 01 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 

k d x rr 

FIG.5. Imw/w c vs kd for the same cases as in Fig. 1 based on 
(4. 15),with four values of Ii = E2(1-'2). The approximation (4.20) 
yields only the result Imw = O. 
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I I 

T 
o 01 02 0.3 04 0.5 06 07 0.8 09 10 

FIG. 6. The phase velocity w/Rek divided by the perfect crystal 
value w/Reko vs. w/wc ' for waves in a one-dimensional crystal with 
nearest neighbor interactions and exponentially correlated mass de­
fects for various values of E when (fl2) =0 1. The curves are based 
on the approximation (4. 27) with a = d. 

Imlkdl 
.2< fL"> 

15 

10 

5 

o 0.1 0.2 0.3 04 05 06 07 08 0.9 1.0 

n='%;c 
FIG. 7. Im(kd}/E 2(fl2) VS w/wc for the same cases 

as in Fig. 6, based on the approximation (4. 28). 
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Then the dispersion equation (4.8) becomes 

(coskd - coskod) (coskd - cosKd) = 4E 2(1J.2) 
x (w/wc )4 (SinKd/sinkod). (4.24) 

When E = 0, (4. 24) has the two solutions k = ko(w) and 
k = K(w). Then perturbation analysis yields for E 
small the following two solutions: 

( 
2) ) __ 4_(_2<J;._2)_(_w/~w---.:::c_)4_si_nJ(,_d __ 

kW,E ==ko(w-
d sin2kod (coskod - cosKd) 

+0«(4), (4.25) 

i 4E2(1J.2) (w/wc )4 
k(w, (2) ::: k (w) - - - -------=----

o a d sinkod (cosKd - coskod) 
+ 0(E4). (4.26) 

Solution (4.25) represents the slightly attenuated mo­
dification of the mode of the perfect crystal, while 
(4.26) represents an additional strongly attenuated 
mode. 

The real and imaginary parts of k given by (4.25) are 

E2(1J.2) (w~ ~ -1 
Rek = k - -- - - 1 

o d w2 

x 
e-d1a sin2kod 

----------"---- O( ( 4 ), 
1 - 2e-d/ a cos2kod + e-2d /a 

E2(1J.2)(W~ )-1 ( e-d/a 
Imk=-- --1 

d w2 1 - e-d / a 

(4.27) 

1 - e-d / a cos2k d ) 
+ 0 + 0(E4). (4.28) 

1 - 2e-d/a cos2kod + e-2d/a 

We see that Imk > 0, and that Rek < ko if sin2kod > ° 
and Rek > ko if sin2kod < 0. Thus the phase velocity 
w/Rek of the mean wave exceeds that of the unper­
turbed wave if ° < ko < rr/2d and is less than the un­
perturbed speed if rr/2d < ko < rr/d. Graphs of the 
phase velocity w/Rek and of Imk are shown in Figs. G 
and 7,based on (4.27) and (4.28). We note that kod::: 
rr/2 at w/wc = 2-1 / 2 = .707. 

To solve (4.24) for w(k, (2), we use (4.4) and (4.22) 
in (2.13) to obtain 

w(k, (2) = ±wcH(1 - coskd)l/2 + (iE2(1J.2)/sinkd)3/2 

x [(1 - e-d / a + 2 ikd)-l + (e d / a - 1)-1] + 0(E4)}. 

(4.29) 

In this case both Rew and Imw have corrections of 
order E2 to the solution for the perfect crystal. Addi­
tional solutions of (4.24) can also be obtained;but 
we shall not present them. 

Our result (4.17) for uncorrelated defects can be 
compared with a result obtained by Rubin 8 and Mat­
suda and Ishii9 for w/wc small. When w/wc is small, 
Imko(w) = 0 and (4.17) yields Imk(w, (2) ~ E2(1J.2)dw~. 
Both Rubin and Matsuda and Ishii obtained one-half 
this result. The difference is evidently due to the dif­
ferent statistical properties of the solution deter­
mined by those authors and by us. 

It is also of interest to compare our low frequency 
result with the result for a continuous elastic rod. In 
the one-dimenSional case with nearest neighbor in­
teraction, the equation of motion is 

0't,. 2u(q) + w 2m[1 + EIJ.(q)]U(q) = 0. (4.30) 



                                                                                                                                    

W A V E PRO P A GAT ION I N A RAN D 0 M LA TTl C E. I 1411 

We now let the spacing d and the frequency w tend to 
zero in a fixed ratio. Then we define ko' which is fi­
nite' by 

ko = (wid) (mla)1/2. (4.31) 

We also set x = qd and then (4.30) becomes 

d
2
u(x) + k5[1 + Ef.l(X)]U(x) = 0. 

dx 2 
(4.32) 

This equation, with fl(X) a random function,has been 
analyzed by Kupiec et al. IO When the correlation 
function of f.l(x) is a delta function or an exponential, 
the results (22),(36),and (37) of Ref. IOagree,respec­
tively, with our results (4.15), (4. 25),and (4.26) for 
w small. 

APPENDIX: NONSIMPLE LATTICES 

Let us consider a lattice withp particles per cell. We 
shall label each cell by a vector n = (nl,n 2,n3) with 
integer components, and label each particle in a given 
cell by an index r = 1, ... ,p. Thus q = (n, r) desig-
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The lattice Green's function for the triangular lattice at an arbitrary lattice site is expressed in terms of the 
complete elliptic integrals of the first and second kind. The lattice Green's function for the honeycomb lattice 
is shown to be expressed in terms of the one for the triangular lattice. The results obtained are shown by 
graphs. 

1. INTRODUCTION 

The triangular lattice is the two-dimensional closed 
packed lattice. The honeycomb lattice is composed of 
two triangular sublattices. The lattice sites on one of 
the sublattices, say A in Fig. 5, have bonds extending 
vertically downward, while the sites on the other sub­
lattice B have bonds extending vertically upward. The 
lattice sites of one type cannot be found from those of 
the other type by a simple translation, which would be 
required if they were in equivalent position in the lat­
tice. These situations resemble the relation of the 
fcc and diamond structure lattices. The density of 
state for the diamond structure lattice was recently 
calculated by Thorpe and Weaire 1 in connection with 
the problem of electronic properties of an amorphous 
solid of the Weaire mode1. 2 In that calculation, the 
one-band Hamiltonian of the Weaire model is used 
which is equivalent to the one of the electron in the 
solid on the tight-binding approximation. In order to 
see whether the structure of lattice reflects in its 
lattice Green's function or not, we investigate the be­
havior of the functions for the triangular and honey-

comb lattices and discuss the similarity between the 
functions for the honeycomb and diamond structure 
lattices. 

The theoretical studies of the lattice vibrations of 
graphite need the lattice Green's function for the lat­
tice of the graphite structure. In that structure, the 
distance between layers is much larger than the dis­
tance between the nearest atoms within the same 
layer, and the forces between atoms within the same 
layer are usually much stronger than those between 
atoms in different layers. 3 If only the nearest neigh­
bor interaction in the same layer is assumed, the lat­
tice Green's function for the honeycomb lattice is 
needed for the studies on the lattice vibration of the 
graphite. 4 

In the present note, we investigate the lattice Green's 
functions for the triangular and honeycomb lattices. 
It is shown in Sec. 2 that the lattice Green's function 
for the triangular lattice is expressed in terms of the 
complete elliptic integrals of the first and second 
kind with a modulus of complex number, and in Sec. 3 
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We now let the spacing d and the frequency w tend to 
zero in a fixed ratio. Then we define ko' which is fi­
nite' by 

ko = (wid) (mla)1/2. (4.31) 

We also set x = qd and then (4.30) becomes 

d
2
u(x) + k5[1 + Ef.l(X)]U(x) = 0. 

dx 2 
(4.32) 

This equation, with fl(X) a random function,has been 
analyzed by Kupiec et al. IO When the correlation 
function of f.l(x) is a delta function or an exponential, 
the results (22),(36),and (37) of Ref. IOagree,respec­
tively, with our results (4.15), (4. 25),and (4.26) for 
w small. 
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integer components, and label each particle in a given 
cell by an index r = 1, ... ,p. Thus q = (n, r) desig-
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denotes the equilibrium position of particle n, r. The 
displacement u(q)e- iwt satisfies (1.1), which can be 
written in the form (1.2) with L given by (1.3), and 
(f.l) satisfies (1.4). 

A plane wave is a solution of the form 

(u(n,r) = A(r)eikox(n), r = 1, ... ,po (AI) 

By using (A1) in (1. 4) with f = 0, we obtain 

r = 1, ... ,po 
(A2) 

These are p vector equations for the p vectors A(r) , 
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be nontrivial. This determinant is of order 3p in 
three dimension, 2p in two dimensions, and p in one 
dimension. Its vanishing yields the dispersion equa­
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The lattice Green's function for the triangular lattice at an arbitrary lattice site is expressed in terms of the 
complete elliptic integrals of the first and second kind. The lattice Green's function for the honeycomb lattice 
is shown to be expressed in terms of the one for the triangular lattice. The results obtained are shown by 
graphs. 

1. INTRODUCTION 

The triangular lattice is the two-dimensional closed 
packed lattice. The honeycomb lattice is composed of 
two triangular sublattices. The lattice sites on one of 
the sublattices, say A in Fig. 5, have bonds extending 
vertically downward, while the sites on the other sub­
lattice B have bonds extending vertically upward. The 
lattice sites of one type cannot be found from those of 
the other type by a simple translation, which would be 
required if they were in equivalent position in the lat­
tice. These situations resemble the relation of the 
fcc and diamond structure lattices. The density of 
state for the diamond structure lattice was recently 
calculated by Thorpe and Weaire 1 in connection with 
the problem of electronic properties of an amorphous 
solid of the Weaire mode1. 2 In that calculation, the 
one-band Hamiltonian of the Weaire model is used 
which is equivalent to the one of the electron in the 
solid on the tight-binding approximation. In order to 
see whether the structure of lattice reflects in its 
lattice Green's function or not, we investigate the be­
havior of the functions for the triangular and honey-

comb lattices and discuss the similarity between the 
functions for the honeycomb and diamond structure 
lattices. 

The theoretical studies of the lattice vibrations of 
graphite need the lattice Green's function for the lat­
tice of the graphite structure. In that structure, the 
distance between layers is much larger than the dis­
tance between the nearest atoms within the same 
layer, and the forces between atoms within the same 
layer are usually much stronger than those between 
atoms in different layers. 3 If only the nearest neigh­
bor interaction in the same layer is assumed, the lat­
tice Green's function for the honeycomb lattice is 
needed for the studies on the lattice vibration of the 
graphite. 4 

In the present note, we investigate the lattice Green's 
functions for the triangular and honeycomb lattices. 
It is shown in Sec. 2 that the lattice Green's function 
for the triangular lattice is expressed in terms of the 
complete elliptic integrals of the first and second 
kind with a modulus of complex number, and in Sec. 3 
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that the lattice Green's function for the honeycomb 
lattice is calculated with the aid of the one for the 
triangular lattice. The analytic properties become 
clear for these functions. The discussion is given in 
Sec. 4 for the singularities of the function and for the 
behavior of the function for the honeycomb and dia­
mond structure lattices. 

2. TRIANGULAR LATTICE 

The lattice Green's function for the triangular lattice 
with the nearest neighbor interaction is the solution 
of the following difference equation which involves the 
B-function type inhomogeneous term 

2tG(la, mb) - G(la + 2a, ma) - G(la - 2a, mb) 

- G (la + a, mb + b) - G (la + a, mb - b) 

- G (la - a, mb + b) - G (la - a, mb - b) 

= 2B z,oB m ,o' (2. la) 

where 1 + m is an even integer, and a and b are equal 
to ~ and ~..f3 times the length of the edge of the tri­
angles: a = ~ and b = ~..f3 if the nearest neighbor dis­
tance is chosen to be equal to 1. The boundary value 
of the function is required to be equal to zero as [2 + 
m 2 tends to infinity. The solution of this equation 
under this boundary condition is given as follows: 

ab j1f/a j1f/b 
G(la, mb) = -- dx dy 

(21T)2 -1f/a -1f/b 
ei(lax+mby) 

x ---------------------- (2.2a) 
t - cos2ax - 2 cosax cosby 

The function is unchanged under the rotation by an 
angle Hn1T), n = 1,2,3,4,5, of the coordinate axes 
around the origin, 

G(la, mb) = G(la cos1(n1T) - mb sin1(n1T), 

la sin1(n1T) + mb cos1(n1T)), (2.3) 

and under the inversion on the la axis and mb axis, 

G(la,mb) = G(la, -mb) == G(-la,mb); (2.4) 

cf. Fig. 1. Using Eq. (2. 3) for n == 5 and Eq. (2. 4) for 
the inversion on the mb axiS, one obtains the following 
equation by which the function G(la, mb) for mb > 31a 
is expressed in terms of the one for mb < 31a: 

G(la, mb) = G(~la +~..f3 mb,~..f3 la ~ ~mb). (2. 5a) 

FIG. 1. The network of the triangular lattice. 
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Thus it is sufficient to calculate only the values at 
lattice sites shown by a black point in Fig. 1. 

Equations (2. la) and (2. 2a) are simplified to 

2tG(l, m) - G(l + 2, m) - G(l- 2, m) 

-G(l + I,m + 1)-G{l + I,m-I) 

- G(l - 1, m + 1) - G(l- 1, m - 1) 

= 2B 1,oB m ,o, (2. Ib) 

G(l, m) == l... f dx f dy coslx cosmy . 
1T2 0 ° t - cos2x - 2 cosx cosy 

(2.2b) 
(2. 2b) may be obtained either by solving (2. Ib) or by 
changing the variables x and y in (2. 2a) by x/a and 
y/b, respectively. To show the variable t explicitly, 
we use the notation G(t; l, m) in place of G(l, m). 

We shall see later that the value of G(l, m) at an arbi­
trary lattice site is calculated by using some recur­
rence formulas if the values of G(O, 0), G(2, 0), and 
G(4, 0) are known. At first, we investigate these three 
functions. 

If t is real and t> 3, the values of G(l, 0) for 1 == 0,2,4 
are obtained by the standard formulas 5 as follows: 

G(O,O) = (1/21T)gK(k), (2.6) 

G(2,0) = (1/21T)g{2[1- (1/0: 2)] n (0:2,k) 

+ [(2/0: 2) - I]K(k)}, (2.7) 

G(4, 0) = (1/21T)g{[(0:2 - 2)2/0:4]K(k) 

+ [4(0: 2 - 1)/(k2 - 0:2)a 2]E(k) 

+ [4(0: 2 - 1)/(k 2 - 0:2)0:4](k2 - 20: 2 + 0: 4) 

X n (0:2,k)}, (2.8) 
where 

g == 8/[(2t + 3)1/2 - 1)3/2[(2t + 3)1/2 + 3]1/2, 

0: 2 = 4/[1 - (Zt + 3)1/2)2, 

(2.9) 

(2. 10) 

k == 4(2t + 3)1/4/[(2t + 3)1/2 -1)3/2[(2t+3)1/2 +3J1/2, 

(2. 11) 

andK(k),E(k),and n (0:2,k) are the complete elliptic 
integrals of the first, second, and third kind, respec­
tively: 

1"/2 1 
K(k) = ° (1 _ k 2 sin2e)1/2 de, 

(2. 12) 

1
1f/2 

E(k) = (1 - k 2 sin2e)1/2de, 

° 
(2. 13) 

rTI/ 2 1 
n(0:2 k) = J( de , ° (1 - 0: 2 sin2E/)(I- k 2 sin2E/)1/2 

(2. 14) 

On the other hand, substituting (2.6) into Eq. (2. Ib) 
for 1 == 0 and m = 0 and using the symmetry relations 
(2.3) and (2.4), we obtain another expression for 
G(2,0); 

G(2,0) == (t/61T)gK(k)-~. (2. 15) 

By comparing two expressions (2.7) and (2.15) for 
G(2, 0), we obtain the following relation which expres-
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ses the complete elliptic integral of the third kind 
(2. 14) in terms of the one of the first kind (2. 12) for 
the special modulus k and parameter a 2 given by 
(2.11) and (2.10): 

G(4,0) 

n(a 2,k) = [1/6(a 2 - 1)]{[(3 + t)a 2 - 6]K(k) 

- (2'1ra2/g)}. (2.16) 

By using this relation in (2.8), G(4,0) is given by 

= ~ g(3(a 2 - 2)(k 2 + a 2 - 2) + 2(k 2 - 2a 2 + ( 4 )t K(k) + 4(a 2 - 1) E(k») _ 2 (k2 - 2a 2 + ( 4 ) 

21T 3(k2-a 2)a 2 (k 2 -a2)a 2 3(k2-a 2)a 2 '(2.17) 

Equations (2.6), (2.15), and (2.17) express G(O, 0), 
G(2, 0), and G(4, 0) in terms of the complete elliptic 
integrals of the first and second kind. 

We have derived these expressions for the case in 
which t is real and t> 3. Because of the analyticity of 
the lattice Green's function, these expressions are 
valid for any complex value t. When t = s ± if., where 
s is real and f. is a positive infinitesimal number, the 
factor (s ± if. - a)l/n for s> a changes to e±£!rln(a-
s )l/n for s < a in Eqs. (2.9)-(2. 11). Figures 2(a) and 
2(b) show the curves for modulus k for t = s ± if., 
- 00 < s < 00, and f. > O. The upper half of the complex 
t plane is mapped into the region which is the second 
and third quadrants outside of the loop and the fourth 
quadrant for t = s + if. in Fig. 2(a), and the lower half 
into the region which is the second and third quad­
rants outside of the loop and the first quadrant for 
t = s - if. in Fig. 2(b). The functionK(k) andE(k) 
have branch points at k = ± 1. The expressions (2.12) 
and (2.13) are analytic on the Riemann surface exclu­
ding the branch cuts connecting + 1 and + 00, and - 1 
and - oo,respectively,on the real axis. We call this 
part of the Riemann surface as sheet I. The Riemann 
surface which is the upper quarter plane reached 
through the cut connecting - 1 and - 00 from the sheet 
I is denoted as sheet II in Fig. 2(a), and the one which 
is the lower quarter plane reached through the cut 
connecting - 1 and - 00 is denoted as sheet III in Fig. 
2(b). In Figs. 2(a) and 2(b), sheets I and II and sheets 
I and III, respectively, are written in the same figure 

1r 

-2 

I 

5 =-1 t 

2 

s= tal 
-I 

-2 

COMPLEX k PLANE 

1=5+1£ (£~ot 

I, 2 

5 = 3 

I 

I 

by drawing the branch cut connecting - 1 and + 1. 
For k on the sheets II and III, the analytic continua­
tions of the function K( k) and E (k) on the sheet I to 
the sheets II and III are considered, and the obtained 
expressions are used in place of K( k) and E (k). They 
are given as follows 6. 7: 

KI1(k) = K(k) + 2iK'(k), 

EII(k) =E(k) + 2i[K'(k)-E'(k)], 

KIII(k) = K(k) - 2iK'(k), 

E III (k) = E (k) - 2i[K'(k) - E '(k»), 

(2. 18) 

where K'(k) and E '(k), respectively, are the complete 
elliptic integral of the first and second kind with the 
complementary modulus of k. One sees from (2.18) 
that the analytically continued function has the 
branch points at the origin and at the infinity. In Fig. 
2(a), these branch points are connected along the posi­
tive portion of the imaginary axis and in Fig. 2(b) 
along the negative portion of it. Hence sheet II in 
Fig. 2(a) is restricted to the left upper quarter of the 
complex k plane and sheet III in Fig. 2(b) to the left 
lower quarter. 

We have the expressions of the functions G(O, 0), 
G (2,0), and G (4,0) for any complex variable t: 

G(O,O) = (1/2'1r)gK(k), 

G(2,0) = (t/61T)gK(k) -t, 

2 

I 

-2 

5=-1.5 

m -I 

-2 

5= -I + 

COMPLEX k PLANE 

1=5-i£ (£~ot 

2 

5 =-1 -

(2. 19) 

(2.20) 

FIG. 2. (a) The curve of the modulus k in the complex k plane when t = s + iE, S is real and E is a positive infinitesimal number. The 
bold solid lines between - 1 and + 1, and 0 and + i~ denote the branch cuts of the complete elliptic integrals of the first and second kind. 
The lower half-plane represents the sheet I and the left upper quarter of the plane the sheet il. (b) The curve of the modulus k in the com­
plex k-plane when t = S - iE. The bold solid lines between - 1 and + 1, and 0 and - i~ denote the branch cuts of the complete elliptic in­
tegrals of the first and second kind. The upper half-plane represents the sheet I and the left lower quarter of the plane the sheet ill. 
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3.0 

G (0,0) 
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fa 

R 
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-1.0 

R 

-2.0 
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-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 

S 

1.5 

G (2,0) 

1.0 

0.5 
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-1.0 
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-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 

s 
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1.5 

G (4,0) 

1.0 

0.:5 

R 
0.0 

-0.5 

-1.0 

-1.5 

-3 .. 0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 

S 

1.5 

G{6.0) 

1.0 

0.5 

R 
0.0 

R 

-0.5 

-1.0 

-1.5 
L-_-L~_L-_~ __ L-_~ __ L-_-L~ 

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 

s 

FIG. 3. The lattice Green's functions C(O, 0), G(2, O),G(4, 0) and 
C(6,O) for the triangular lattice. R and I indicate the real and ima­
ginary parts, respectively. 
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G(4, 0) = ~ 
211' 

x g(3(a 2 - 2)(k2 + a 2 - 2) + 2(k 2 - 2a 2 + ( 4 )t K{k) 
3(k 2 - a 2)a 2 

4{a 2 - 1) - ) 2(k 2 - 2a2 + ( 4 ) + E(k) - , 
(k 2 - ( 2)a 2 3{k2 - ( 2)a 2 

where K (k) and E (k) are given as follows: 

_ ~ K(k) 

K(k) = ') KII(k) 

f, KIlI(k) 

1.5 

1.0 

0.5 

for Imt > 0 and Imk< 0 

or Imt < 0 and Imk > 0 

for Imt > 0 and Imk > 0' 

for Imt < 0 and Imk < 0 

G (3,1) 

(2.21) 

(2. 22) 

0.0 b~-I--~~--t'>_-+----""7'4---I-+--=",,*,-

R 
-0.5 

-1.0 

-1.5 
L-_-L~_L-_-L __ L-_-L __ L-_-L~ 

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 

S 

FIG. 4. The lattice Green's functions G(3, 1), G(5, 1), and G(6, 2) 
for triangular lattice. R and I indicate the real and imaginary parts, 
respectively. 

, E(k) 

E(k) J EII(k) 

( EIIl(k) 

for Imt > 0 and Imk < 0 

or Imt < 0 and Imk > 0 

for Imt > 0 and Imk > 0 

for Imt < 0 and Imk < 0 

(2. 23) 

It is known that the complete elliptic integrals of the 
first and second kind with the modulus of complex 
number are easily calculated by using the aritheme­
tic geometric means. 8 Thus, one is able to know the 
Green's functions G(l, 0) for 1 = 0,2,4 numerically as 
well as analytically. 

We shall derive some recurrence formulas in order 
to obtain the values of G(l, m) at an arbitrary lattice 
site. In the first place, we consider the function 
G(l,O). In Refs. 9 and 10, a method of deriving a re-

1.5 

1.0 G (5, I) 

0.5 

-1.0 

-1.5 
L-_-L_~~_-L_~ __ ~_~ __ ~~ 

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 

S 

1.5 

G (6,2) 
1.0 I 

0.5 

R 

l\ R J ~~ """" i\..R 

""\ \.X-V i'-~ 
R 

0.0 

-0.5 

-1.0 

-1.5 

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 

S 
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currence formula connecting the lattice Green's func­
tion along an axis is discussed for the square lattice 
with the interaction up to the second neighbors. By 
the same method, one obtains the following recur­
rence formula for G(l, 0): 

G(l + 4,0) = [I/(l + 2)][4(l + l)(t + I)G(l + 2,0) 

- 2l(2t2 - 3)G (l, 0) + 4(l - l)(t + 1) 

x G(l- 2,0) - (l- 2)G(l- 4,0)], (2.24) 

where l is even. From this equation, one sees that 
the values of G(l, 0) for l2: 6 are calculated from the 
knowledge of G(O, 0), G(2, 0), and G(4, 0). Thus one is 
able to calculate the lattice Green's function at an 
arbitrary lattice site on the la axis in Fig. 1. The 
graphs for the G(l, 0) (l = 0,2,4,6) are given in Fig. 3 
for t == s - iE, - (fJ < s < (fJ and E ;::; O. 

In the next place we consider the function G(l, 1). 
From Eq. (2. Ib), one obtains the following equation by 
taking symmetry properties (2.4) into account: 

G(l + 1,1) = tG(l,O) -HG(l + 2,0) 

+ G(l- 2,0)] - G(l- 1,1), (2.25) 

where l is even and greater than or equal to 2, and 

G(I, 1) = G(2, 0). (2. 26) 

For G(l, m) where l2: 4 and m 2: 2, the following re­
currence formula is obtained by applying Eq. (2. Ib) 
for lattice site (l - 1, m - 1): 

G(l,m) = 2tG(l-l,m-l) -G(l- 2,m) 

-G{l- 3,m-l)-G(l + I,m-I) 

- G(l, m - 2) - G(l- 2, m - 2). (2.27) 

When Eq. (2. 27) is used, we note that the function 
G (l, m) for m> 3l is expressed by the one for m < 3l 
by using the relation (2. 5a): 

G(l, m) = GH(l + 3m), ~(l- m)). (2. 5b) 

The graph for G(3, 1),G(5, 1), and G(6, 2) are given in 
Fig. 4 for t == s - iE,- (fJ < S < (fJ and E ~O. 

Now the analytic properties and values of the lattice 
Green's function for the triangular lattice at an arbi­
trary lattice site can be discussed from those of 
G(O, 0), G(2, 0), and G(4, 0) by using the recurrence 
formulas (2.24), (2.25), and (2.27). 

3. HONEYCOMB LATTICE 

We consider the monatomic lattice Green's function 
for the honeycomb lattice with the nearest neighbor 
interaction. The honeycomb network is shown in Fig. 
5. Here we distinguish the lattice site A or B accord­
ing as it is an upper site or lower site of a vertical 
bond. Each of the sublattice constitutes a triangular 
lattice. 

At first, the case in which the initial lattice site be­
longs to the sublattice A is considered. In that case, 
the lattice Green's function is the solution of the fol­
lowing set of two difference equations: 

J. Math. Phys., Vol. 13, No.9, September 1972 

2tGAA(la, mb) - GBA(la - a, mb + b) 

- GBA(la + a, mb + b) - GBA(la, mb - 2b) 

= 20 1,aom.a, (3.1) 

2tGBA(la, mb) - GAA(la + a, mb - b) 

- GAA(la - a, mb - b) - GAA(la, mb + 2b) = 0, 
(3.2) 

where 

la= (rj-r;)x, 

mb == (rj-ri)y, 

(3.3) 

(3.4) 

and r i and r j are the initial and final lattice site, res­
pectively. a = 13 and b == 1, if lattice constant is cho­
sen to be equal to 2. The solution of these equations 
under the boundary condition that G (la, mb) is equal to 
zero as l2 + m 2 tends to infinity, is given by 

ab J"fa J"/b GAA(la, mb) = 4t - I dx dy 
41T 2 -IT a -,,/b 

ei(lax+mby) 

X -------------------------------
4t2 - 3 - 2 cos2ax - 4 cosax cos3by' 

(3. 5) 

ab J,,/a J"/b GBA(la, mb) = - dx dy 
41T2 -"fa -,,/b 

ei(lax+ mbY)[ei2bx + ei(-ax-by) + ei(ax-by)] 
X .(3.6) 

4t2 - 3 - 2 cos2ax - 4 cosax cos3by 

To show the variable t explicitly, we use the notation, 
for example, GAA(t; la, mb) instead of (3.5). 

Next, we consider the case in which the initial site be­
longs to the sublattice B. In a similar way to the fore­
going paragraph, the following relations are obtained: 

GBB(la, mb) == GAA(la, mb), (3.7) 

-2 a o A 20 4 a ----ra 

FIG. 5. The network of the honeycomb lattice. Distinction is given on 
the lattice site as A or B according as it is an upper site or lower 
site of a vertical bond. 
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GAB(la, mb) = GBA( - la, - mb). (3.8) 

Then, it is needed to consider the detailed knowledge 
of GAA(la, mb) and GBA(la, mb) in the following. We 
shall drop the superscript on the function when we do 
not need to indicate them. 

The functions GAA(la, mb) and GBA(la, mb) are un­
changed under the rotation ~n7r, n = 1,2, of the coordi­
nate axes around the initial lattice site: 

2.0 r----~--___,r_ __ -.-___,n___.-......__-.,__--~ 

1.0 

0.0~--~-7-~-~-~-~-+-~-+---~ 

-1.0 

-2.0 '--__ ......... _L---'_--'-_...l.-_'----J-_-'-_.i..-__ ~ 

-3.0 -2.0 -1.0 

1.5 

1.0 

0.5 

0.0 

S 

1.0 

G (1,1 ) 

2.0 

0.0 I-"=-----f----+-r---f---f-----l 

-0.5 

-1.0 R 

-1.5 L-___ L-____ ~ ____ ~ ____ _L ____ -J 

0.0 0.5 1.0 1.5 2.0 2.5 

S 

3.0 

G(la, mb) = G(la cos(imr) - mb sin(imr), 

la sin(%mr) + mb cos(~mr», (3.9) 

and under the inversion on the vertical axis 

G(la, mb) = G(-la, mb). (3.10) 

As we put t = s - iE, where s is real and E is a posi­
tive infinitesimal number, we can easily confirm that 

1.5 

G ( 1,3) 

1.0 

0.5 

0.0 ~-~----,4--1-+--+=====f 

-0.5 

-1.0 

-1.5 

0.0 0.5 1.0 1.5 2.0 2.5 
s 

1.5 

G (0,4) 

1.0 R 

0.5 

0.0 f---r------"1~--+ir----=~.",..-__i 

-0.5 

-1.0 

-1.5 L-__ ~~ ____ ~ ____ ~ ____ ~ ____ ~ 

0.0 0.5 1.0 1.5 2.0 2.5 

s 

FIG. 6. The lattice Green's functions G(O, 0), G(I, 1), G(I, 3), and 
G (0,4) for the honeycomb lattice. R and I indicate the real and im­
aginary parts, respectively. It is noticed that the imaginary parts of 
G(O, 0) and G(I, 3) and the real parts of G(I, 1) and G(O, 4) are even 
functions of s, and the real parts of G(O, 0) and G(I, 3) and the imagi­
nary parts of G(I, 1) and G(O, 4) are odd functions of s. 
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the real and imaginary parts of GAA(t; la, mb) are an 
odd and an even function, respectively, and the real 
and imaginary parts of G BA(t; la, mb) are an even and 
an odd function, respectively; 

ReG(s -iE;la,mb) =- ClzmReG(-s -iE;la,mb), 
(3. 11) 

ImG(s -iE;la,mb) = ClzmImG(-s -iE;la,mb), 
(3. 12) 

where Cl zm is plus or minus unity according as the 
sites 1 and m belong to the same sublattice or to dif­
ferent sublattices. This fact corresponds to the sym­
metry properties discussed generally in Ref. 11. for 
the "alternating lattice." 

After the parameters a and b are deleted by the vari­
able transformation, these functions GAA(la, mb) and 
G BA(la, mb) are expressed in terms of the lattice 
Green's function for the triangular lattice 

GAA(l,m) = 2tGt(~(4t2 - 3); l,tm), 

GBA(l, m) = G t( ~(4t2 - 3); 1, i{m + 2» 

+ G tU(4t2 - 3); 1- 1,1(m - 1» 

+ Gt(~(4t2 - 3); 1 + 1,t(m -1», 

(3. 13) 

(3. 14) 

where G t (t; 1, m) is defined by Eq. (2. 2b). Thus, the 
analytic properties and the values of the lattice 
Green's function for the honeycomb lattice are ob­
tained from the knowledge of the one for the triangu­
lar lattice. The graphs for the honeycomb lattice are 
given in Fig. 6 for G (0,0), G (1, 1), G (1,3), and G(O, 4). 

The imaginary part of G (0,0) is equal to the frequency 
distribution function of the lattice vibration without a 
factor 1T. The curve for the frequency distribution 
was first given by Hobson and Nierenberg. 4 

4. DISCUSSIONS 

The exact expressions for the lattice Green's function 
for the lattice sites (0,0), (2,0), and (4,0) are derived 
for the triangular lattice. The function at an arbitrary 
lattice site is shown to be calculated by using the re­
currence formulas (2.24), (2. 25), and (2.27) from the 
knowledge of these three functions. The lattice 
Green's function for the honeycomb lattice is presen­
ted in terms of that for the triangular lattice. These 
expressions are also useful for the case when the 
parameter t is a complex number. 

For t = s - iE where s is real and E is a positive in­
finitesimal number, the graphs of the functions for the 
several lattice sites are shown. The singularities are 
found at the singular points which are determined by 
the critical points. These critical pOints are easily 
seen to be nondegenerate, and, hence, the behaviors of 
the function are expected to be logarithmic divergent 
from the general discussion of Ref. 12 at the singular 
points. However, some cancellations of the singularity 
of the lattice Green's function occur at the middle of 
the band for the honeycomb lattice. In fact, the value 
of the function at the lattice sites which belong to the 
same sublattice is equal to zero at the middle of the 
band, cf. (3. 13) and (3.7). In this case, the derivative 
of the imaginary part of the function with respect to s 
has a finite jump but the derivative of the real part 
of the function with respect to s shows a logarithmic 
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divergence. For the function at the lattice sites 
which are on different sublattices, no cancellation 
occurs and the real part of the function diverges lo­
garithmically, cf. (3. 14). Only exception is function 
G (1, 1). This function is easily expressed as 

It is interesting to compare the graphs for G(O, 0) and 
G(l, 3) in Fig. 6 with the graphs for G(O, 0) and G{2, 0) 
in Fig. 3. The sites CO, 0) and (1, 3) of the honeycomp 
lattice correspond to the sites (0,0) and (2, 0), res­
pectively, of the triangular lattice. The region which 
is defined by t = s - iE, S > 0, and E 2 0, for the honey­
comb lattice is mapped into the region which is defin­
ed by t = s - iE, S > - 1. 5, and E ~ ° for the triangu­
lar lattice. The region which is defined by t = s - iE, 
S < 0, and E ;G ° for the honeycomb lattice is mapped 
into the region which is defined by t = s + iE, s > -
1. 5, and E ;G ° for the triangular lattice. The values 
s = - 1. 5 and - 1. ° and 3. ° which are the singular 
pOints of the function for the triangular lattice (cL 
Fig. 3) change to the values s = 0, ± 0. 5, and ± 1. 5 
which are the singular pOints of the function for the 
honeycomb lattice (cf. Fig. 6). The top of the band, 
s = - 1. 5, for the triangular lattice corresponds to 
the middle of the band, s = 0, for the honeycomb lat­
tice and, as mentioned above, at that point the Singular 
behavior of the function for the honeycomb lattice can­
cels out. The portion corresponding to the one above 
the top of the band for the triangular lattice disap­
pears for the honeycomb lattice. The function for the 
triangular lattice does not satisfy any symmetry pro­
perties with respect to s; however, the function for the 
honeycomb lattice satisfies the symmetry properties 
(3.11) and (3.12). We notice a Similar correspon­
dence between the graphs for G(O, 0) in Fig. 6 and 
G(O,O) in Fig.3 and also between the graphs for G(1,3) 
in Fig. 6 and G(2, 0) in Fig. 3, 

Thorpe and Weaire have recently shown that the im­
aginary part of the lattice Green's function for the 
diamond structure lattice at the origin is expressed 
in terms of the one for the fcc lattice. The result was 
shown by a graph. The diamond lattice is composed 
of two fcc sublattices and fcc lattice is one of the 
three-dimensional closed packed lattices. As discus­
sed in Ref. 13, if the lattice sites on one of the sub­
lattices have the bonds extending vertically upward, 
the sites on the other sublattice have bonds extending 
vertically downward, cf. Fig. 2-7 in Ref. 13. One can­
not get a site on one of sublattices from that on the 
other sublattice only by a simple translation. These 
relations for the diamond structure and fcc lattices 
are quite Similar to the ones for the honeycomb and 
triangular lattices. The top of the band for the fcc 
lattice corresponds to the middle of the band for the 
diamond structure lattice and the singularity of the 
function at the origin for the diamond lattice is can­
celled out at this paint of the band. Other singular 
points are due to the nondegenerate critical points 
then singular behaviors are square root as discussed 
generally in Ref. 12. The singular behaviors of the 
function for the honeycomb lattice are logarithmic 
divergent or finite jump at the singular point due to the 
nondegenerate critical points. Taking these facts into 
account, we see that the Similarity of the lattice re­
flects to the lattice Green's function if we compare 
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Fig. 6 with Fig. 2 in Ref. 1. On the other hand, the 
linear, square, sc, and bcc lattices are composed of 
the linear, square, fcc, and sc sublattices, respectively. 
The relations for these lattices and their sublattices 
are not similar to the ones for the diamond and fcc 
lattices or the honeycomb and triangular lattices. 
Especially, one can get a site on one of the sublattices 
from that on the other sub lattice only by a simple 
translation, and the behaviors of the lattice Green's 
functions for these lattices are different from the 
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ones of the functions for the honeycomb and diamond 
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A modified version of the Lee model by Bronzan is investigated by the LSZ formalism approach. The e~istence 
of (Ve) bound state in the Bronzan's model is discussed. An iterative technique is applied for solving the tau 
functions in the V -26 sector. Each term in the series preserves (a) (ve) bound state properties, (b) analytic 
structure, and (c) symmetry properties of the tau function. The S-matrix elements for both nonbound-state and 
(Ve) bound state scattering processes in the V-2e sector are obtained. Comparison of the result obtained by 
our iterative expansion method with that obtained by Bronzan's variational principle method is made. 

I. INTRODUCTION 

In addition to the V, N, and (j particles, Bronzan 1 in­
troduced another fermion called' U particle with the 
coupling U «-? V + (j to the Lee mode1. 2 We will refer 
to this modified Lee model as B model here after. 
Bronzan investigated the U + e elastic scattering pro­
cess3 using a variational principle technique. 

In the previous articles, 4 ,5 we studied the V -2 (j and 
general higher sectors of the Lee model using the 
LSZ formalism. An iterative expansion method was 
used for calculating the multiparticle and bound state 
scattering processes. Each term in the series was 
shown to preserve (a) the properties of the bound 
state, (b) the analytic structures, and (c) the symmetry 
properties of the tau function. Because our iterative 
expansion preserves the above properties, it is a use­
ful technique for approximating the complex Green's 
function. 

It will be shown in this article that, in analogy to the 
Lee model, a (V e) bound state can exist in the B mo­
del for suitably chosen parameters. Therefore, the 
B model also offers the opportunity for the study of 
bound state scattering processes. 

The purpose of this article is thus to apply our itera­
tive expansion technique to solve the V -2 e sector of 
the B model. From the iterative solution of the tau 
functions, we can then calculate all the S-matrix ele­
ments for both nonbound-state and (Ve) bound-state 
scattering processes in the V-2 e sector. A compari­
son is made of our result for the U + e elastic scat­
tering amplitude and that obtained by using the vari­
ational prinCiple method in Ref. 3. 

The outline of the article is as follows. The descrip­
tion of the B model and LSZ formalism for the re­
duction formula of the S- matrix are given in Sec. II. 
In Sec. III, the existence of a (V e) bound state in the 
B model is discussed. The iterative expansion me­
thod is illustrated in Sec. IV for solving the tau func­
tions in the V -2 e sector. Our solution preserves the 
analytic structure and symmetry properties of the 
tau function and most important, the properties of the 
(V (j) bound state. Solution to the tau functions furnish 
all the information for the V -2 (j sector. In Sec. V, 
S-matrix elements for the nonbound state scattering 
processes 

U + e -~ U + (j, 

U + (j~ V + (j + e, 

U + (j «-? N + (j + e + e, 

V + e + e -. V + e + e, 

V + e + () ~ N + e + e + e, 

N+17+(j+17-'N+e+e+() 

are calculated. Comparison between our result of 
U + (j elastic scattering amplitude and that obtained 
by variationed principle in the dispersion theory ap­
proach is made. The calculation of the S matrix for 
all the bound state processes in the V -2 () sector, 

(V e) + e ~ (V (j) + e, 

(ve) + e ~ V + () + e, 

(ve) + e ~ U + e, 

(ve) + e ~ N + () + e + e, 

is discussed. The conclusion follows in Sec. VI. 
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A modified version of the Lee model by Bronzan is investigated by the LSZ formalism approach. The e~istence 
of (Ve) bound state in the Bronzan's model is discussed. An iterative technique is applied for solving the tau 
functions in the V -26 sector. Each term in the series preserves (a) (ve) bound state properties, (b) analytic 
structure, and (c) symmetry properties of the tau function. The S-matrix elements for both nonbound-state and 
(Ve) bound state scattering processes in the V-2e sector are obtained. Comparison of the result obtained by 
our iterative expansion method with that obtained by Bronzan's variational principle method is made. 

I. INTRODUCTION 

In addition to the V, N, and (j particles, Bronzan 1 in­
troduced another fermion called' U particle with the 
coupling U «-? V + (j to the Lee mode1. 2 We will refer 
to this modified Lee model as B model here after. 
Bronzan investigated the U + e elastic scattering pro­
cess3 using a variational principle technique. 

In the previous articles, 4 ,5 we studied the V -2 (j and 
general higher sectors of the Lee model using the 
LSZ formalism. An iterative expansion method was 
used for calculating the multiparticle and bound state 
scattering processes. Each term in the series was 
shown to preserve (a) the properties of the bound 
state, (b) the analytic structures, and (c) the symmetry 
properties of the tau function. Because our iterative 
expansion preserves the above properties, it is a use­
ful technique for approximating the complex Green's 
function. 

It will be shown in this article that, in analogy to the 
Lee model, a (V e) bound state can exist in the B mo­
del for suitably chosen parameters. Therefore, the 
B model also offers the opportunity for the study of 
bound state scattering processes. 

The purpose of this article is thus to apply our itera­
tive expansion technique to solve the V -2 e sector of 
the B model. From the iterative solution of the tau 
functions, we can then calculate all the S-matrix ele­
ments for both nonbound-state and (Ve) bound-state 
scattering processes in the V-2 e sector. A compari­
son is made of our result for the U + e elastic scat­
tering amplitude and that obtained by using the vari­
ational prinCiple method in Ref. 3. 

The outline of the article is as follows. The descrip­
tion of the B model and LSZ formalism for the re­
duction formula of the S- matrix are given in Sec. II. 
In Sec. III, the existence of a (V e) bound state in the 
B model is discussed. The iterative expansion me­
thod is illustrated in Sec. IV for solving the tau func­
tions in the V -2 e sector. Our solution preserves the 
analytic structure and symmetry properties of the 
tau function and most important, the properties of the 
(V (j) bound state. Solution to the tau functions furnish 
all the information for the V -2 (j sector. In Sec. V, 
S-matrix elements for the nonbound state scattering 
processes 

U + e -~ U + (j, 

U + (j~ V + (j + e, 

U + (j «-? N + (j + e + e, 

V + e + e -. V + e + e, 
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are calculated. Comparison between our result of 
U + (j elastic scattering amplitude and that obtained 
by variationed principle in the dispersion theory ap­
proach is made. The calculation of the S matrix for 
all the bound state processes in the V -2 () sector, 

(V e) + e ~ (V (j) + e, 

(ve) + e ~ V + () + e, 

(ve) + e ~ U + e, 

(ve) + e ~ N + () + e + e, 

is discussed. The conclusion follows in Sec. VI. 
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II. MODEL AND REDUCTION FORMULA Safl == «{3jn~ut lajn in» 
The renormalized Hamiltonian for the B model in 
momentum space is 1 

H = mZ ul/l~ l/I u + mZ yl/l tl/ly + ml/1~l/IN 

+ ~wakak + g[l/Itl/lNA + l/I;A+l/Iy] 
k 

+ XZy[l/I(jl/lyA + l/ItA+l/I u1 
+ omuZul/lCil/lu + omyl/ltl/ly, 

where 

A = ~ [u(w)/(2w) 1/2] ak' w = (1J.2 + k2 ) 1/2, 
k 

[ak"aiJ = 0kk,,{l/Iu,l/I~} = 1/Zu 

{l/Iy,l/It} = 1/Z y ,{l/IN,l/I;} = 1, 

(1) 

(2) 

and all other commutation relations vanish. For sim­
plicity, we let the renormalized masses for U, V, and 
N particles have the same value m. 

From Eqs.(1) and (2),the field equations can be de­
rived as 

(2w) 1/2 (i ~ _ w\ a k(t) =gl/l ~ (t) l/I vet) + XZ yl/l vet) l/I u(t) 
u(w) dt 'J 

Zy (i ~ -m - omy)l/Iy(t) =gl/lN(I)A(t), 

(i ~ -m) l/IN(t) =gl/ly(t)A+(t), 

Zu (i ~ -m - omu) l/Iu(t) =XZyl/ly(t)A(t). 

There are two number operators in this B model 
which commute with H: 

Q 1 = Zul/lul/lu + Zyl/ltl/ly + l/I;l/IN' 

(3) 

Q2 =Zul/l(jl/lu +~akak-l/INl/IN' (4) 
k 

Thus the model breaks up into sectors designated by 
the eigenvalues of Q 1 and Q2,namely q1 and Q2' 

The reduction formula for the B model can be de­
rived similarly as in Ref. 6. Assume the following 
conditions for the Heisenberg fields: 

lim «{3jn' le-imtl/l~(t) lajn» =: «{3jn' I l/I~. lajn», 
t-+TOC) 1n 

out 
(5) 

= «{3;n'l ak". lajn», (6) 
l.n 
out 

where few' ,w) is a good function of w' , centered about 
the point w' = w, satisfying the condition 

'0 k",. k' 
6f*(w",w)f(w",w') ={ as 
kI' 1 k ",. k' 

(7) 

« I represents the physical state, a, {3 represents U 
or V or N particle,n and n' are the number of e par­
ticles. The S-matrix element can then be shown to 
be 

J. Math. Phys., Vol. 13, No.9, September 1972 

( " n') I) ~. WIJ - ~ W~ 
1J=1 1J=1 

= I) I) , + 21ri 
aB nn (n!n'!) 1/2 

X ~ W - ~ W' ( n n')2 
IJ= 1 IJ /J= 1 IJ 

X [T aB(W)] I W=w £ w
v

' 
V"l 

where the tau function TaB(W) is the Fourier trans­
form of TaB (t), 

and 

(8) 

(9) 

TaB(t) == (0 IT(l/IB(t) vQ 1 aky}l/J"~(O) fll ak)o)) 10). 

(10) 

ill. (Ve) BOUND STATE IN THE B MODEL 

In the following presentation, we will make use of 
the results of the V sector (q 1 = 1, q 2 = 0) and V - e 
sector (q1 = 1,q2 = 1) solved by the dispersion the­
ory,1,3 and some of our results by the LSZ forma­
lism which are listed in Appendix A. 

To study the existence of a (Ve) bound state in the B 
model, we write down the V + e elastic scattering 
amplitude which has been shown to be 

U2 (W)g2 
srt = I)kk' + 21ri---

2wh(w) 

x (2g2 - X2)[1 + h(w)A(w)] - x2[1 - (3(w)], (11) 

{(2g2 - )..2)[1 - h(w)A(w)] + i\2[1 - {3(w)]} 

where 

hew) == w(1 - /3(w)), 

and 

9... 00 d ' 2/. ')/.'2 2)1/2 
[1 - (3(w) == 1 + ~ J w U \w \w - IJ. (12) 

411'2 f1 w'2(w' -w - iE) 

x ] Curve I: 292 [,- ~ (w) 

Curve 2: (-~ - I) [I - h(wlA(wl1 
292 

FIG.!. Diagrams of ;1.2[1 - {l(w)1/2g2 and 
[(;1.2 - 2g2)/2g2)[l - h(w)A(w)j for ;1.2 <2g2. 
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A(w) == -Iw(w), 

I z)==- dw'Im--x . IJoo (I
J 

1 
~ 'IT J.t h(w') (w'-z)(1-f3(W-w')] 

(13) 

Or, in terms of LSZ formalism,SI~ can be derived as 

U 2 (w) = 0kk' + 2'ITi -- o(w -w')(w -w')2g 2 
2w 

S{f, 

[ 
X-(W,w,w') ] I 

x h(W -w)h(W-w') w~w· 
(14) 

With the solution of X-(W ,w,w') given in Eq. (A9), we 
can reobtain Eq.(ll). From Eq.(12),we find 

1 - (3(w) >0, hew) 2: 0 

1-{3(0) =1, h(O) =0 

d 
- [1 - f3(w)] > 0, 
dw 

d2 
- [1 - (3(w)] > 0, 
dw2 

From Eq.(13),we find 

A(w) > 0 

~A(w) > 0 
dw 
d2 

-A(w) > 0 
dw 2 

~ h(w) > 0 
dw 

d 2 
-h(w) > 0 
dw2 

, 0 <w </J.. 

(15) 

(16) 

Hence, 1 - (3(w) and h(w) are real and monotonically 
increasing functions of w for 0 < w < /J.. 
Moreover, it has been shown 7 that 

h(/J.)A(/J.) > 1 (cf. Fig.l) (17) 

for sufficiently large coupling constant g. 

Through this analysis we see that if A 2 < 2g2 , S n, 
in Eq. (11) will have a pole at wB where 0 < wB < /J., 
provided that the following condition is satisfied: 

The occurence of this pole w B in 5 n, corresponds to 
the existence of a (V e) bound state in the B model 
with mass !vI B' where 

(19) 

In order to study the higher order scattering pro­
cesses and the ones involving the (Ve) bound state, 
we investigate the V -2 e sector in the next section. 

IV. V -2 e SECTOR 

The V -2 e is characterized by q 1 = 1 and q2 = 2. The 
appropriate tau functions are the followingS: 

(I ') (4ww') 1/2 
T6 ,w,w = ---

Il(W)U(W') 

x (01 T(l/Iu (t)ak(t)l/I lj(O)ak,(O) 10), (20a) 

T7(t ,w,w' ,wl/) = (8ww'w") 1/2 
u(w)u(w')u(w") 

x (0 I T(tJ; v (t)ak(t)a '" (t)tJ;li (O)ak" (0» 10), 

(t W' ") _ (8ww'wl/)1/2 
TS ,w, ,w -

u(w)u(w' )u(wl/) 

(20b) 

x (0 I T(tJ; u(t)ak(t)l/I t(O)at,(O)a;I/(O» 10), (20c) 

(16ww'wl/w lll
) 1/2 

T 9 (t , w, w' , W" , wm ) = ---'-:""::"":':...:0-=-=---="--''--_ 
u(w)u(w')u(w 1/ )u(w "') 

x (0 I T(tJ;N (t)ak(t)a",(t)akl/(t)l/It (O)at,I/(O» 10), (20d) 

T 10(t ,w,w' ,w",wlll
) 

(16ww'w"wHl
) 1/2 

u(w)u(w')u(wl/)u(w"') 

x (0 I T(l/I u(t)ak(t)l/I; (O)at,(O)at"(O)a;1II (0» 10) 
(20e) 

and 

5 (2w.) 1/2 
TI0(t,Wl,w2,w3,w4,w5) = n _-,-, __ 

i=l u(w
i
) 

x (0 I T(l/IN(t)a k (t)a b (t)a k (t)tJ;t(O)at (O)at (0» 10), 
1 .~ 3 4 5 

(21b) 
5 (2W.)1/2 

Tll(t,w1,w2,w3,W4'W5) =.n ' 
to 1 u(w i ) 

x (0 I T(l/Iv(t)ak (t)a b (t)l/I;(0)a k3 (0)ak (O)a; (0» 10), 
1 .~ 4 5 

(21c) 
T12(t ,WI 'W2 ,w3'w 4' w5 ,W6) 

6 (2w i) 1/2 
= n (01 T(l/I N(t)a k (t)a k i=1 U(W) 1 2 

x (t)a k (t)tJ;;(O)a; (O)at (O)a; (0» 10). (21d) 
3 4 5 6 

With the aid of field equations in Eq. (3) and commu­
tation relations in Eq. (2), we can derive the following 
equations: 

(W -m - 6mu -w)r6(W,w,w') 

2w6kk, AZ v u2(w") 
= 2() + - 6 --,,- T7(W,W",w,w'). (22a) 

u w Zu Zu k" 2w 

(W-m - 6mv -w-w')T7(W,W,w',w") 

g 21 ",) 
= - '>' ~ T (W Will .W W' w") 

Z L.J 2 /II 9' " 
V k'" W 

+ A[ T6(W,W I ,W") + T6(W,w,w"»), 

(W-m - 6m v -wl -w") TS(W,W,w',w") 

(f u 2 (w"') 
= ~ '>' -- T (Ww Wi W" Will) 

Z L.J 2 /II 10 " , , 
V kill W 

(W-m -W-Wl -w")Tg(W,w,wl,W",WIll
) 

= g[T7(W,W I ,w",w"') + T7(W,W, wl/,tv"') 

+ T7(W,W,w' ,w"')] , 

(22b) 

(22c) 

(22d) 
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(W-m -w' -w" -Wlll)TIO(W,W,W',W",W"'), 

= g[TS(W,W,W' ,W") + T8(W,W,W', Will) 

+ T8(W,W,W",W"')] 

and 

(W - rn - om y - WI - w2h9(W,Wl'W2,w3·w4) 

4w w 
I 2 [0 0 + b 0 ] 

2( ). 2()Z kj k3 ~ k4 kjk4 ~ k3 
U WI U W 2 Y 

+ A['8(W,w2 ,w3'W4) + '8(W,WI'W3 'W4)] 

L", u2 (w) IO(W ) + LJ --, ,w,wl'w2 ,W3 'W4 ' 
Zy k 2w 

(W - m -WI - W2 -w3)TIO(W,WI'W2'W3'W4'W5) 

= g[,9(W,w2 ,w3 ,w4 ,w5) + ,9(W'WI,w3,W4'W5) 

(22e) 

(23a) 

+ ,9(W, WI' w2 , w4 , w5 )], (23b) 

(W-m -w3 -W4 -w5)Tll(W,WI,W2'W3,w4,W5) 

= g[,9(W,WI,W2'w3 ,w4) + ,9(W,w l ,w2 ,w3 ,w5) 

(23c) 

(W-m -WI -w2-w3)T12(W,WI'W2'W3'W4'W5'W6) 

where 

8w1w2W3 ----''----''---'----- 6 03 . 
U2(WI)U 2(W2)u 2(w3)Pfi I! 

+ g[ ,11(W'W I 'W2 ,w4 ' W5'W6) 

+ ,l1(W,wI'W3,w4'W5,w6) 

+ ,l1(W,w2,w3,w4,w5,w6)]' 

6 03 == 0 b 0 + 0 b 0 Pli I! kjk4 kzk5 k3 k 6 kjk4 k2 k 6 k3 k5 

+0 0 0 +0 b 0 kj k5 k2k4 k3 k6 kj k5 k2 k6 k3 k4 

(23d) 

+ 0 0 0 + 0 0 b . (24) kj k6 k zk4 k3 k5 kj k6 k2 k5 ~k4 

Due to the coupling between the tau functions we find 
that the entire sector is solved if we can solve the 
tau functions, 7(-) and ,9(_). 

The integral equation for , 7( -) can be obtained by 
substituting Eqs. (22a) and (22d) into Eq. (22b): 

h(W-w-w')'7(W + m,w,w',w") 

AZv 2w"(Okk" + °k,k") 

Z uu2(w")(W - om u -10") 

1 roo 
+ - JIl dw"'Imh(w"')'7(W+ m,u'''',w',u: lI

) 

1T 

w W 
---)---1-

~/ 

/"' 
) ) 

u v 

" ' W w~/ 

+ ~/ + 

U v~V 
\ 

"w 

+ diagrams with wand w interchanged 

FIG. 2. Diagram of the integral equation for T7(W,w,w',w"). 
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A2Z2 
+ y ) 

Zug2(W- omu-w') 

1 roo + - dw"'Imh(w"')T (W + m w"' u' W") 
1T . 11 7' " 

(
1 A2Z2) X + V _ 

W-w-w'-w'" Zug~(W- omu -w) 
(25) 

(cL Fig. 2). 

By defining 

Y-(W,w.w'.w") == lim. yeW z,w',w") 
.z-+w~z.( , 

== h(W-W-W')'7(W+m,w,w',w") (26) 

and continuing w into complex z plane, Eq. (25) be­
comes 

AZ 2 w"(o + 0 ) 
Y(W,z,w',w") = Y kk" k'k" 

Zu u2(w")(W- ornu -w") 

1]00 dw'" I h( Iff) + - m w Y-( W w", w' wIt) 
7T 11 h(W-w'-w"') ", 

x ( 1 + A2Z~ ) 
W- Z - w' - WIll Zug2(W- omu -w') 

+ !.-]OO dw'" Imh(w"'). Y-(W'" If) " ,w,z,w 
1T r heW - z - w",) 

x ( 1 + A2Z~ ) 
W - z - W' - w", Z ug2 (W - Om u - z) . 

Notice that Y-(W, w, w', w") in Eq. (27) is symmetric 
under the interchange of wand w'. We define 

Y-(W,w,w',w") == F-(W,w,w',w") + F-(W,w',w,w"), 

where 

AZ 2w"0 
F(W,z ,w' ,wIt) = Y k' kIf 

Z Uu2(w")(W - Om u - wIt) 

1 foo dul" Imh(w"') +-
7T I' h(W-w' -w"') 

x ( 1 + A2Z~ ) 
W-z -w'-w'" g2Zu(W- omu -w') 

x y-(w,w'" ,w' ,w"). 

(27) 

(28) 

(29) 

Substituting Eq. (28) into Eq. (29), we get an integral 
equation for F(W, z,w' ,w,,) , 

AZ 2w"0 
F(W,z,w',w") = v k'k" 

Z uu 2(w")(W - omu - w") 

1 JeO dw'" Imh(w"') +-
7T 11 heW -w' - Will) 

X [ 1 + A2Z~ ] 
W- Z -w' -Will Zug2 (W- omu -w') 

x [F-(W,w''',w',w'') + F-(W,w',w"'.w")j. (30) 

We can read off the analytic structure of F( W, z. w'w") 
as a function of z for fixed W, w', and w". It has a 
branch cut along the real axis for - r:IJ:S:: z:s:: W -w' -w. 

The singular integral equation (30) is very similar to 
Eq. (22) obtained in Ref. 4. Due to the complicated 
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structure of the tau functions involved in this sector, 
also of those in the higher sectors, a closed solution 
is not possible. We use our iterative expansion tech­
nique to solve this integral equation. 

Starting by introducing a parameter a in front of the 
last term of Eq. (30), we get 

AZ 2w"o 
F(W, z,w',w") = v k'k" 

Z UU 2(W")(W - Otnu - W") 

1 100 dml/l Imh(w"') + _ W F-(W,wflf,w',w") 
1T ~ h(W - w' - Will) 

X ( 1 + A2Z~ ) 
W-z -w' -Will Zug2(W-w' - 011lu) 

]
00 ch 1/1 Imh( III) + ~ .lj w F-(W,W',WIll,W") 

1T ~ h(W - Wi - Will) 

x( 1 + A2Z~ ) (31) 
W-z -Wi -w'" Zug2(W- Otnu-WI} • 

Next, expressing F( -) as a power series in a, i.e., 
00 

F(W,z,w',w") =:B anFn(W,z,w',w"), (32) 
n=O 

substituting Eq. (32) into Eq. (31), and equating terms 
with the same order in a, we get 

AZ 2w"o 
F. (W . I ") _ v k'k" o ,z,w,w -

Z Uu2(w")(W - Otnu - W") 

1 Joo dw'" Imh(w"') +-
1f ~ h(W - w' - Wlil) 

X ( 1 + A2Z~ ) 
W-z-w'-w lll Zug2(W 011l u -w') 

X Fo(H',wl/! ,w',w"), (33) 

1 ]00 dw lll Imh(w fll
) 

F1(W,z,w',w") = - /l 
1f h( W - w' - Wfll) 

X ( 1 + A2Z~ ) 
W - z - w' - Will Z ug2 (W 011lu - Wi) 

x [Fi(W,w!l!,w',w") +FO(W,W',WIlf,W"»). (34) 

F (W . I ") _ ~ Joo dw
lll 

Imh(w llf
) 

n .z,w.w - 11 
1T h(W -w' - Will) 

( 
1 A2Z2) 

X + V 

W-z -w' -Will Zug2(W tmzu-w') 

x [Fn-(W,w"',w',w") + Fn-_l(W,w',wlll,w"»). (35) 

At the end of calculation, we set a = 1,then Eq.(31) 
reduced back to the original form in Eq. (30). 

From Eqs.(33)-(35),it is obvious that the analytic 
structure and symmetry properties will be preserved 
in the solutions. 

To solve for Fo(-) , notice that Eq. (33) is an equation 
of the variable z for fixed W, Wi , and w". Comparing it 
with the equation for the vertex function T 2 (W, z) in 
Eq. (A3). we find 

F6(W.w,w' ,W") 

2w' Ok 'kN = h(W--w w')T2(W-W' + 11l,w). (36) 
u 2 (w') 

In Appendix B,Eq.(34) is solved. The result is 

1 Joo cU:v1 Imh(wl ) 
F1(W,z,w',w") = - /l 

If h(W-w l -w') 

x X(W - w' ,z,w1)F(j(W,w' ,wI'w"). (B4) 

Substituting Eq. (36) into Eq. (B4), we get 

Fi(W,w, w', W") 

= g2X-(W -w' ,W,W")T2(W - w" + tn ,w'). (37) 

In analogy with equation for F1(-) in (34), we can 
write down the solution for the general term in the 
series Fn in (35) as 

1 Joo dw Imh(w) 
F (W,z,w',w") = _ 1 1 

n If ,.. heW - WI - W') 

X X(W-w',z,wl)Fn-:"l(W,W',Wl'W")' (38) 

Substituting Eq.(37) into Eq.(38),we obtain the solu­
tion for F2 (-). Analogously, we can get F3 and all 
higher order terms in the series. The result of F2 and 
F3 are 

g2 Joo dWl Imh(w1) 
Fi(W.w,w',w") = - ~ 

1T h(W-w1 -w') 

X X-(W-w',w,wI)X-(W-w1,w' ,w") 

x T 2 (W-W" + 11l,wl ), 

F3(W,w,w' ,w") 

= g2 Joo Joo dw Idw2 Imh(w1) Imh(w2 ) 

1T2 ,.. ~ h(W - w' - w2)h(W - WI - w2) 

X X-(W-w',w,w2 )X-(W-w2 ,w' 'WI) 

X X-(W-w1 ,W2 ,W")T2(W-W" +m,w1). 

(39) 

(40) 

With the aid of Eqs. (26), (28), (36), (37), (39), and (40) 
the first four order terms of T 7(-) are (cLFig.3) 

T7 (W + rn .w,w' ,w") 
2w' , = --) 0klkl! T2(W - w + rn, w) 

u 2(w' 
g2X-(W- w' ,w,w")T2(W - wI! + rn ,w,) 

+ h(W-w-w') 

" '!! , 

~:'a/-~~' 
U V 

w w 
----~--

w 
~+ 
U V 

, 
/"} 

uDvvv . ~ 

/ " 
W W 

w/ 
,T 

+ diagrams with wand w' Interchanged 

FIG. 3. Diagrams of the first four terms in T7(W+ m,w,w',w"). 
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g2 Joo dW1 Imh(w1)X-(W - w' ,w,wl ) 
+-

7r il h(W - w' - w1)h(W-w- w') 

x X-(W-wvw' ,w"h2(w-w" +m,wl ) 

g2 (00 Joo dw1dw2 Imh(wl) Imh(w2 ) 
+ Jil fI 

7r
2 h(W - w' - W 2 } 

X-(W - W' ,W,W2)X-(W - w2 ,W' ,wI) 
x--------=-------

h(W - WI - w2)h(W - w - w') 

XX-(W-wvw2,w"h2(W-w" +m,w1) (41) 

+ terms with wand w' interchanged. 

From Eq.(41),we see that each term in the iterative 
solution contains the function X-(W - W, w'w") which 
has a pole at the (V e) bound state for suitable chosen 
parameters [cf. Eqs. (11) and (14)]. This confirms 
that our iterative expansion technique preserves the 
properties of the bound state. 

Substituting the solution of 77(-) in (41) into Eq. (22), 
we get the functions 76(-),78(-),79(-), and 710(-)' 

To complete the solution for this sector, we will now 
solve the integral equation for r 9(-), Substituting Eq. 
(23b) into Eq. (23a), we get 

h(W - WI - w2h9(W + m 'W1 ,w2 ,w3 ,w4 ) 

4w w = 1 2 (0 0 + 0 0 ) 
2( ) 2(. ) klks k2k4 kJk4 kzks U WI U w2 

+ XZv[7S(W + m ,w2,w3'w4) + 78 (W + m ,w1 ,w3 ,w4)J 

1 Joo dw Imh(w) [ 9( ) + - 1 r W + m,w,w2 ,w3 ,w4 
7r I (W-W-W I -W2) 

(42) 

Following the same reason, we again solve Eq. (42) by 
the iterative expansion method. 

The algebra is outlined in Appendix C. The result is 
(cf. Fig. 4) 

+ 

W3 Wi 
---,....---
W4 W2 ---r---

+ 

v 
"'!.L7 __ "'!.Z 
W4 WI 
"--{\--.-' ;-

JJ-____ -
v 

+ diagrams with 

+ diagrams 'with 

v 

w~ and W4 

WI and Wz 
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interch:mged } Interchanged 

79(W + m 'W1'W2'W3'W4) 

4WIW2( Ok k Ok k + Ok k Ok k) = ____ 1 .:..3 ---=-2 ...;:4 __ .:..1 ...;:4--=2...:3~ 

u 2(W I)u2(w2)h(W - WI - w2) 

1 
+ ---:------------

h(W -- WI - w2)h(W - W3 - W4) 

{ 
2W2 

X u2(w
2

) 0k2k3g2X-(W-W2,WI'W4) 

g4X-(W - W2 'WI ,w3)X-(W - W3 ,W 2'W4) + ____ -=--='---:e..... ___ ~-=---=--
h(W-w2 -W3) 

g4j<Xldw Imh(w)X-(W - W2 ,Wl' w)X-(W- w, w2 ,w3) 
+-

7r fI h(W-w2 -w3)h(W-w-w2) 

X X-(W-w3 ,w,w4) 

+ terms with w3 and W 4 interchanged} . 
+ terms with WI and w2 interchanged (43) 

By using Eqs. (23b)-(23d) the solution to the tau func­
tions r 10{_), r ll(-),and rI2(-) can be obtained. 

With solutions of all the tau functions in the V -2 e 
sector which are new results, we are ready to inves­
tigate the S matrix for all relevant processes. 

V. S-MATRIX ELEMENTS 

In the V - 20 sector, the nonbound -state scattering 
processes are 

(1) U + 0", -) U + 0", 

(2) U + 0KIf <E-7 V + 0" + OK" 

(3) U + 0"111 ~ N + OK + 0", + OK'" 

(4) V + ° + l:i -~ V + e" + l:i K ' K3 1'.4 1 2 

(5) V + e + ° ~ N + 0K + til'. + OK . 
"4 K5 1 2 3 

(6) N+I:J +0 +0 -,N+ ti" +OK +01'.' 
1'.4 "5 "6 1 2 3 

Using the reduction formula in (8) and definition of 
the tau functions in (20)-(21), the corresponding 5-
matrix elements can be derived to be 

(1) Sf,~ .. ue = 0kk! + 27rio(w-w')[u2{w)/2w](w--w')2 

X 7 6(W + m ,w,w') I W=w' (44) 

(2) Suo+>vee - 2rrio(wfl - W - w') u(w)u(w')u(w") 
k"k'k - (8ww'w")1/2 

(w" W w')2 
X -.J2-T7(W+m,w,w',w")1 Ww'" (45) 

(3) S't,9'klrMe = 2rrio(wlI! -w-w' -w") 

U(w)u(w')u(w")u(w lfl
) ( ,w_:..'_" _-_w:.::....--:=:::w_' _-_w,-,-,"):......2 X =:.:.::..>:::.-~'-'---''-''-''--'- -

(16 ww'w"w"') 1/2 .../6 
x T g(W + rn ,LV,W' ,w" ,w",) I W=' wI/! 

(4) Svoe~v(Je 1( ) 2 '" 
k4 ks"zk1 = 2 Ok1k3

0kzk4 + 0k1k40kzk3 + 111v 

X (WI + w2 -W3 -w4 H(w l + w2 -w3 -w4)2 
4 U(w;) 

(46) 

x II ---r9(W+m,wl,w2,w3,W4)lw=w+w 
i 1 (2w

i
)1I2 1 2 

(47) 
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(5)SVee"'Neee=1Tio(w +w -W -w -W) k5k4k3k:lkj 4 5 1 2 3 

(W4 + W5 - WI - W2 - W3)2 5 U(Wt) 10 
X IT T 

.J3 i = 1 (2w
i
) 1/2 

X (W + rn ,W1 ,W2 ,W3 ,W4 ,W5) I w= w4+ w5' (48) 

(6) SNoee-+1'f,er = 1 ~ Oj3; 
ksk5k4k3"'2 1 6 PI i 

+ 21Tio(w4 + W5 + W6 -wI W2 -w3) 
1 6 U(Wi) 

X -(W4 + W5 + W6 - WI - W2 - W3)2 IT 1/ 
6 i=1 (2 Wi) 2 

X TI2(W + m ,wVw2,w3,w4'w5,w6) I W=w +w +w' (49) 
1 2 3 

The specific solution of all these S-matrix elements 
can be obtained straightforwardly by using Eqs. (22), 
(23) and the results of 7 7(-) and 7 9(-) in Eqs. (44) 
and (43), For example, the S matrix for U + a elastic 
scattering is (cL Fig. 5) 

S ue-+ue-" + 21T'''( ,) u 2(w} p.2[1-f3(w)] 
k'k - Ukk' luW-W --I 

2w t W 

A,2 Joo dwl Im[! - f3(Wl) 1 } 
- - 11 X-(w -wl'w,w) + , .. 

11 WI 

(50) 

We will now compare our new result for U + a elastic 
scattering amplitude with that obtained by Bronzan. 3 

The function T~2(w) calculated by Bronzan's disper­
sion approach corresponds to the on -maSS shell value 
of 76 in our LSZ formalism. His result of T~2(w) in­
volves four functionals Fi which are functions of an 
unknown function <p. Instead of getting the final re­
suIt, Bronzan conjectured a trial solution for <p. We 
pursued his conjecture and found that his method of 
calculation is too complicated and very impracticable. 
Nevertheless, we can show that as g ~ 0, to the lowest 
order in 1-.., T~2(W) reduces to 

T~2(w) = 1-.. 2/10 (dispersion approach with the 

variational prinCiple method), 

and our result for Sf:, --) U e in Eq. (50) reduces to 

Sff,-+uO = 0kk' + 21Tio(1O-w')u2(w)1-..2/2w2 

(51) 

(LSZ formalism approach with iterative expan-

sion method). 

Since the relation between S matrix and T is 

) 

U 

+ 
/ 

-;r 
/ 

W 
/ 

/ 

Ci / V/-7f
1 cr 

/. /w 

FIG. 5, Diagrams of the first three lowest order 
terms of the S matrix for U + e

K
, -> U + e •. 

(52) 

We see that to the lowest order in the coupling con­
stant result of U + e elastic scattering amplitude 
agrees with that obtained by Bronzan. 

We now consider the bound state scattering processes 
in the V -28 sector. They are 

(va) + a ~ (va) + a, 
(va) + a <E7 V + a + a. 
(va) + a~ U + e, 
(ve) + a ~ N + a + 0+ a. 

The (Va) bound state field operator Bo{t) can be con­
structed as4 ,9 

Bo(t) == C1lfiu(t) + C2lfiv(t) J d3ka k(t) 

+ C3lfiN (t) JJd3kld3k2akj(t)ak:l(t), (54) 

where C l' C2 ,and C3 are c-numbers. 

The renormalized field operator B(t) is defined as 

B(t) =BO(t)/,/ZB' 

where 
(Z B)1/2 = (0 I B 0(0) IB» 

and I B» is the eigenstate of the (Ve) bound state. 

Also, the asymptotic condition for the field B(t) is 
assumed to be 

(55) 

(56) 

lim «a I e-iMtB+(t) I f3» = «a IB:" I f3» (57) 
t-+± co ~n ' 

out 

By using the asymptotic condition and the reduction 
formula, we can obtain all the S-matrix elements for 
the (Va) bound state scattering processes listed above. 
With the aid of Eqs. (20)-(23), we see that the matrix 
elements can all be expressed in terms of 77(-) or 
7 9 ( -). Due to the lengthy algebra, all the details will 
be left out here. We would refer the interested read­
ers to our articles4 ,5 on the (Va) bound state scat­
tering in the Lee model. 

VI. CONCLUSION 

From the study of the V + a elastic scattering ampli­
tude in the B model we concluded that a (Va) bound 
state can exist in the B model for suitable chosen 
parameters. In the V -2 a sector, we investigated not 
only the multiparticle reactions but also various 
cases of scattering a a particle off the (va) bound 
state. 

The iterative solution preserved the analytic struc­
ture, symmetry properties and the properties of the 
( V a) bound state. 

By using the LSZ reduction formula and the iterative 
solutions of the tau functions,S-matrix elements for 
various relevant processes including both nonbound­
state and bound -state scattering were obtained. Com­
parison of our new result for U + IJ elastic scattering 
amplitude with that obtained by Bronzan's variational 
principle method was made. To the lowest order in 
the coupling constant, the two results agree with each 
other. 

ACKNOWLEDGMENT 

The author wishes to express her sincere thanks to 
Professor Robert L. Zimmerman, Department of 

J, Math. Phys., Vol. 13, No.9, September 1972 



                                                                                                                                    

1426 TSU-HUEI LIU 

Physics and Institute of Theoretical Science, Univer­
sity of Oregon, for many valuable discussions and for 
his criticism of this manuscript. 

Let T5 (t ,w,w') be the tau function corresponding to the 
process V + 8" -7 V + 8",: 

T5(t. w, w') == [(4 ww') 1/2/ u(w)U(w')] 

APPENDIX A x (0 I T(t/I~(t)ak(t)t/I~(O)a~,(O)) 10). (A4) 
The U-V-8 vertex function T2 (W,W) is the Fourier 
transform of T2(t ,w) defined as 

T2(W,W) == 11-: dt eiWIT2(t ,w), 
z 

where 

(AI) 

T 2 (t ,w) == [(2w) 1/2/u (w))(0 I T(t/I v (t)a k(t)t/lU (0)) 10). 

(A2) 

It can be shown that T2(W,w) satisfies the following 
equation: 

AZ v 1 (eo 

Its Fourier transform is 

T5(W,W,w') = (I/i) L: dt e iwt T5 (t,w,w') 

By defining 

2w 6kk, 
X-(W,w,w') == ---- h(W-w') 

u2(w) g2 

h(W - w)h(W - w') 5( ') + T W + nz , w, w , 
g2 

the following equation can be derived: 

(A5) 

(A6) 

h(W-Z)T2(W+m,z)= +-Jl'dw'Imh(w') 
Zu(W- 6m u) 1T 

, 1 AZ V , , 
X(W,z,w) = + -- T2(W + m,w )h(W-w) 

W-z -w' g2 

X T2(W+ m,w') + v , (
1 A2Z2) 

W-w' -z Zug2(W- 6mu) 
+ 1 Jeo dw" Imh(w")X-(W,w" ,w') . 

1T I' h(W - w")(W - z - w") (A 7) 
(A3) 

where h(w) is defined in Eq. (12). 
By using the method introduced by Maxon,7 both Eqs. 
(A3) and (A 7) can be solved to be 

2g2A{I/(W-m -w) + [h(W-m)/w][Iw_m(W-m -w) -lw- m{W-m)]} 
T2 (W,W) = { } 

(W - m) 11. 2[1 - j3(W - 11'1)] + (2g2 - ;\2)[1 + h(W - m)Jw-mW - m)] 
(A8) 

and 

X-(W,w,w') = lim. X(W,z,w') 
Z-+w-l,.t 

= [~ T2(W + m ,w')h(W -w') + [1 - j3(W - w')] (I w-w'(w') - W - w' I w-w,(W -w') ( [ 1 ( ])] 
g2 W' h w') 1 - j3 W - w') 

{[I- j3(W-w)) + [h(W-w)h(W)/w][l w_W/(W-w) -lw_w,(W)]} h(W-w) 
x +----------

1 + h(W)1 w- w'(W) h(w')(W - w - w' + iE 

h(W - w)lw_w,(w') [1 - j3(W - w')] h(W - w')h(W -w)lw- w'(W - w') 
- +------~---------------

W - w - w' + iE w'(w' - w + iE) 

[1- j3(W-w')](W- 2w')[1 - j3(W-w)](w- W)21 w_w'(W-w) 
+----------~----------------------~~------

(w' - w + iE)(W - W + w' - iElw' , 
(A9) 

where I w(z) is defined in Eq. (13). 

APPENDIX B [l-j3(W-z -w')Rl(W,z,w',w") 

To solve Eq.(34) for F1(-) ,we define 

F1(W,z,w',w") -C 1(W,w',w") 

= C 1 (W, W', w") foo dw'" Im[l - j3(W"') 

1T M h(W-w' -W"')(W- z -W' -w"') 

Rl(W,z,w',w")== ( ,) 
hW-z-w 

_ ~ Joo ____ d_w_"_' I_m_h_(_w_"'_) __ _ 

1T I' w"'[l - /3(W - w' - z) 

Fa( W, w' ,w''', w") 
x , 

h(W-w' -w"')(W- z -w' -WIll) 
(B1) 

where 

Cl(W,w',w") == Fl(W, W-w + iE,W',W"). (B2) 

An integral equation for Rl(W,z,w',w") can be obtain­
ed by using Eqs. (34) and (B1): 

J. Math. Phys., Vol. 13, No.9, September 1972 

1 00 dw'" Im(1 - f3(w"') 

-:;; JM [1 - j3(W - w' - WIll) ](2 + W' + w'" - W) 

x Joo dW l Im[l - /3(w l )]FC;(W,w',w1 ·w") 

M h(W-w' -wl)(W-w'" -w' -Wl + iE) 

__ 1 Joo clw'" Im[l - j3(w"')jR1(W,w'" ,w',w") 

1T M (z + W' + Will - W) . 
(B3) 

Following Maxon's method in Ref. 7, Eq. (B3) can be 
solved and Cl(W,w',w") can be determined. Substitu­
ting both solutions of R land C 1 into Eq. (Bl), we 
finally have 
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, ,," 1 Joo dWl Imh(w1) _ , " 
F1(W,z,W,W ) = - ~ FO(W,w ,wl'w ) 

1I h(W-wl -w') 

XX(W-w',z,w1), (B4) 

wher.e X-{.lv,w,w') is given in Eq. (A9). 

APPENDIX C 

We now solve the function 7 9 (-) by the same iterative 
technique used to solve 7 7(-) in the text. 

By defining 

4W1W2h(W - W3 -W4) ) 
=- (bkb"Ob_k + 0kk 0bk 

g2u2(w1)u2(w2) l~J "2 4 1 4 "2 3 

+ h(W - WI - w2)h(W - w3 - w4) 

g2 

x 79 (W + m ,wl'w2 ,w3 ,w4), (CI) 

Eq. (42) becomes 
2W2(Ok k + Ok k ) 

2 3 2 4 

V(W,ZI'W2'W3 'W4) = -2-(~)-(~- . ) 
U W2 W- ZI -W3 -W4 

2w1(Okk + °kk) + 1 3 1 4 

u 2(w 1)(W-W2 -W3 -W4) 

+ ~ Joo dw Imh(w) [V-(W,W,W2 ,W3 ,W4) 

11 ~ (w - W - Z 1 - W2) h(W - w - W2) 

V-(W,W,ZI, W3,W4)j ,\Zvh(W-w3 -w4) 
+ +.~~~--~--~ 

h(W - w - z 1) g2 

X [77(W+m,w3,w4'W5 ) + 77(W+m,w3,w4,ZI)]' 

(C2) 

Due to its symmetric property in WI and w2 ' we re­
write V"(W,w1,w2 ,w3 ,w4) as 

V-(W,Wl'W2 ,W3 ,W4) = G-(W,W1 ,w2 ,w3 ,w4) 

+ G"(W,W2 ,w1,w3 ,w4), (C3) 

where 

G(W,ZI'W2 ,W3 ,W4) = ) 
u 2 (w2 )(W - Z 1 - W3 - w4 

,\Z 
+ __ v h(W-w3 - w4h 7(W+ m,w3 ,w4 ,w2) 

g2 

+ ~ JOO dw Imh(w)V-(W,w,w2 ,w3 ,w4). (C4) 

11 ~ (W - w - Z 1 - w2)(W - w - w2) 

Substituting Eq. (C3) into (C4), we get an integral equa­
tion for G( -) , 

1 Joo dw Imh(w)G-(W,w2 ,w,w3 ,·w4) 
+-

1T ~ (W-w-z 1 -w2)h(W-w-w2) 

We now solve Eq. (C5) by its iterative expansion: 

(C5) 

(1) Introduce a parameter Ci to the last term in Eq. 
(·C5). 

(2) Write a series expansion for G, 

G-(W,wl,w2 ,w3 ,w4) = ~ CinG~(w,Wl,W2,w3,w4)' (C6) 
n 

(3) From Eqs. (26), (28), and (32), we can write 

n 

(4) Equating the terms of same order in Ci in Eq. (C5), 
we get 

Go(W, zl'w2 ,w3 ,w4) 

2w2(Ok k + Ok k ) ,\Zv 
23 '24 + --h(W-w

3 
-w

4
) 

U 2(W2)(W - Z 1 - W3 - w4) g2 

x [77 (W + m ,w3 ,w4 ,w2 )]O 

I J'oo dw Imh(w)Go(W,w,w2,w3,w4) 
+- il ' 

1T (W-w-z 1 -w2)h(W-w-w2) (C8) 

and 

G~(W, Z l'w2 ,w3 ,w4) 

,\Zv 
= -- h(W - w3 -W4)[77(W + m,w3,w4,W2)]n 

g2 

I Joo + - ~ dw Imh(w) 
1T 

[G~(W,w,w2,w3,w4) + G~-1(W,W2,W,w3,w4)] 
X , 

h(W- w -w )(W- w- Z -w) 
2 1 2 (CIO) 

where [cf.Eq.(41)] 

[77(W+ m,w3,w4 ,w2)]O 

2w2 
=--Ok k 72(W-W2 +m,w3) 

u2(w2) 2 4 

+ r2w2/u2(w2)] O~k3 72(W- w2 + m,w4) (C8') 

and 

[T7(W + m, w3,w4 ,w2)h 
g2 

-~--=~- T2(W- w2 + m,w4)X-(W-w4 ,w3 ,w2) 
h(W- W3 -w4 ) 

g2 
+ T2(W- w2 + m,w3 )X-(W- w3 ,W4'W2 ). 

h(W- w3 - w4) 
(C9') 

J. Math. Phys., Vol. 13, No.9, September 1972 



                                                                                                                                    

1428 TSU-HUEI LIU 

Notice that Eq. (C8) is an integral equation of vari­
able Z I for fixed W, W2' w3' and w4' As we compare 
this equation with Eq. (A 7), we find that 

Go(W, WI' W2' W3' W4) 

2W20k2k3 
2 X-(W-W2,wl ,w4) 

U (W2) (Cll) 

2W2 0k k 

+ 2 4 X-(W-W2,wl ,w3). 
u2 (w2 ) 

Using the same method for solving Eq. (34), G1(-) in 
Eq. (C9) can be solved to be 

1 J. B. Bronzan, Phys. Rev. 139, B751 (1965). 
2 T.D. Lee,Phys.Rev.95,1329 (1954);S.S.Schweber,An lntroduc­

tion to Relativistic Quantum Field Theory (Harper & Row, New 
York, 1962),Sec. 12. 

3 J.B. Bronzan, Phys.Rev. 172, 1429 (1968). 
4 T. H. Liu and R. L. Zimmerman,Suppl. Nuovo Cimento 6,1297 

(1968). 

1 Joo dw Imh(w) _ = - Il h(W ) X (W-w2,wl ,W) 
1T -w-w2 

(C12) 

x GO(W,w2 ,w,w3 ,w4). 

The general terms in the series expansion is then 

G~(W,WI,W2,W3,W4) 

1 Joo dw 1m h(w) 
= - Il h(W ) X-(W - w2 , WI' W) 

1T -W-W2 
(C13) 

x G~-I(W,W2,W,w3'W4)' 

The solution of T 9(-) can then be obtained by using 
Eqs. (C1) and (C3) together with the results in Eqs. 
(Cll)-(C13). The first few terms in the expansion 
solution for T 9(-) are written in Eq. (43). 

5 T.H. Liu and R. L. Zimmerman,J.Math Phys. 11, 1941 (1970). 
6 M.S. Maxon and R.B.Curtis,Phys.Rev.137,B996 (1965). 
7 M.S.Maxon,Phys.Rev.149,1273 (1966). 
8 In this article we use subscript on the tau functions which involve 

U particle and superscript on the ones without U particle. 
9 R. L. Zimmerman, Nuovo Cimento 56A, 391 (1968). 
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The expansion coefficients in powers of time of the two-time spin-pair correlation function are obtained up to 
terms of order t 8 for the bcc Heisenberg magnet of spin .~ at infinite temperature and up to terms of order t6 

for the linear, square, sc, and bcc Heisenberg magnets of an arbitrary spin at infinite temperature. The result 
is applicable to the isotropiC as well as the anisotropic Heisenberg magnet where the exchange integrals in the 
z direction and in the orthogonal plane are assumed to be different. Analysis of the results are given in sepa­
rate articles. 

1. INTRODUCTION 

In the first paper of this series, 1 the numerical 
values of the short-time expansion coefficients of the 
two-time spin-pair correlation function of the Heisen­
berg magnet of spin 1 at infinite temperature are 
provided up to 0([10) for the linear chain and up to 
O(tB) for the square and sc lattices. The analysis of 
the results obtained by the expansion2 •3 have been 
found to reproduce the exact solution for the one­
dimensional Heisenberg magnet of finite length of 
spin 1,4 and also the results of the computer Simula­
tion calculation for the Heisenberg magnet of class­
ical spin,5 and the neutron diffraction data for 
Rb Mn F 3,5 with a suitable choice of time scale for 
different spins. 

The only existing Heisenberg magnet of spin i will be 
solid He3, which erystalizes in the bcc structure. If 
one considers magnets with larger spin, one has 
Mn F 2 in which the magnetic ions constitute the bcc 
structure, and extensive experimental data are avail­
able. For the investigation of these systems, the 
short-time expansion coefficients are provided up to 
terms of 0(t8) for the bcc Heisenberg magnet of spin 
i and up to O(t 6) for the linear, square, sc, and bcc 
magnets of an arbitrary spin in this paper. 

The calculation of the short-time expansion coeffic­
ients a~~n)(Rif) in the preceding paper was performed 
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in two steps. In the first step, the expansion coeffi­

cients y ~~n) (diagram IF) for small diagrams are com­
puted. In the second step, the number of different 
ways n(Rij ; diagram IF) by which the small diagrams 
with the initial and final sites I and F occur in the 
lattices with the difference of the final site and initial 
site Rij are obtained. The sum of the products of 
those two sets of numbers gives the coefficients a!}t) 
(Rij ) for the lattice under conSideration. In order to 
obtain the coefficients of the term of O(t 8) a~~) (Rif) 

for the bec lattice, we need the coefficients y~~) (dia­
gram IF) for the diagram 10 of Fig. 1 in addition to 
those for diagram 1-9 which are given in Ref. 1. In 
See.2 of the present paper, these coefficients for spin 
i are provided, and then the computation of the values 
n (R ij ; diagram IF) is described. Combining them with 

the values of Y~7) (diagram IF) given in the previous 
. ~~ ) paper, we obtam the values of U21 (RiJ for the bcc 

Heisenberg magnet of spin i. In Sec. 3, y~~n) (diagram 
IF) for 2n ;; 6 are calculated for an arbitrary spin. 
Those values are combined with the values of n(RiJ ; 
diagram IF) given in the preceding paper! and Sec. 2 

to give the coefficientsa~~n) (Rij) up to 0(t6) for the 
linear, square, sc, and bcc lattices. The numerical 
values are provided. Analysis of the results are not 
given in the present paper. 
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Notice that Eq. (C8) is an integral equation of vari­
able Z I for fixed W, W2' w3' and w4' As we compare 
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The solution of T 9(-) can then be obtained by using 
Eqs. (C1) and (C3) together with the results in Eqs. 
(Cll)-(C13). The first few terms in the expansion 
solution for T 9(-) are written in Eq. (43). 
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1. INTRODUCTION 

In the first paper of this series, 1 the numerical 
values of the short-time expansion coefficients of the 
two-time spin-pair correlation function of the Heisen­
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provided up to 0([10) for the linear chain and up to 
O(tB) for the square and sc lattices. The analysis of 
the results obtained by the expansion2 •3 have been 
found to reproduce the exact solution for the one­
dimensional Heisenberg magnet of finite length of 
spin 1,4 and also the results of the computer Simula­
tion calculation for the Heisenberg magnet of class­
ical spin,5 and the neutron diffraction data for 
Rb Mn F 3,5 with a suitable choice of time scale for 
different spins. 

The only existing Heisenberg magnet of spin i will be 
solid He3, which erystalizes in the bcc structure. If 
one considers magnets with larger spin, one has 
Mn F 2 in which the magnetic ions constitute the bcc 
structure, and extensive experimental data are avail­
able. For the investigation of these systems, the 
short-time expansion coefficients are provided up to 
terms of 0(t8) for the bcc Heisenberg magnet of spin 
i and up to O(t 6) for the linear, square, sc, and bcc 
magnets of an arbitrary spin in this paper. 

The calculation of the short-time expansion coeffic­
ients a~~n)(Rif) in the preceding paper was performed 
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in two steps. In the first step, the expansion coeffi­

cients y ~~n) (diagram IF) for small diagrams are com­
puted. In the second step, the number of different 
ways n(Rij ; diagram IF) by which the small diagrams 
with the initial and final sites I and F occur in the 
lattices with the difference of the final site and initial 
site Rij are obtained. The sum of the products of 
those two sets of numbers gives the coefficients a!}t) 
(Rij ) for the lattice under conSideration. In order to 
obtain the coefficients of the term of O(t 8) a~~) (Rif) 

for the bec lattice, we need the coefficients y~~) (dia­
gram IF) for the diagram 10 of Fig. 1 in addition to 
those for diagram 1-9 which are given in Ref. 1. In 
See.2 of the present paper, these coefficients for spin 
i are provided, and then the computation of the values 
n (R ij ; diagram IF) is described. Combining them with 

the values of Y~7) (diagram IF) given in the previous 
. ~~ ) paper, we obtam the values of U21 (RiJ for the bcc 

Heisenberg magnet of spin i. In Sec. 3, y~~n) (diagram 
IF) for 2n ;; 6 are calculated for an arbitrary spin. 
Those values are combined with the values of n(RiJ ; 
diagram IF) given in the preceding paper! and Sec. 2 

to give the coefficientsa~~n) (Rij) up to 0(t6) for the 
linear, square, sc, and bcc lattices. The numerical 
values are provided. Analysis of the results are not 
given in the present paper. 
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2. COMPUTATION 

The two-time spin -pair correlation function a{R if , t) 
is defined by 

(2.1) 

The short-time expansion coefficients of a(Rif' t) is 

denoted as a (2n)(R if): 

a(R. t) = a(O}(R. ) + i5 (- l)n a<2n}(R )t2n (2.2) 
if' if n ~ 1 (2n)! if· 

When the exchange interaction is of nearest neighbors 
and the values coupling the z - z components and the 
orthogonal direction are JII and JL , respectively, a(2n} 
(Rif) is expressed as follows: 

(2n}(R ) _ .;., J,21J 2n -21 (2n}(R ) 
a if - LJ II 1. a21 if· (2.3) 

1~0 

For the isotropic Heisenberg magnet where J II = JL 

== J,a(2n)(Rif ) are given by 

(2.4) 

(2.5) 

The coefficients a~~n)(Rif) are calculated from the 

corresponding expansion coefficients 'Y~7) (diagram 
IF) for the small diagrams by the following formula: 

a~~n\Rif) = L; L; n(Rif ; diagram IF) 
diagram IF 

x 'Y~~n\diagram IF). (2.6) 

The diagrams to be considered in the calculation of 
the expansion coefficients for the bcc lattice up to 

O(tB) are given in Fig. 1. The values 'Y~t) (diagram 
IF) for diagrams 1-9 have been given up to 2n = 8 in 

(2n) . 
Table II of Ref. 1. The values 'Y21 (diagram 10, IF) 
are given in Table 1. 

-!-. 5 
I: 

142 
I 2 

7: • .3. 
I 2 3 4 

2: 2 • • • I 2 3 5 
2 3 +. 3: • • • • 8: I 3 

I 2 3 4 I 2 2 4 

3 
4 

4: ~ 5 54 
I 2 3 9: .-!£~} 
4 3 3 

I 2 3 

5: 4C} 4 

I 2 

10: 5 
6: • I • 2 • 3 • 4 • 

I 2 3 4 5 2 

FIG. 1 

TABLE I. The coefficients 'Y~2n) (diagram IF) and 'Y~~n) (diagram IF) 
for diagram 10 of Fig. 1. This table supplements Table IT of Ref. 1 in 
the case of the bcc lattice. 

diagram IF 
(8) (8) (8) (8) (8) 

'Y, 'Yo 'Y2 'Y4 'Y6 

10 11 -78.0 246.0 -522.0 198.0 0.0 
10 12 -142.0 -264.0 398.0 -276.0 0.0 
10 15 504.0 546.0 -672.0 630.0 0.0 
10 22 424.0 248.0 -40.0 216.0 0.0 
10 23 -70.0 140.0 -378.0 168.0 0.0 

The quantity n(Rif ; diagram IF) is the total number of 
different ways by which the small diagram with the 
initial and final sites IF occurs in the lattice with the 
difference of the final and initial sites Ri/" It is cal­
culated by a computer as follows. The SItes and 
bonds are labeled as in Fig. 1. The topologies of the 
diagrams are memorized in the computer, as follows. 
For instance, for diagram 4, the following numbers 
are memorized in addition to the total numbers of 
bonds and sites in the diagram: 

1 1 2 0 

2 2 3 0 

3 3 4 0 

4 1 4 3 

The first row means that the first bond starts at site 
1 and ends at 2; the second row that the second bond 
starts at 2 and ends at 3; etc. Except for the first 
bond, each bond must start with a site which is con­
nected with one of the preceding bonds. The nonzero 
number at the last column means that the corres­
ponding bond ends at a site which has already appear­
ed in the preceding bonds. If that number is n(n 2: 1), 
that bond ends at the same site as the nth bond which 
has already appeared. The pOSition of the site 1 is 
set at the origin of the lattice. Directions of the first 
through nth bond are chosen in zn ways, where z is 
the coordination number of the lattice. After each 
chOice of the direction of the bond, it is checked 
whether the ending site is not on any of the sites 
which have already appeared or whether it is on the 
same site as the nth bond, according as the final num­
ber on the respective row is 0 or n(n 2: 1). For each 
set of the choice of the directions which gives a 
figure in the required topological form, we calculate 
the difference Rif of the coordinates on the lattice for 
each pair IF of sites of the diagram and add one to 
the register for n(Rif; diagram IF). At the end of zn 
choices,6 we get n(Rif; diagram IF). The values are 
needed for the topologically different cases when the 
labeling on the sites and bondS are erased and hence 
the resulting numbers are divided by the symmetry 
number of the diagram in which the initial and final 
sites are distinguished. This program was used in 
checking the values in Table ill of Ref. 1. The result 
for the bcc lattice is given in Table II. 

By using the values in Tables I and II and the coeffic­

ients 'Y~~n) (diagram IF) given in Table II of Ref. 1, we 
calculate the sums of the products given in (2.6) and 

bt · th (2n) ( 2,,) a am e values of a21 (Rif ) and at (Rifl for the bec 
Heisenberg magnet of spin ~. They are listed in 
Table ill. 
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TABLE II. The number of different ways n(Rij ; diagram IF) by which 
diagrams with the initial and final sites IF occur in the bcc lattice 
with the difference of the final and initial sites Rif = (I, m, n). 

RiL = (0,0,0) Rit = (1,1,1) 

diagram IF (0,0,0) diagram IF (1, 1, 1) 

11 8 12 1 

2 11 56 2 12 7 
2 22 28 2 21 7 

3 11 392 3 12 49 
3 22 392 3 21 49 

3 14 12 
4 11 168 3 23 49 
4 22 56 

4 12 21 
5 11 48 4 21 21 

6 11 2648 5 12 12 
6 22 2648 
6 33 1324 6 12 331 

6 21 331 
7 11 2352 6 14 72 
7 22 1176 6 41 72 
7 33 1176 6 23 331 
7 44 1176 6 32 331 

8 11 280 7 12 294 
8 22 70 7 21 294 

7 14 72 
9 11 288 7 41 72 
9 22 288 7 23 147 
9 33 576 7 32 147 
9 44 288 7 34 147 

7 43 147 
10 11 24 
10 22 36 8 12 35 

8 21 35 

9 12 36 
9 21 36 
9 14 9 
9 41 9 
9 23 72 
9 32 72 
9 34 72 
9 43 72 

10 12 9 
10 21 9 

Rif = (4,0,0), (4, 2, 0), (4, 2, 2) 

diagram IF (4, 0, 0) (4,2,0) (4,2,2) 

6 15 36 24 16 

3. COMPUTATION FOR ARBITRARY SPIN 

The short-time expansion coefficients 0 (2n)(Rij) is ex­
pressed as follows: 

a(O)(Rij ) = <stsf) , 

a(2)(Rij) = - <[H, s{][H, sf]), 

a(4)(R ij ) = <[H, [H, s/]][H, [H, sf]]), 

a(6)(R ij ) = - <[H, [H, [H, s{]]][H, [H, [H, sf]]]), 

(3.1) 

where H is the Hamiltonian of the system. In com­
puting a(2n) (R ij ), we first calculate coefficients 'Y (2n) 

(diagram IF) for the small diagrams as shown in Fig. 
1. 'Y (2 n) (diagram IF) is the sum of all those contri­
butions from 

<[H, [H, ... , [H, s/J' .. ]]sj) (3.2) 

involving 2n commutators, which involves at least one 
term of H associated with each bond in the diagram, 
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RiL = (2,0,0), (2, 2, 0), (2, 2, 2) 

diagram IF (2,0,0) 

2 13 4 

3 13 28 
3 31 28 

4 13 24 

5 13 6 

6 13 184 
6 :'II 184 
6 15 56 
6 24 184 

7 13 168 
7 31 168 
7 15 168 
7 24 84 
7 42 84 

8 13 60 

9 13 36 
9 31 36 
9 24 36 
9 42 36 
9 35 72 

10 15 4 
10 23 8 

Rij = (3,1,1), (3, 3,1), (3, 3, 3) 

diagram IF (3,1,1) 

3 14 9 

6 14 63 
6 41 63 

7 14 54 
7 41 54 

9 14 8 
9 41 8 

Rij = (4,4,0), (4, 4, 2), (4, 4, 4) 

diagram IF (4, 4, 0) 

6 15 6 

(2,2,0) 

2 

14 
14 

12 

9S 
96 
52 
96 

84 
84 
84 
42 
42 

30 

22 
22 
6 
6 

12 

2 

(3,3,1) 

3 

21 
21 

18 
18 

(4,4,2) 

4 

(2,2,2) 

1 

7 
7 

6 

49 
49 
42 
49 

42 
42 
42 
21 
21 

15 

12 
12 

(3,3,3) 

1 

7 
7 

6 
6 

(4,4,4) 

1 

where II is the Hamiltonian for the diagram. It is 
argued in Ref. 1 that we have a contribution only when 
2(m - 1) :s 2n for the case of spin i, where m is the 
total number of sites in the diagram. It is shown in 
the Appendix that it is true for an arbitrary spin. As 
a consequence, we have only to consider diagrams 
with the total number of sites m :s 2,3, and 4 for 2n 
= 2,4, and 6, respectively. For instance in the com­
putation of a(4)(R ij ), we first compute the coefficients 
'Y (4) (diagram IF) for each of diagrams 1 and 2 shown 
in Fig. 1. In the calculation, we use the form of (3. 1) 
instead of (3.2). All the nonzero terms of the com­
mutation [lI, [H, st]] for all the sites i in the diagram 
are computed and stored in the memory of the com­
puter. All the pairs of such terms with i = I and i = 
F, respectively, are considered. If every bond in the 
diagram is used in either of the commutations, the 
trace of the product of the two terms is calculated 
for spins from 1 to 4- and summed to 'Y~t) (diagram 
IF); for each spin, they are expanded in powers of 
S(S + 1)/3 as follows: 
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TABLE m. Expansion coefficients a~2n>rRif) and a~~"\Rif) for the bce Heisenberg magnet of spin ~ at infinite temperature. 

RiJ 2n a(2n) 
t ab2n) 

(0, 0,0) a 0.25 0.25 
2 4.0 4.0 
4 212.0 156.0 
6 20 140. a 10144.0 
8 2960756. a 1047076.0 

(1,1,1) 2 -0.5 -0.5 
4 -37.0 -30.0 
6 -3870.0 -2343.0 
8 -568240.0 -261116.0 

(2,0,0) 4 6.0 6.0 
6 840.0 720.0 
8 124 096. 0 94528.0 

(2,2,0) 4 3.0 3.0 
6 450.0 360.0 
8 72016.0 46256.0 

(2,2,2) 4 1.5 1.5 
6 232.5 180.0 
8 38962.0 23254.0 

(3,1,1) 6 -45.0 -45.0 
8 -10794.0 --8820.0 

(3,3,1) 6 -15.0 -15.0 
8 -3738.0 -2940. a 

(3,3,3) 6 -5.0 -5.0 
8 -1274.0 -980.0 

(4,0, 0) 8 630.0 630.0 

(4, 2, 0) 8 420.0 420.0 

(4,2,2) 8 280.0 280.0 

(4,4,0) 8 105.0 105.0 

(4,4,2) 8 70.0 70.0 

(4,4,4) 8 17.5 17.5 

(2n) ( . ) 
Y 21 diagram IF 

= 6Y~I~~ (diagram IF)[S(S + 1)/3]P. (3.3) 
P 

!he obtained values for y;:~; (diagram IF) are given 
III Table IV. 

yp,,) (diagram 1,11) = - yp,,) (diagram 1,12) 

2S 2S j S 

a~2n) aJ2n) aJ2n) 

0.0 0.0 0.0 
0.0 0.0 0.0 

56.0 0.0 0.0 
7756. a 2240. a o. a 

1102688. a 668976. a 142 016. a 
0.0 0.0 0.0 

-7.0 0.0 0.0 
-1247.0 -280.0 0.0 

-188824.0 -100 548. a -17752.0 

0.0 0.0 0.0 
120.0 0.0 0.0 

20496.0 9 072.0 0.0 

0.0 0.0 0.0 
90.0 0.0 0.0 

20188.0 5572.0 0.0 

0.0 0.0 0.0 
52.5 0.0 0.0 

12432.0 3276.0 0.0 

0.0 0.0 0.0 
-1526.0 -448.0 0.0 

0.0 0.0 0.0 
-742.0 -56.0 0.0 

0.0 0.0 0.0 
-294.0 0.0 0.0 

0.0 0.0 0.0 

0.0 0.0 0.0 

0.0 0.0 0.0 

0.0 0.0 0.0 

0.0 0.0 0.0 

0.0 0.0 0.0 

For diagram 1, the complete set of the eigenfunctions 
and eigenvalues are well known for the isotropic case 
Jil = J 1.' By using the complete set, the coefficients 
yFn) (diagram 1 IF) can be expressed as 

1 6 
j=O (2S + 1)2 

6 
j'=O 

I: 
m=-j 

6 C(SSjlm1,m -m1)m1 
m;=-S 

(- j':Sm:Sj') 
(-S:sm- m 1 ::sS, -S:Sm- "'; :sS) 

where C(j 1]2] 1m l' m - m 1) are the Clebsch-Gordon 
coefficients.7 This equation was used to check the co­
efficients ;'f~,,) (diagram 1, IF) in Table IV. 

For an arbitrary spin, the coefficients a~~n\Rij) are 
expanded as follows: 

a;~n)(Rij) = 6a;~";{Rij)[S(S + 1)/3]P. (3.5) 
p , 

a;:,n;(R ij ) are calculated by the formula (2.6) from 

y~21~~ (diagram IF) with the aid of the numbers n(Rij ; 

diagram IF) given in Ref. 1 and the preceding section. 
The obtained coefficients for the linear, square, se, 
and bec lattices are listed in Tables V-VIII. 

For the isotropic Heisenberg magnet, at(2n)(R ij ) 
appearing in (2.4) is expanded as 

(3.4) 

I 

Recalling the relation (2.5), we have 

(2n)(R) ~ (2,,) 'R ) 
at,p ij =LJa21,p\ ij' 

l 
(3.7) 

The values of agn)(Rij ) are also listed in Tables V­
vrn. 

4. SUMMARY 

The two-time spin-pair correlation function for the 
Heisenberg magnet at infinite temperature is expand­
ed in powers of time as Eq. (2. 2). The coefficients 

a(2n)(Rij ) are calculated from a}2n)(Rij ) and a~~n)(Rij) 

by (2. 3) and (2.4) for spin i. The numerical values 
(2n)() (2,,» . of 0t Rij and a21 (R ij for the bcc Heisenberg 

magnet of spin ~ are computed for 0 ::; 2n ~ 8 and 
listed in Table III. For the ease of an arbitrary spin, 
the coefficients a(2n)(Rij) are obtained by (2.3) and 
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TABLE IV. The coefficients Y~~;) (diagram IF) and Y~;;) (diagram IF) of the terms t 20[5(5 + 1)/3]P for the diagrams shown in Fig. 1 where 
IF denote the initial and final sites. . , 

2n - 2 

diagram IF p (2) (2) 
Yt.P Yo.P 

1 11 2 8.0 8.0 
1 12 2 -8.0 -8.0 

2n = 4 

diagram IF p (4) (4) (4) 
Yt.P Yo.P Y2.p 

1 11 2 -16.0 -6.4 -9.6 
1 11 3 192.0 153.6 38.4 
1 12 2 16.0 6.4 9.6 
1 12 3 -192.0 -153.6 -38.4 

2 11 3 64.0 32.0 32.0 
2 12 3 -160.0 -128.0 -32.0 
2 13 3 96.0 96.0 0.0 
2 22 3 320.0 256.0 64.0 

2n - 6 

diagram IF p (6) (6) (6) (6) 

Yt.P Yo.P Y2.P Y 4.p 

11 2 89.6 68.04 + 5/7 -19.32 - 3/7 39.88 + 5/7 
11 3 -1228.8 -710.52 - 3/7 -236.84 - 1/7 -280.44 - 3/7 
11 4 5529.6 3791. 44 + 2/7 1263.48 + 3/7 473.68 + 2/7 
12 2 -89.6 -68.04 - 5/7 19.32 + 3/7 -39.88 - 5/7 
12 3 1228.8 710.52 + 3/7 236.84 + 1/7 280.44 + 3/7 
12 4 -5529.6 -3 791. 44 - 2/7 -1263.48 - 3/7 -473.68 - 2/7 

2 11 3 -960.0 -384.0 -320.0 -256.0 
2 11 4 7680.0 3840.0 2688.0 1152.0 
2 12 3 1280.0 -768.0 256.0 256.0 
2 12 4 -13440.0 -9216.0 -3072.0 -1152.0 
2 13 3 -320.0 -384.0 64.0 0.0 
2 13 4 5760.0 5376.0 384.0 0.0 
2 22 3 -2560.0 -1536.0 -512.0 -512.0 
2 22 4 26880.0 18432.0 6144.0 2304.0 

3 11 4 512.0 128.0 384.0 0.0 
3 12 4 -1792.0 -768.0 -1024.0 0.0 
3 13 4 2560.0 1920.0 640.0 0.0 
3 14 4 -1280.0 -1280.0 0.0 0.0 
3 22 4 6144.0 2176.0 3200.0 768.0 
3 23 4 -6912.0 -3328.0 -2816.0 -768.0 

4 11 4 2560.0 1024.0 768.0 768.0 
4 12 4 -8960.0 -6144.0 -2048.0 -768.0 
4 13 4 3200.0 2560.0 640.0 0.0 
4 22 4 26880.0 18432.0 6144.0 2304.0 

5 11 4 -1792.0 0.0 -1792.0 0.0 
5 12 4 2816.0 0.0 2816.0 0.0 
5 13 4 -3840.0 0.0 -3840.0 0.0 

TABLE V. Expansion coefficients a~.2po'(Rij) and a;~~;(Rij) for the linear chain. 

Rij 2n p (20) 
a t . p 

(2n) 
a o.p 

(2.) 
a 2.p 

(2.) 
a 4.p 

(0) 0 1 1.0 1.0 0.0 0.0 
2 2 16.0 16.0 0.0 0.0 
4 2 -32.0 -12.8 -19.2 0.0 
4 3 832.0 627.2 204.8 0.0 
6 2 179.2 137.08+3/7 -38.64 - 6/7 80.76 + 3/7 
6 3 -6937.6 -3725.04 - 6/7 -1625.68 - 2/7 -1 584. 88 - 6/7 
6 4 66611. 2 38302.88 + 4/7 21214.96 + 6/7 7091. 36 + 4/7 

( 1) 2 2 -8.0 -8.0 0.0 0.0 
4 2 16.0 6.4 9.6 0.0 
4 3 -512.0 -409.6 -102.4 0.0 
6 2 -89.6 -68.04 - 5/7 19.32 + 3/7 -39.88 - 5/7 
6 3 3788.8 2246.52 + 3/7 748.84 + 1/7 792.44 + 3/7 
6 4 -42905.6 -27087. 44 -- 2/7 -12271. 48 - 3/7 -3545.68 - 2/7 

(2) 4 3 96.0 96.0 0.0 0.0 
6 3 -320.0 -384.0 64.0 0.0 
6 4 10880.0 9216.0 1664.0 0.0 

(3) 6 4 -1280.0 -1280.0 0.0 0.0 
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TABLE VI. Expansion coefficients U~.2p')(Rif) and u~~.~(Rif) for the square lattice. 

(0,0) 

(1,0) 

(1, 1) 

(2,0) 

(2,1) 

(3,0) 

(0,0,0) 

(1,0,0) 

(1,1,0) 

(1, 1, 1) 

(2,0,0) 

(2,1,0) 

(3,0,0) 

2n 

0 
2 
4 
4 
6 
6 
6 

2 
4 
4 
6 
6 
6 

4 
6 
6 

4 
6 
6 

6 

6 

2n 

0 
2 
4 
4 
6 
6 
6 

2 
4 
4 
6 
6 
6 

4 
6 
6 

6 

4 
6 
6 

6 

6 

p 

1 
2 
2 
3 
2 
3 
4 

2 
2 
3 
2 
3 
4 

3 
3 
4 

3 
3 
4 

4 

4 

p 

1 
2 
2 
3 
2 
3 
4 

2 
2 
3 
2 
3 
4 

3 
3 
4 

4 

3 
3 
4 

4 

4 

(2.) 
U t.P 

1.0 
32.0 

-64.0 
3456.0 

358.4 
-31795.2 
646246.4 

-8.0 
16.0 

-1152.0 
-89.6 

8908.8 
-231321. 6 

192.0 
-640.0 

51200.0 

96.0 
-320.0 

27520.0 

-3840.0 

-1280.0 

TABLE VII. 
(2n) 

a t . p 

1.0 
48.0 

-96.0 
7872.0 

537.6 
-74572.8 

2334873.6 

-8.0 
16.0 

-1792.0 
-89.6 

14028.8 
-575385.6 

192.0 
-640.0 

84480.0 

-7680.0 

96.0 
-320.0 

44160.0 

-3840.0 

-1280.0 

(2.) 
Uo.P 

1.0 
32.0 

-25.6 
2534.4 

274.16 + 6/7 
-16667.08- 5/7 
340798.76 + 1/7 

-8.0 
6.4 

-921. 6 
-68.04 - 5/7 

5318.52 + 3/7 
-142287.44 - 2/7 

192.0 
-768.0 

44032.0 

96.0 
-384.0 

22016.0 

-3840.0 

-1280.0 

1.0 
48.0 

-38.4 
5721. 6 

412.24 + 2/7 
-38825.12 - 4/7 

1190109.64 + 5/7 

-8.0 
6.4 

-1433.6 
-68.04 - 5/7 

8390. 52 + 3/7 
-345551. 44 - 2/7 

192.0 
-768.0 

69632.0 

-7680.0 

96.0 
-384.0 

34816.0 

-3840.0 

-1280.0 

(2.) 
U2 .P 

0.0 
0.0 

-38.4 
921. 6 
-78.28 - 5/7 

-7859.36 - 4/7 
229822.92 + 5/7 

0.0 
9.6 

-230.4 
19.32 + 3/7 

1772.84 + 1/7 
-70127.48 - 3/7 

0.0 
128.0 

7168.0 

0.0 
64.0 

5504.0 

0.0 

0.0 

0.0 
0.0 

-57.6 
2150.4 
-117.92 - 4/7 

-18701. 04 - 6/7 
865438.88 + 4/7 

0.0 
9.6 

-358.4 
19.32 + 3/7 

2796.84 + 1/7 
-183279.48 - 3/7 

0.0 
128.0 

14848.0 

0.0 

0.0 
64.0 

9344.0 

0.0 

0.0 

(2.) 
U4.p 

0.0 
0.0 
0.0 
0.0 

161.52 + 6/7 
-7266.76 - 5/7 
75623.72 + 1/7 

0.0 
0.0 
0.0 

-39.88 - 5/7 
1816.44 + 3/7 

-18905.68 - 2/7 

0.0 
0.0 
0.0 

0.0 
0.0 
0.0 

0.0 

0.0 

0.0 
0.0 
0.0 
0.0 

243.28 + 2/7 
-17044.64 - 4/7 
279323.08 + 5/7 

0.0 
0.0 
0.0 

-39.88 - 5/7 
2840.44 + 3/7 

-46553.68 - 2/7 

0.0 
0.0 
0.0 

0.0 

0.0 
0.0 
0.0 

0.0 

0.0 

(2.4) and (3.5) and (3.6) from a?pn\Rif) and a~~,~(Rif)' 
The numerical values of these coefficients are cal­
culated for 0 ~ 2n ~ 6 for the linear, square, sc, 

([H, [H, ... , [H, sf] ••• ]]sf,) (AI) 

involving 2n commutators, which involve at least one 
term of H associated with each bond in the diagram. 
Here H is the Hamiltonian for the diagram. In this 
appendix, we prove that I' (2 n) (diagram IF) can be non­
zero only when 

and bcc lattices and listed in Tables V-VIII. 
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APPENDIX: DIAGRAMS CONTRIBUTING TO 
ORDER t 2n 

The value 1'(2 n) (diagram IF) for a diagram shown in 
Fig. I is the sum of all those contributions from 

2(m - 1) ~ 2n, (A2) 

where m is the total number of sites in the diagram. 

Before taking commutators, operator sf is associated 
with site I and operator unity with all the other sites. 
By taking commutation with H, the operator associa­
ated to each site becomes a product of a number of 
spin operators; e.g., a product of three operators like 
s i s1 s i for site 1. Initially we have only one spin 
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TABLE Vill. E . ff" t (2.)() (2.») xpanslon coe lClen s a t• p Rij and a21•p (Rij for the bcc lattice. 

Rij 2n p (2.) (2.) (2.) a(2,,) a t . p ao.p (J2.P 4.P 

(0,0,0) 0 1 1.0 1.0 0.0 0.0 
2 2 64.0 64.0 0.0 0.0 
4 2 -128.0 -51. 2 -76.1: 0.0 
4 3 14080.0 10188.8 3891. 2 0.0 
6 2 716.8 549.32 + 5/7 -157.56 - 3/7 324.04 + 5/7 
6 3 -135270.4 -70199.16 - 3/7 -34151. 72 - 1/7 -30918.52 - 3/7 
6 4 5685452.8 2868861. 52 + 2/7 2 124670.84 + 3/7 691919.44 + 2/7 

(1, 1, 1) 2 2 -8.0 -8.0 0.0 0.0 
4 2 16.0 6.4 9.6 0.0 
4 3 -2432.0 -1945.6 -486.4 0.0 
6 2 -89.6 -68.04 - 5/7 19.32 + 3/7 -39.88 - 5/7 
6 3 19148.8 11 462. 52 + 3/7 3820.84 + 1/7 3 864. 44 + 3/7 
6 4 -1065881. 6 -644559.44 - 2/7 -334831. 48 - 3/7 -86489.68 - 2/7 

(2,0,0) 4 3 384.0 384.0 
6 3 -1280.0 -1536.0 
6 4 220160.0 190464.0 

(2,2,0) 4 3 192.0 192.0 
6 3 -640.0 -768.0 
6 4 117760.0 95232.0 

(2,2,2) 4 3 96.0 96.0 
6 3 -320.0 -384.0 
6 4 60800.0 47616.0 

(3,1,1) 6 4 -11 520.0 -11520.0 

(3,3,1) 6 4 -3840.0 -3840.0 

(3,3,3) 6 4 -1280.0 -1280.0 

operator s~. We notice that (i) the operator for each 
site other than I becomes sZ, s+, or s- when it is in­
volved in a commutator for the first time, and (ii) at 
each commutation the total number of the spin opera­
tors for all the sites in the diagram is increased by 
one. If there are m sites in the diagram under con­
sideration and a term of the Hamiltonian to each of 
the bonds in the diagram is required to occur at least 
once, a nonvanisrung contribution is expected only 
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Science, Faculty of Engineering, Tohoku University, Sendai, Japan. 
T. Morita, J. Math. Phys.12, 2062 (1971). 
T. Morita, J. Math. Phys. 13, 714 (1972); T. Horiguchi and T. Morita, 
in preparation. 

3 R. A. Tahir-Kheli and D. G. McFadden, Phys. Rev. 182, 604 (1969); 
B 1,3649 (1970). In these papers, Tahir-Kheli and McFadden 
made a number of analyses with the aid of the expansion including 
terms up to 0(14) for an arbitrary spin. 
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0.0 0.0 
256.0 0.0 

29696.0 0.0 

0.0 0.0 
128.0 0.0 

22528.0 0.0 

0.0 0.0 
64.0 0.0 

13184.0 0.0 

0.0 0.0 

0.0 0.0 

0.0 0.0 

when a product of at least two spin operators is asso­
ciated with each site excluding F and at least one 
spin operator with site F. In order to get such a pro­
duct of at least 2(m - 1) + 1 spin operators for the 
whole diagram, we need at least 2(m - 1) commuta­
tions starting from the initial one spin operator sf. 
Hence we have a contribution only when the total 
number of commutations 2n is equal to or greater 
than 2(m - 1), namely (A2). 

4 F. Carboni and P. M. Richards, Phys. Rev. 177, 889 (1969). 
5 C. G. Windsor, in Neutron Inelastic Scattering, Vol. II (IAEA, 

Vienna, 1968), p. 83. 
6 In actual computation, we can save the computer time by fixing 

the direction of the first bond to one of z directions and using the 
symmetry property of the lattice to get the final values of n(Rij ; 
diagram IF). 

7 E.g., M. E. Rose, Elementary Theory of Angular Momentum 
(Wiley, New York, 1957). 
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A model of a gravitational shock wave is developed using the null hyper surface approach to the initial value 
problem. Interior to the shock front is a flat Minkowski region. This is joined to a shear-free but curved ex­
terior. The geometric properties of the shock front determine the physical properties of the wave. The gravi­
tational energy measured at null infinity is a functional of the 2-geometry of the shock front. The positive 
energy conjecture reduces to a simple statement concerning the geometry of 2-surfaces. Explicit numerical 
calculations carried out for various 2-surfaces have led to positive energy. However, no inequality is known to 
show that the energy is positive for all 2-surfaces. 

1. JNTRODUCTION 

In this paper, we investigate the energy content of a 
simple model of a gravitational shock wave. This 
work has been motivated by recent attempts to answer 
the question, "Can the energy of an asymptotically 
flat space-time be negative? ,,1 - 5 In the weak field 
case, this question has been decided in favor of posi­
tive energy.2,4 However, these efforts have failed to 
produce any conclusive results in the case of strong 
gravitational fields. 

Here we treat the energy as formulated in the null 
infinity description of asymptotically flat space­
times. 6 - 9 Our program is from the point of view of 
the characteristic initial value problem analogous to 
the treatments of Brill lO and of Arnowitt, Deser, and 
Misner 11 based upon Cauchy data on a space-like 
hypersurface. These latter space-like models have 
established that the Hamiltonian energy measured at 
spatial infinity is positive for the special cases in 
which the Cauchy data can be classified in terms of 
the canonical formalism as either "axially symmetric 
pure coordinate" or ''pure momenta." 

We have not been able to draw any such definite con­
clusions from our model. The energy content of the 
gravitational shock wave depends upon the geometri­
cal properties of a two-dimensional surface char­
acterizing the shock front in a way which does not 
make the sign of the energy evident. We have numeri­
cally calculated the energy for several explicit 
choices of shock front geometry. All these calcula­
tions have led to positive energy. Hence the question 
of the possibility of negative energy remains unre­
solved. However, the shock wave model does furnish 
valuable physical insight into the properties of gravi­
tational energy. 

Our signature for the space-time metric is minus 
two. Greek indices range from zero to three, and the 
four-dimensional covariant derivative is denoted by 
V'. 

2. MODEL OF A GRAVITATIONAL SHOCK WAVE 

Asymptotically flat solutions of Einstein's vacuum 
field equations can be specified by characteristic 
initial value data on a null hyper surface N of topo­
logy 5 2 X E 1 which extends from an interior cross­
over region B to a sphere at future null infinity .12 In 
the interior region of N the complex shear, which can 
be given freely, forms the complete characteristic 
initial value data. To complete the data, additional in­
formation must be given about the geometry of the 
cross-over region B. We shall construct a model of 
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a gravitational shock wave by specifying the data for 
Nand B in an especially simple way which guaran­
tees that the data generate a nonsingular asymptoti­
cally flat space-time. 

In order to do this it is convenient to introduce a null 
polar coordinate system with retarded time xO = u, 
affine parameter along the null rays xl = r, and ray 
labels xA(A = 2,3}. The line element takes the form 

ds2 = goodu2 + 2goldudr + 2g0Adudx A 

+gABdxAdxB, (2.1) 

and the contravariant form of the metric satisfies the 
algebraic conditions 

gOO = gOA= 0, gOI = 1, 

In the formulation of the characteristic initial value 
problem for the vacuum Einstein field equations, the 
null hypersurface constraint equations take the form 

Rll = p.ll + i(P,1)2 = 0, 

RIA = ~gABe-P(ePg1B.I),1 + ip,1;A = 0, 
and 

gABR = (2)R + e-PI2[epI2(~gll P + P )] AB ,1 ,0 ,1 

+ glB + ~g glA glB ,1;B AB ,1 ,1 

+ (g1B P,1);B = o. 

(2.2) 

(2.3) 

(2.4) 

Here P == In(- g), (2)R is the Ricci scalar corres­
ponding to the 2-surface metric gAB> the semi-colon 
indicates two-dimensional covariant differentiation 
with respect to gAB' and a comma indicates partial 
differentiation. 

Once the shear is specified on the initial surface N 
given by u = uo' these equations can be integrated to 
give a solution of Einstein's equations in terms of the 
integration constants that arise. These integration 
constants are determined by additional data that must 
be given at the interior cross-over region B. It is 
important and nontrivial to prescribe data at B so as 
not to produce any Singularities in the 4-geometry of 
space-time. We carry this out in the following way. 

We let the data on the inner portion of N correspond 
to flat space data; that is the inner portion of N 
corresponds to a shearing null hypersurface embed­
ded in Minkowski space. An example is the null 
hypersurface interior to an ellipsoid. Next we choose 
some two-dimensional cross section ~() of this inner 
portion of N such that ~o lies exterior to the cross­
over region B. For further simplicity we take ~ 0 to 
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be embedded in a surface of constant Minkowski time. 
We fix the affine parameter r so that ~o is given by 
r = 1 and complete our data by demanding that the 
shear vanish for r > 1. As long as the divergence p 
of the null rays is positive at ~o, the null hypersur­
face N will extend to future null infinity without de­
veloping caustics and, since the shear is zero ex­
terior to ~o, the solution will be asymptotically flat. 
Unless the flat inner portion of N is a null cone its 
shear will not vanish and there will be a discontinuity 
in both the shear and curvature across ~o, the shock 
front of an imploding spherical gravitational wave.1 3 

However, these discontinuities are of the allowable 
type which may be removed by a smearing of the 
region ~o until the usual continuity conditions of the 
Lichnerowicz type are satisfied. 14 The energy of the 
shock front varies continuously under such a smooth­
ing operation so that these discontinuities may be con­
Sidered to be nonpathological. Setting the data this 
way has also ensured that there are no Singularities 
associated with the cross-over region B, since space­
time is flat in the neighborhood of B. 

In order to calculate the energy of the shock wave we 
first integrate the constraint equations in the shear 
free region 1 < r :s OCJ. Since the shear vanishes in 
this region, we have 

(2.5) 

The boundary conditions at ~o imply that at r = 1, 

(2.6) 

where hAB is the metric of the 2-surface ~o, and that 
also atr = 1, 

g1B = g1B 1 = 0 
and . 

19l1p + P _ lp 2 .1 .0 - - 2 .1' 

(2.7) 

(2.8) 

Equations (2.7) and (2. 8) follow from the fact that ~o 
is embedded in a flat 3-surface of constant time in 
Minkowski space. 

From Eqs. (2. 2), (2. 5), and (2.6) it follOWS that 

(2.9) 

where B(x A) is an arbitrary function whose geometri­
cal significance can be seen by calculating the diver­
gence of the null rays on N. If IJl = u.Jl ' then the 
divergence p is given by 

By virtue of Eqs. (2. 9) and (2.10) we have 

p = B[1 + (r - 1)B]-1, 

(2.10) 

(2.11) 

so that at r :=: 1, p = B. Hence to ensure that N ex­
tends to future null infinity without developing caus­
tics exterior to 2: 0 , we require that B be a smooth 
positive function so that p is continuous and positive 
at 2:0-

By using Eqs. (2. 7) and (2.9), the constraint Eq. (2. 3) 
can be integrated to give 

g1B = hABB AB - 4[(r - 1 + B-1)-2 

- iB-1(r - 1 + B-1)-3 - tB2]. (2.12) 
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We can now integrate the remaining constraint Eq. 
(2.4); but as we shall see in the next section this is 
unnecessary as we already have suffiCient informa­
tion about the metric on N to calculate the energy at 
the retarded time uo. 

3. THE ENERGY OF THE WAVE 

We shall use the asymptotic symmetry linkages to 
calculate the energy .of the shock wave at the retard­
ed time uO.7-9 These quantities are functionals of 
the spherical cross-sections ~ of N and may be con­
veniently written 7 

Lg(~) = - § dSlunJlVu~Jl. (3.1) 
Here 

dS = (47T)-1(- g)1/2dx2dx3, 

and nJl is an arbitrary vector field on ~ which satis­
fies IJlnJl = - 1. The Bondi-Metzner-Sachs sym­
metry descriptors ~ Jl are determined asymptotically 
by applying Killing's equations at future null infinity 
and are then propagated along N by the projection of 
Killing'S equations 

(3.2) 

The total energy of a system is usually calculated by 
evaluating the linkage which corresponds to an asymp­
totic time translation and then taking the limit to 
future null infinity ,<)'+ 

E = lim Lf(~)' (3.3) 
L"'L+ 

where 2:+ = N n ,<)'+. When the shear is zero, however, 
the values of the linkages are independent of the par­
ticular slice L; on which they are evaluated.1 5 We 
shall use this fact to calculate the energy by evaluat­
ing at ~o the linkage which corresponds to an asymp­
totic time translation. Hence for this model 

(3.4) 

In the null polar coordinate system given by Eq. (2.1) 
the propagation equations (3.2) take the form 

~0.1=0, 

and 
p p = 2g1A~0 - 2~ A. _ P ~o 

.1 .A.A ,0' 

(3.5) 

(3.6) 

(3.7) 

By using Eqs. (2. 2), (3. 5), and (3.6) it is a straight­
forward matter to show that at r = 1: 

- nJlluV u~Jl :=: - (P.1P [P.O + ~gllp.1Ll ~o 
- 2(p.1)-le ;A.1 - ~~A ;A - Hp.o + ~gllp.d~o. 

(3.8) 

We can rewrite this expression by using Eq. (2. 4), 
Eq. (3. 7), and the boundary conditions given by Eqs. 
(2.7) and (2.8). We obtain at r :=: 1 

The asymptotic form of the time translation is given 
by 
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(3.10) 

where V is the conformal factor relating the metric 
of ~o to the metric of the unit sphere qAB' 

(3.11) 

(The minus sign arises because hAB is negative de­
finite and qAB is positive definite.) Note that although 
this form for ~jl could be found by solving Killing's 
equations asymptotically, it can also be obtained dir­
ectly from known results8 by recalling the behavior 
of asymptotic Killing vectors under conformal trans­
formations and by noting from Eq. (2. 9) that asymp­
totically 

gAB ~ - r2B2 V2qAB • 

By using Eqs. (2. 9), (2.12), and (3.10), we can inte­
grate Eqs. (3.5) and (3.7) to find ~o and ~ A at r = 1. 
We are then in a position to evaluate the energy from 
Eq. (3. 4). It follows that 

E = 1: [i(2)R - ~B2 --t(lnB). (lnB):A Y~o ,A 

+ ~(lnB);A A]VdS. (3.12) 

Since ~O is embedded in a hypersurface of constant 
Minkowski time and B is equal to the divergence of N 
~O, we can use a result of KantowskP6 to identify B 
with the mean curvature of ~o (up to a constant deter­
mined by convention). In this way the energy of our 
model becomes a functional of the 2-geometry of a 
smooth (say C 5 ) surface with spherical topology em­
bedded in flat Euclidean 3-space. 

Therefore in the remainder of this paper we shall 
regard the problem of calculating the energy of the 
gravitational shock wave as a problem in the theory 
of 2-surfaces embedded in flat 3-space. For this 
reason it is convenient to introduce a positive-de­
finite metric 1JAB to describe the intrinsic geometry 
of the 2-surface ~o 

so that using Eq. (3.11), the line element may be 
written as 

(3. 13) 

We then rewrite the energy expreSSion Eq. (3.12) in 
terms of the Gaussian curvature 

and the mean curvature 1 7 

H = 2B > 0 

of a surface embedded in flat 3-space to obtain 

E = iJ[K - i H2 - (InH):A A 

+ t(ln H):A(lnH):A] VdS , (3.14) 

where the colon represents covariant differentiation 
with respect to the metric 1JAB' The conformal rela­
tionship to the unit sphere given in Eq. (3.13) implies 
that 

where dU is the element of solid angle on the unit 
sphere,and18 

(3.15) 

The Sign properties of the energy of this model 
clearly cannot be determined at a glance. If the 
energy of the gravitational field could indeed become 
negative, then the present model would seem to offer 
a reasonable possibility for constructing a negative 
energy space-time. The energy would have been zero 
if we had not set the shear equal to zero at ~O, but 
rather allowed N to extend to future null infinity as a 
shearing null hypersurface embedded in Minkowski 
space. However, elimination of the shear exterior to 
~O introduces a pulse of Weyl curvature at ~o which 
make the energy nonzero. Considerations of curved 
space geometrical optics 13 indicate that the presence 
of shear causes positive focussing and, in that sense, 
simulates the effects of positive mass. This heuristi­
cally suggests that the elimination of shear from the 
Minkowski null surface might lead to negative energy. 
Indeed, the first two terms of the integrand in Eq. 
(3.14) may be written as 

(3. 16) 

where kl and k2 are the two principle curvature17 of 
~O, so that A is a measure of the astigmatism or 
shear16 of the null rays of N interior to ~o. We see, 
however, that although the contribution of A to the 
energy is negative definite, the contribution from the 
term 

(3. 17) 

due to inhomogeneities in the mean curvature is posi­
tive definite. On the other hand, the term 

- (InH):A A 

has no definite Sign. The weighting of these terms by 
the conformal factor V adds to the difficulty in deter­
mining the sign of the integral. The remainder of 
this paper will be devoted to this problem. 

4. THE WEAK FIELD ENERGY 

It is known that the energy of a weak gravitational 
field evaluated on a good null cone is positive de­
finite. 4 In fact, this energy, considered as a functional 
of the geometry, has a strict local minimum at flat 
space. Although the energy of the present model is 
not evaluated on a good cone, it is reasonable to sup­
pose that a good cone does exist in the domain of de­
pendence of N in the flat space limit, so that in this 
limit the energy evaluated at this later retarded time 
must be positive. It would then follow from the 
Bondi-Sachs19.20 mass loss theorem that the weak 
field energy evaluated at N was positive. In this sec­
tion, we shall show that the weak-field energy of our 
model does indeed have these properties. 

In our model, flat space-time corresponds to the 
choice of a metric sphere for ~o. In this case N is a 
null cone and the energy is zero. We calculate the 
weak field energy by evaluating the functional E(~o) 
for a two-dimensional surface with spherical topology 
in Euclidean 3-space which differs from a metric 
sphere by a small amount. Because of the scaling 
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behavior of the energy,5 it is sufficient to consider 
perturbations of the unit metric sphere. 

The use of spherical polar coordinates in E3, xl = R, 
x 2 = (J, x 3 = cp, enables the representation of such a 
surface by the simple equation 

R = 1 + E\}I(e, cp), (4.1) 

where E is a small parameter, and \}I generates the 
first order deformation of the unit sphere. Since the 
line element of E3 takes the form 

and 

K - tH2 = %E (AB)E (CD)H(AC)H(BD) - tH2 

= - h 2 t52 \}1 ~*2\}1. (4.12) 

By using the commutation relation for spin-weight s 
quantities, 

(4. 13) 

and by using the properties of ~ for integration over 
the unit sphere, it is straightforward to show that 

(4.2) E(Eo) = ~E2 J[h2lJ1 ~*2lJ1 

the line element of the 2-surface is given by 

Hence the conformal factor is given by 

v= 1 + ElJI + O(E2). (4.4) 

In order to calculate Hand K we introduce in E3 an 
orthonormal triad [n i ,t(A}i], where ni is the unit nor­
mal to Eo and t(A)i are ullit vectors tangential to the 
surface. In spherical polar coordinates we have 

n.=O:).-E\}I O.A+O(E2) (4.5a) 
~ , ,A 1. , 

where q(B) A form an orthonormal dyad on the unit 
sphere, the conventional choice in polar coordinates 
being q(2) A = (1,0) and q(3) A = (0, 1/sine). Calcula­
tion of the second fundamental form then gives 

H(AB) == t(A) it(B) iDj n i = o(AB)(1 - ElJI) 

- E\}I ;CDq(A) cq(B) D + O(E2), (4.6) 

where D represents covariant differentiation in E3, 
and the semicolon represents covariant differentia­
tion on the unit sphere. We may now calculate the 
curvature invariants from 1 7 

H = Tr[H(AB)] 
and 

K = det[H(AB)]' 

(4.7a) 

(4.7b) 

The calculation of the energy integral is facilitated 
by the use of a complex dyad 

(4.8) 

and the use of the differential operator ~.15 The 
action of the operator 5 is defined by relations of the 
type 

~(1/ABCqAqBijC) = .../21/ABC;DqAqBijCqD, (4.9) 

where qA = - q(B) AI.(B). W~ have 

o (AB) = I. (A);:(B) + i (A)1. (B) 

E (AB) = i (I. (A)i (B) - i (A)1. (B», 

° (AB)1. (A)1. (B) = 0, 
so that 

H = 0 (AB)H(AB) = 2 - 2E\}I - E5~ * \}I 
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(4. 10) 

(4.11) 

+ h(lJI + ~M*\}I)~*(lJI + %M*lJI))dO 

+ O(E3). (4. 14) 

Hence the lowest-order term is quadratic in E and 
positive definite. 

5. AXIALLY SYMMETRIC CALCULATIONS 

The energy integral in Eq. (3.14) is in general quite 
difficult to calculate numel'ically because of the pro­
blem of determining the conformal factor V. How­
ever, in the axially symmetric case an explicit ex­
pression for the conformal factor may be readily 
obtained. In this case, the surface Eo is generated by 
revolution of a curve in E3. 

To set up an axially symmetric formalism for num­
erical computation, we introduce cylindrical coordi­
nates (p, z, cp) so that the line element of E 3 is 

ds2 = dp2 + dz2 + p 2dcp2. 

We represent the generating curve by p = I(z), where 
z is the axis of revolution. The line element in Eo is 
then given by 

ds2 = (1 + f'2)dz 2 + j2dcp2, (5.1) 

where the prime denotes partial differentiation with 
respect to z In this coordinate system, it is straight­
forward to obtain 

K = - 1"//(1 + 1'2), 

H = (1 + 1'2 - 11")//(1 + 1'2)3/2, 
and 2 

V = 1 coshj [k + 1- 1(1 + f'2)1/2]dz. 
o 

(5.2a) 

(5.2b) 

(5.2c) 

The constant k reflects the freedom of the group of 
conformal transformations of the sphere onto itself. 
This group is in correspondence with the 6-para­
meter Lorentz group.21 Because of axial symmetry, 
only Lorentz transformations in the z direction are 
involved. All our calculations are for surfaces which 
are symmetriC under reflections of the z axis about 
z = O. For this reason we take k = 0 so that the 
energy corresponds to the rest energy of the system. 

We normalize our generating curve to range between 
endpoints at z = - 1 and z = + 1, with reflection sym­
metry about z = O. We write A = I(z), B = f'(z), 
c = I"(z), D = f'"(z), and E = I"II(Z). By using Eqs. 
(5.1) and (5.2), the energy integral in Eq. (3.14) re­
duces to 

E = j1 dzN cOShj2 dz'(l + B2)1I2/A, (5.3) 
o 0 
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where 

N-- 1 + 1 ( AC)2 
- 8(1 + B2)1/2 1 -f B2 

1B( 3A 2BC2 A(AD + BC) _ B ) 
- "2 (1 + B2)5/2 - (1 + B2)3/2 (1 + B2)1/2 

2A2 + --------~~~---------
3(1 + B2)1/2(1 + B2 _AC)2 

X ( 3ABC2 _ AD _ BC _ B(1 + B2»)2 
1 +B2 A 

_ A2(1 + B2)1/2 (_ 15AB2C3 + 
2(1 + B2 -AC) (1 + B2)3 

+ 3(AC3 + B2C2 + 3 ABCD) 
(1 + B2)2 

2B2C _AC2 -ABD _A2E 
+ + 

A(1 + B2) 
2B2 -AC). 

A2 

(5.4) 

Equation (5. 3) expresses the energy in a form suit­
able for numerical calculation. The smooth curve 
f(z) determines the functions A, B, C, D,E, and N 
through straightforward algebraic and differential re­
lations. The double integral in Eq. (5.3) can then be 
numerically integrated. Some care is necessary in 
treating the endpoint z = 1. Because f(z) is a smooth 
closed curve, its slope at z = 1 must be infinite. This 
singularity is of course a purely formal one. It does 
not lead to any difficulties in the numerical calcula­
tion as long as the terms are properly grouped. 

A. Ellipse 

Our first calculations were for a one-parameter 
family of ellipsoids. We represent the generating 
ellipse by the function 

f = a(1 - z2)1/2, 

where the parameter a ranges between 0 and 00. The 
case a = aD = 1 generates the sphere. The prolate 
case is given by a < 1 with a -? 0 giving the limit of a 
thin rod. The oblate case is given by a > 1 with a -? 

00 giving the limit of a thin disc. 

In the case of the ellipsoid, we can analytically inte­
grate Eq. (5. 2c) to obtain an explicit expression for 
the conformal factor. Putting 

P = 1 + z2(a2 - 1), 

We find for a < 1, 

v= ta(az + pl/2) exp{a- l (1- a2)1/2 

x sin- l [z(1 - a2)1/2J} + ta(1 - z2)(az + p l /2)-1 

X exp{- a- l (1- a2)1/2 sin-l[z(1 - a2)1/2J} 

and for a > 1, 

V = ta(az + Pl/2)[z(a2 - 1)1/2 + Pl/2J-(u2-l)lJ'lla 

+ ~a(1 - z2)(az + p1/2 )-1 

x [z(a2 - 1)1/2 + pl/2J(a2 -l)lhla • 

The qualitative features of numerical integration of 
the energy integral are shown in Fig. 1. At a = aD 
corresponding to the sphere, we have 

and dE 
(f(i = 0, 

in agreement with the weak field results of Sec. 4. 
The energy then increases monotonically as I a - aD I 
increases and becomes infinite at the two critical 
values ac = 0 or ac = 00 at which curvature singulari­
ties arise. 

B. Ovals of Cassini 

The one-parameter family of surfaces are generated 
by the ovals of Cassini22 described by the function 

f = {- a - z2 + [(1 - a)2 + 4az2)1/2} 1/2 (5.5) 

with 0 :os a < 1. The shape of these curves for various 
values of the parameter a are illustrated in Fig. 2 in 
which the solid arrow indicates the axis of revolution. 
The case a = aD = 0 generates the sphere [Fig. 2(a)J. 
For a = a c = 1 the generating curve in the lemni­
scate of Bernoulli [Fig. 2(d)]. In this limit the corres­
ponding surface has a curvature singularity at the 
equator. Although these surfaces are qualitatively 
very different from the ellipsoids, the numerical cal­
culations for the energy give exactly the same re­
sults shown in Fig. I. The energy rises monotonically 
from its minimum at the sphere and approaches in­
finity as a -? a c • 

Calculations were also carried out for the ovals of 
Cassini for the case in which the axis of revolution 
(z axis) corresponds to the broken arrow in Fig. 2. 
In this case, the generating curves can still be des­
cribed by Eq. (5. 5), but now with - 1 < a:os O. The 
case a = aD = 0 again generates the sphere; but the 
case a = ac = - 1 corresponds to the curve in Fig. 
2(b). In this limit, the mean curvature vanishes at the 
pole. This provides a limit to the physical reason­
ableness of this case since for values a :os - 1 the 

E 

O~-----+~--------~--'a 

FIG. 1. Numerical results for the energy integral 
are plotted vs curve parameter. 

& 
(b) 

cb-
I 

I 

(c) (d) 

E><3-
FIG. 2. A sequence of four ovals of Cassini are illustrated. 
The arrows indicate possible choices of axes of revolution. 
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corresponding space-time would not necessarily be 
asymptotically flat. The numerical results for the 
energy are given as before by Fig.1. The infinite 
energy in the limit a = a c now arises from the flat 
spots where H = 0 at the poles and not from curva­
ture singularities. 

C. Miscellaneous 

Calculations were also made for two additional fami­
lies of surfaces. These surfaces do not shed any 
further light on the subject except to show that the 
preceding examples were not statistical anomalies. 

In the first case, the generating curve is described by 
the function 

f = (1 - z2)1/2 - a(1 - z2) 

with ao = O::s a < 1 = a c ' The corresponding surfaces 
are only of differentiability class C2 at the poles 
(except when a = 0). Due to axial symmetry, the 
curvature is continuous, but not differentiable at the 
poles. This leads to a a-function contribution to the 
energy integral from the poles. The integral, however, 
still converges except in the limit a = a c ' The 
numerical results are again described by Fig. 1 ex­
cept for a = ao: 

but 

The behavior at the poles invalidates the usual weak 
field limit. 

In the second case, the function p(z) describing the 
generating curve is given in parametric form by 

p = (1 -1l2)1/2(1 - all2)(1 + a)-l, 

z = 1l[1 + (1 - 1l2)a(1 + a)-l], 

where - 1 ::s Il ::s 1. For a = ao = 0, the curve is a 
circle. For a = a c = 1, a curvature singularity 
arises at the poles. We were able to obtain the expli­
cit expression for the conformal factor 

(1 - a1l 2 ) 
V = 2(1 + a) 

x ~1 + Il) (1 + Il.../a)..fa + (1 -Il) (1 - Il.../a) ..fa] 
~ 1 - ,da 1 + Il.../a 

The energy integral was calculated using a different 
computer program than in the previous examples. 
However, the results again turned out to be described 
by Fig. 1. 

6. DISCUSSION 

The calculations of the preceding section constitute 
the first explicit determination of the energy of 
vacuum gravitational fields from the null hypersur­
face point of view. Their common features exhibited 
in Fig. 1 are consistent with the conjecture that the 
total energy of a nonpathological gravitational system 
must be positive. The positive-definite term (3.17) 
in the energy integral arising from curvature in 
homogeneities dominates in the weak field limit over 
the negative-definite astigmatism term (3.16). 
Apparently, this headstart is sufficient to keep the 
energy positive throughout the strong field domain. 
However, we have not exhausted a wide enough spec-
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trum of allowable surfaces to warrant any firm con­
elusions. In particular, our calculations are limited 
to surfaces having axial symmetry. The chief dif­
ficulty in extending these calculations to the case of 
no symmetry is the problem of determining the con­
formal factor V. This is also the chief obstacle to 
formulating analytical arguments to determine the 
behavior of the energy. 

To emphasize the importance of the role of the con­
formal factor, let us consider the functional E *(~) 
obtained by setting V = 1 in the energy integral Eq. 
(3.14). Let the surface ~ be a cylinder to whose ends 
arbitrary end caps are smoothly joined to produce 
spherical topology. 

The contribution to the functional E* is strictly nega­
tive from the cylindrical region of ~ where the mean 
curvature is constant. No matter how large a positive 
value the end caps might contribute, the total value of 
E * may always be made negative by lengthening the 
cylindrical region while keeping the same end caps. 

For the energy functional E(~) the situation is quite 
different. As the cylinder is lengthened, the con­
formal factor, which is a global quantity, weights the 
end caps more heavily so that what results in the 
limit of infinite length is not obvious. We have exa­
mined this limit for end caps generated bl the 
Cassini ovals given in Eq. (5. 5) with a = "3. For this 
choice of parameter a, the shape corresponds to Fig. 
2b with the solid arrow indicating the axis of revolu­
tion. The equatorial radius f(O) = ~ matches the 
radius of the coaxial cylinder to which the equators 
of the ovaloids are joined at each end. The surface is 
of differentiability class C3 at the join; but the curva­
ture invariants are of class C1. Accordingly, the join 
does not make a contribution to the energy integral. 
For a cylinder of length 21 the conformal factor Eq. 
(5.2c) is given by 

Vi = ~ cosh3z for Iz 1 ::s 1, 

Vi = W cosh31 + (W2 - F2)1/2 sinh31 

for 1 ::s z ::s 1 + 1, 

where 

and 
F(z) = f( Iz 1 - 1). 

Here Vo(z) and f(z) are, respectively, the conformal 
factor and the profile function for the Cassini oval by 
itself (l = 0). The energy functional Eq. (3.14) takes 
the form 

El = - h sinh31 + Eo cosh31 + R sinh31. 

The first term is the negative contribution from the 
cylinder. In the second term, Eo is the positive 
energy of the Cassini oval without the cylinder; the 
factor cosh31 accounts for the displacement along the 
axis. The third term is more difficult to interpret, 
and its sign is not obvious. However, it is sufficient 
to compare the first two terms to understand why the 
previous construction which led to negative values 
for E*(~) does not work in such a simple way for 
E.(~). The computer calculations for the Cassini oval 
with parameter a = ~ give Eo Rj 0.1165. Hence the 
contribution from the end caps (neglecting the third 
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term) overrides the contribution from the cylinder 
even in the limit I --7 OCJ. 

The most attractive feature of our shock wave model 
is that it reduces the study of gravitational energy to 
a study of two-dimensional surfaces. The conjecture 
that gravitational energy must be positive reduces to 
a simple geometrical statement. 

Reduced Energy Conjecture. For all smooth sur­
faces ~ in Euclidean 3-space with spherical topology 
and positive mean curvature, the functional E(~ ) de­
fined in Eq. (3.14) is positive. Furthermore, E(~) = 
o implies that ~ is a metric sphere. 
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