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The exact solutions for the fields inside and outside a dielectric ring in a uniform, axial, electrostatic field are
derived in the system of toroidal coordinates. Comparison is made with the perturbation solution generated by
inverse aspect ratio expansion, and it is shown how the exact solution may be truncated to any desired accuracy.
The cylindrical limits of the exact and truncated solutions are obtained.

1. INTRODUCTION

The determination of the electrostatic potentials for
the regions inside and outside a uniform dielectric
ring in an externally imposed electric field poses an
inhomogeneous Neumann problem. The potentials are
solutions of the Laplace equation, and their deriva-
tives satisfy nonzero continuity conditions on the sur-
face of the ring. A similar, though simpler, problem
of this type was first considered by Hicks.! He ob-
tained a solution for the potential external to a ring
when the total normal derivative was prescribed on
the surface of the ring. The conditions of our pro-
blem are significantly different from those of Hicks,
so we must seek an alternative method of solution,

In Sec. 2 we derive an exact solution to the problem
in the system of toroidal coordinates. This system is
such that the solutions of the Laplace equation are
separable, and such that the ring surface is simply
described by a single coordinate. However, the toroi-
dal harmonics we use are not orthogonal, which in
turn generate three-term recurrence relations be-
tween their amplitudes when we satisfy the boundary
conditions. We solve these inhomogeneous recur-
rence relations by using Green's functions for dif-
ference equations in a manner entirely analogous to
the solution of second-order inhomogeneous differen-
tial equations by Green's functions. Convergence of
the exact solutions is proved in Sec. 3. The exact
solution is compared, in Sec. 4, with a solution of the
same problem using a perturbation expansion in in-
verse aspect ratio of the ring up to second order.
The latter solution is shown to break down at dis-
tances from the ring of order the aspect ratio of the
ring multiplied by its minor radius.

For practical applications, the form of the exact solu-
tion is rather unwieldy. Thus, in Sec. 5, we demon-
strate how for a given aspect ratio of the ring the
exact solution can be truncated and still represent the

fields to any desired accuracy at all points of space.
Finally in Sec. 6 we impose the cylindrical limit of
toroidal coordinates to demonstrate that both the
exact and truncated solutions converge to the solution
of the corresponding problem in cylindrical geometry.

2. EXACT SOLUTION

The toroidal coordinate system is described in detail
by Hobson.2 Unfortunately, however, Hobson's account
of the properties of the associated Legendre func-
tions which occur in the solution of the Laplace equa-~
tion in toroidal coordinates is not without error. We
shall, therefore, cite Bateman3 for the properties of
these functions, which are either given by or are
readily derivable from this reference.

In terms of toroidal coordinates (7, 7, ¢), the surface
of the ring is described by n = 5, where 7, is a con-
stant. The angle 7 is a measure of displacement
around the minor circumference of the ring, and the
angle ¢ is the azimuthal angle about the axis of sym-
metry of the ring. The aspect ratio of the ring—the
ratio of major to minor radii—is given by coshn,, and
the only length dimension d is the radius of the limit-
ing torus when n - ©,

The solutions of the Laplace equation which are both
axisymmetric and form a complete set in (n, 7) space
are

(coshn — cos7)/2P, _,,,(coshn)einr,

(coshn — cost) 12Q,_, /(coshn)ein,

where 7 is an integer or zero. The P, _y/5(coshn) and
Q,_1/2(coshn) are half odd-integral order associated
Legendre functions of the first and second kinds, re-
spectively. These functions are such that P, _,,,
(coshn) 2 1 as n— 0 and Q,-1/5(coshn) — 0 as n > w,
Thus the P-type harmonics are suitable for describ-
ing the region external to the ring, where ny =9 = 0,
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and the @-type harmonics are suitable for describing
the region internal to the ring where 5, < 7 < «,

We take the axis of symmetry of the ring to be the z
axis, whence the uniform electrostatic field is repre-
sented by

Ey=EyVz,
where E is the constant field amplitude. The func-

tion z has the following expansion in terms of the @ -
type harmonics:

22d &
1/2 a¥ed
iT 2

n=-o0

z = (coshn — cosT) nQ,.1/9(coshn)e i,

Thus appropriate expressions for the electrostatic

potentials ®* and 9 for the regions inside and out-
side n = 0, respectively, are

Q0
®i=(coshn —cosT)V2 35 A,Q, . ,(coshyleir,

n=-00
n=1n (2.1)
o0
®0 = (coshn — cos7)/2 2} {B P, , ,(coshn)
n=-00
+ [2V2dE,/in|nQ,_15(coshn)}ein,
0<n< g, (2.2)

where the A, and B, are constants to be determined.

The boundary conditions which ¢ and ®C must satisfy
on n = 1, reduce to

9pi 09990

o = 1= 22
09t 94Y
ar ~ar* "1=T7o (2.4)

where € is the dielectric constant of the ring. To
facilitate satisfying these conditions, we rearrange
the expression (2. 2) for ®° into the form

o0

®0 = (coshny — cosT)V/2 2, ( ' P, 1/ (coshn)
n=-o0

+ (2V2dE,/ im)n [ P,.1/o(coshng)@,_q/o(coshn)
— Q,-1/2(coshng)P, /5

x (coshn)]/P, ‘1/2(coshn0)> eint, (2.9
where the constants C, are related to the B, by
2w/§dE0 @n-1/2(coshng)
= By " P,_,,5(coshn,) (2.6)

The tangential boundary condition (2. 4) is then easily
satisfied if for all »,

An Qn_l/z(coshno) = CnPn_l/z(coshno). (2. 7)
Substituting Eqs. (2.1) and (2. 5) in the radial boun-
dary condition (2. 3) and eliminating the C, using Eq.
(2.7), we obtain

TS of. 9% %\ i
coshn, — cosT)l A <e — >e"”
( 77() ) neoo nQn Q,? BLO

(e — 1) f} AnQ'g)ein'r

2(coshny — cosT)Y2 »="co
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W2dE, » WO

= (coshn, — cosT)1/2 n——ein1

L n=-00
(2.8)

where PO = P, _,,,(coshn,), Q0 = Q,-1/2(coshn,) and
dash denotes differentation with respect to coshn,,.
The Wronskian W9 is defined by

W0 = PoQO" — POQO = — 1/sinh2y,.
Upon introducing a simplification in notation,
Dn = AnQno’

09 = e(QI/QY — (PO/FY), (2.9)

and rearranging Eq. (2. 8), we obtain

o o0
(€ —1) 25 D, e + 2(coshn, — cosT) 25 D N0ein

= 2(coshny — cos) 2. A ein,  (2.10)
where e
X, = [(i2V2Eyd )/(n sinhn,)] (n/BO). (2.11)
We make a second change in notation to
E,=D19%, g, =2 coshn, + (en-ol) , (2.12)

n

and Fourier analyze Eq.(2.10) in 7, yielding

En+1 - ann + En—l = An+1 -2 COSh’UOAn T Auoas

n=0,+x1---. (2.13)
Thus Eq.(2. 13) is a second-order inhomogeneous dif-
ference equation for the E, in terms of the given x,,.

The solution of Eq.(2.13) is constructed by using
Green's function techniques for difference equations,
Let G, y be a solution of the following equation,
where §; ; is the Kronecker delta:

Goin = 4Gy + Gyogn = 0,y — 2 cOShNGS, o

+o6, 8.1, n=0,£1,..., (2.14)
for each value of integer N, —o < N < ®. The sense
of Eq. (2. 14) is such that for each fixed value of N,a

solution G, y is to be constructed valid for all n. A
solution to Eq. (2. 13) is then

E = (2.15)

n

o0
2 Guyry, n=0,x1,...,
N=~o0

as can be verified by direct substitution,

To construct the functions G, y, we utilize the two in-
dependent solutions of the complementary difference
equation of Eq. (2. 14), namely

n=0,+1,...,
(2.16)
for each fixed value of N. The complementary solu-
tions of Eq. (2. 16) are in turn constructed from the
solutions of the characteristic equation, which is
generated from Eq. (2. 16) by taking the limit |n| — .

Goany —4uGyn + Gy n =0,

To determine this limit, we require the asymptotic
forms of the associated Legendre functions for large
[n]:
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Ining
e
lim P, ,{coshny) = -
lnll—wo w2 0 [27(|n] + 3) sinhng]1/2
(2.17)
it (coshn,) = m/Ze e
Inl—ngQnAllg o [2(n] — 3) sinhpy]V/2 °
{2.18)
Hence, from Eq.(2.9) and (2.12)
n9~0 and g,—2coshn, as|n|—w.
Thus the characteristic equation is
Gan—2coseG, y + Gy y= 0, {2.19)

with roots e * " for the ratio G,,; y/G, y-

The roots of the characteristic equation are therefore
distinet for n, =0, and, consequently, we can utilize a
theorem due to Perron.4 This theorem states that
there are two fundamental solutions to Eq. (2. 16) for
G,.1.n/G, y, Which tend to e" and e "0, respectively,

as |n| - ©, From this result it i8 possible to con~
struct two independent solutions of Eq. (2. 16)5:

G
el 1 . =a,,, (2. 20)
nN q —
n+l 1
qn+2 -
Gpag — " °
G 1
i . =8, (2.21)
n-1,N qn_l —_ 1
Qp-2 q _3 .

such that both @, and 8, = e "0 as |n| > », The
values of each ¢, and 8, are calculated from the re-
spective continued fraction. It also follows from Eqs.
{2.20) and (2. 21), and the symmetry properties

RS =Qp,
that

O o e
— )
* I Qi

Py =2y,

1 1
Bn B /e Bn—l,

o, =B, .
The solution of Eq.(2.14) is now constructed from
Eqgs.(2,20) and (2. 21) by setting

n=N+1,
ns N —1,

Gn+1. NT C'!rlen,N b3

Gn-—l,N = ﬁn-lGn,N!
The G, y determined this way will be unique if
Gy, and Gy, v are specified. These two quantities,
together with G ,,are given by Eq.(2.14) for n= N
~ 1, N,and N + 1, respectively

(By-2 = dy1)Cn-1x + Gyn =1,

Gy-1,8 —dnGyn + Gyiy = — 2 coshrg,

Gyw (g =y, )Gnan =1,

(2.22)

with solution

By-1(2 coshng ~ qy)
Gy.1v = .

— Ay — By1) 7

(2 COSh’i}O — Oy, — 31\{_1)
G = 2,2
NN (qN . 0"N+1 — BN—I) » ( 3)
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ay,4(2 coshny — gy)
Grin = (ay

— Oy, —By1)

Upon combining Egs. {2, 23), (2. 15),(2.12),(2.9), we
obtain the following expressions for the potentials:

2 E d
$i = — 2~ (coshny — cosT)1/2
7 sinh27,
0 oo Q@ _./o{coshy) |
x E E N n1f20 e,
n=-o0n N=-o00 Qn
72 Mg, {2.24)
2V2{E od © g
90 = . —(coshn — cosT)V/2 [ 3, —
e PO
n
X [QQE, 1/5(coshn) — PPQ,_;/5(coshn)]e
1 @ © P, ,/o(cosh
+ E anN 1/2( n)eim’)’
sinh29y n=-w N=lwo po
0 <7<, (2. 25)
where

an,N = (N{Gn,N(z COShno - aN+1 - BN—l)

+ (2 coshny — qy) [6(z — N) 1 o, + 6(N—n)
m=N+1

N-1
X I} ﬁm]})/ng%o(%\? - aNd - BN—l) (2. 26)

and 6{x) = 0if x < 0,= 1 if x > 0. Note that there are
no terms in z = 0 in either @ ¢ or $0. The summation
over N for n» = 0 vanishes upon using the symmetry
properties of the o, and §,,.

The electic field components are given by

E=vVd= (-"—"—Smaiﬂﬁﬂ %,a—af,o) & (2.27)

In their respective domains, the electric field com-
ponents satisfy all boundary conditions and, as will be
proved in the next section, they are absolutely con-
vergent. Thus the fields are unique, and, consequently,
the corresponding potentials are only unique to with-
in an arbitrary constant. We can utilize this arbitra-
riness to alter the expressions for the potentials, if
we wish, by employing the expansion of unity as a
series of toroidal harmonics:

[ee]
= ﬁ—(coshn —cosT)V2 2]

T s

Q, _1/o(coshn)e 7,

which is valid for all values of n and 7.

3. CONVERGENCE

For the exact solutions obtained in the previous sec~
tions to be physically meaningful, we must show that
the potentials and field components converge at all
points of their respective domains. We shall show
that the expressions for & and 90 given by Egs.(2.24)
and (2. 25) are absolutely convergent. The proof is
easily adapted to showing absolute convergence of the
corresponding field components.

We can ignore the series of Q-type harmonics in Eq.
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(2. 25) since they represent the uniform applied field.
The single summation over P-type harmonics in $0
will be absolutely convergent if the series

o0 Q,?
2 |n —5 Pn_1/2(coshn) (3.1)
n=-00 Py

is convergent. Using the bounding properties of the
associated Legendre functions

| P, 1/olcoshy)|<|PO|, O0s<q=< Mgy #n=0, (3.2)
{Qn_l/g(COShn) I s iQnO ‘ H 1= Moy
the sum (3. 1) is bounded by
[oe]
25 1nQQ|. (3.3)
n=-00

For large values of |#]|, we can use the asymptotic
form for @, ,5(coshn) as given by Eq. (2. 18) to show

12QQ |~ (Yue™ ""'"0)/sinh!/2n,

Hence, since Y, Vne "™ is convergent for 5, # 0, the
series (3. 3) and, therefore, {3.1) are absolutely con-
vergent for n, # 0. The case 5y = 0 is of no physical
interest, since it corresponds to a dielectric ring
completely filling the whole of space.

If we apply the inequalities (3. 2) to the remaining
double sum in 0 and to &%, we find that both expres-
sions will be absolutely convergent if the double sum

f; i [an'Nlp

n=-00 N=-oo

(3.4)

is convergent. We first demonstrate convergence of
the » summation for each value of N, Substituting for
a, y from Eq. (2. 26) and rearranging, the convergence
of Edq.(3. 4) is determined by the convergence of

© |N||2 coshng — oy, — By_yl

N [N PYgy — oy, q — By_1)l
© 1(2 C()Sh?’]o + QNH
Ns~oo P;?(Q'N — Oy — 81\7‘1)
n N-1
. le(n__N) N a,+68N—n T Bmi
% E m= N+l m=n N (3. 5)
"o gl

For sufficiently large values of #, such that |n| >>
IN], In] > 1, we recall from Eqgs. (2.20) and (2. 21)
that

-

a, = e 9 B,= e

“Tg
n .

Further, from Egs. (2.9), (2.17), and (2.18),
10 = [— (¢ + 1)|nl|]/sinhn,, |n| - ©.

For all but a finite number of values of n, the conver-
gence of the summation over #n in Eq. (3. 5) is deter-

mined by the convergence of a series whose termsare

of the form |n]e”™'0 for |n| > NI, |n] > 1. Hence
the » summation is convergent for n, = 0.

The convergence of Eq. (3. 4) is now dominated by the
convergence of
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® IN] (12 coshng — @y, — By |

NZ:}QO fPJw !H%t th — Oy T 61\7—1!

, 1@ coshng —gy)| IHS’VPM>, .6

lay — oy — By-q

where

M = sup f} 18(n — N)

n=-c0

n
n a,
m=N+1
N-1
+6(N—n) I B, 1/i{09]
m=n
over all values of N, and M is, therefore, independent
of N. As |N| — =, each of the two expressions within
brackets in Eq. (3. 6) approaches an indeterminate
limit. To avoid this difficulty, we use Eq. (2.23) to re-
cast Eq. (3. 6) as

® IN|
N=-eo [PG] 1G]

et + 2 Ol
3.7

1 aN-p]_ f

By letting | N| — o in the equations for G , (2.22),

we find
Gy wl =1, [Gyuy yl = 0as [N] — w,

As lay,;| = € " in this limit, the asymptotic varia-

tion of terms in Eq. (3.7) is of order |n] e,

Hence the series (3.7) and (3.4) are absolutely con-
vergent for n, = 0.

The absolute convergence of the field components is
proved using the same techniques as above. The only
essential difference between the expressions for cor-
responding fields and potentials is that P,_ ,, (coshn)
is replaced by either P,_;,,(coshn) or n P,_, ,,(coshn)
and similarly for the @, ; ,(coshn), This means that
wherever convergence is governed by series of terms

varying as |n! Pe']"'"", the terms are replaced by

P+l -lal . . -
Inl"""e”""0 and convergence is again satisfied.

4. PERTURBATION SOLUTION

The exact solution obtained in Sec. 2 is valid at all
points of space and for all values of the aspect ratio
of the ring coshn,. However, the expressions for the
potentials as given by Eqgs. (2.24) and (2. 25) are ra-
ther elaborate, and it is, therefore, pertinent to ask
whether simpler expressions could be formulated
which would represent the solution to any desired ac-
curacy. Since by definition coshny > 1, it is clearly
worth seeking a perturbation solution which proceeds
in increasing powers of the inverse aspect ratio
(coshn,)-1. This expansion is also physically attrac-
tive, since the lowest order solution (coshn, = ) will
correspond to the solution for an infinite straight di-
electric cylinder transverse to the applied field. Suc-
cessive higher order solutions will then be expected
to generate corrections to the lowest order solution
to account for the effects of toroidicity.

One procedure for generating the inverse aspect ratio
expansion would be to expand the exact solution in
powers of {(coshn)~! for 1 > n, and in powers of
(coshn/ coshng) for 0 < n < ny. The disadvantages of
such are twofold. Firstly, even to lowest order in
such an expansion, the solution is not recognizable in
terms of a straight cylinder without further geometric
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expansions. Secondly, higher-order terms entail calcu-
lating power series expansions for the associated
Legendre functions to greater order and then extract-
ing the necessary coefficients of each order from the
doubly infinite series of the exact solutions. While
there is no formal difficulty in either of these two
points, we have found that it is both physically more
illuminating and algebraically more tractable to gene-
rate the inverse aspect ratio solution using another
toroidal coordinate system.

The system of toroidal polar coordinates (7,0, ¢) is
based on the center of the minor cross section of the
ring as origin and shares the azimuthal angle about
the axis of symmetry ¢ with toroidal coordinates. In
the minor cross-section, (7, 6) are polar coordinates
with the direction 8 = 0 corresponding to 7 = 0, radi-
ally outwards in the z = 0 plane. The major geometric
difference between the two coordinate systems is that
constant — » surfaces form a set of nested concentric
tori, while constant — 7 surfaces form a set of nested
coaxial tori.

In the toroidal polar coordinate system, the axisym-
metric form of the Laplace equation is

2 (V(R + ¥ cosb) g—?)

ar
3 [(R + 7 cosb) 5
ML <—7‘— a—@> =0 @l

where R is the major radius of the ring. We define
the inverse aspect ratio A = »/R, so that the dimen-
sionless form of Eq. (4.1) is

2@ od
AZ2(1 + X cosf) —— +A(l + 2x cost) —
or2 dA

92¢

0P
+ (1 +Acosf) — —Asind—=0. “.2)
’ 9 62

It is not possible to solve Eq. (4.2) by simple separa-
tion of variables. For our inverse aspect ratio expan-
sion we write the equation in the form

2¢ 02
— = — 23 cosf® —
362 o2

¢ 229 0P
— 222 cosf — —Ar cosf6 — + A sinf —,
oA 202 20

02¢ o®
L@)=r2 — +2— +
oA2 oA

4.3)

so that the right-hand side is one order higher in A
than the left-hand side.

The equation for the lowest order solution is

L(Py) = 0, (4.4)
where the subscript denotes the order of the solution.
The applied field potential is E, # sin#, so that solu-
tions of Eq. (3.4) appropriate to the spatial depen-
dence of the applied field are X sin®, (1/A) sin6, which
together with the boundary conditions

oot

- - 290 _a
30 T a6 o T a =& (4.5)
yields the solutions
(2§/R) = [2E /(e + 1)]x sing, 4.6)

1301

(®Y/R) = E X sind — [(€ — 1)/ (e + 1)|E,(a/R)2(sin8/2).
4.7

The zeroth order solution is just the solution for an

infinite straight dielectric cylinder transverse to the
applied field and corresponds, therefore, to the cylin-
drical limit of the ring when R — « for fixed a and ».

The equation for the first-order potentials is

9%, 2%,

L(Py) = — A2 cosfd — + A sind —. 4. 8)
aA 06

From Egs. (4. 6) and (4. 7) there are two possibilities:

@, = 11 sinb or ¢, = X sinf. Substituting in Eq. (4. 8)

yields, respectively,

L£(P;) = sin20  or L£(d,) =0,

which have particular solutions:

®, = — 3 sin26 or ¢, = 0. 4.9)
The form of the particular solutions indicates that the
only complementary solutions to be included are A2

sin26 and (sin26)/22.

Upon satisfying the boundary conditions (4. 5), we ob-
tain the first order potentials:

¢ E, (e—1
1 -0 ( ) A2 sin26,
R 4 (e +1)2
9 Ey (e —1) sa\2
% )<—> 4.10)
R 4 (e +1)\R

€ a2 1
X ,:1 — <—> —} sin24,
(e + 1)\R/ A2

These expression contain the lowest order effects of
toroidicity on the zeroth order solution, for if we al-
low R to increase indefinitely in (4.10) and hold ¢ and
v fixed, the potentials vanish. The field components
corresponding to ®{ and ®¢ vary as X inside the ring
and as A1 outside the ring, so that the first-order so-
lution satisfies all the physical properties we would
expect of it. However, if we compare the first-order
electric field with the zeroth order field, we find

|E{|_(€—1)£ _a |E§?I~)\

Byl  (+1) 4 " R’

a
IE8] 2, ?\>>1—2.

Thus the correction for toroidicity on the internal
field is at most of order the inverse aspect ratio of
the ring when compared with the cylindrical solution.
The same correction for the external field is only
small near the surface of the ring, and is of order of
the cylindrical solution or greater for # < 0(@). Thus
the first-order solution can only be considered as a
perturbation of the lowest-order solution inside or
close to the surface of the ring. We shall, therefore,
examine the second-order solutions to see if they im-
prove the convergence of the inverse aspect ratio ex-
pansion.

The second-order potentials satisfy the equation
o0,
£(2,) = — A cosbL(P;) — A2 cosd —
or
4.11)

+ A sing —* .
@
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We see from Eq. (4.10) that there are three possibi-
lities for @4:

sin26, AZ2sin20,  sin26/)A2,

which give particular solutions of Eq. (4.11), respec-
tively,

— 32X sin36 + 31 (logh) sing,

—3A3 sing, — sin36/4A,

together with the appropriate complementary func-
tions A sinf, sind/Xx, A3 sin36, sin36/A3.

The boundary conditions (4. 5) and continuity of the ¢
dependence, give the second-order potentials

—Ey(e — 1) 3 22[(5—5+3)
16(c + 1) A sing 2(1?) 2 + 1)

a2 2 (2e +3)
+ 10gc€> ]A sin + — ——
3 (e+1)

®i =

A3 sin30 s s

—E; (e—1) /a\2(3
®9 = 6 ©+1) <I_B> 35}\ sin36 — 2x (log)\)

€ a\ 2 sin38
(e + 1) <R> )y

a\2r2(e +1) (e —1) a\7 sind
_2<}%> [(e Y02 €+ 1) log(?eﬂ By
L (Ot B 4e—3e)
(R) 6(c +1)2

4.12)

X sinf —

sin36

TNt

The second-order electric field components derived
from Eq. (4.12) vanish as R increases indefinitely for
fixed a and ». However, at large distances from the
ring the external field now has a logarithmic singu-
larity in 7.

I we now combine the terms in the perturbation ex-~
pansion (4. 6) (4.7), (4.10), and (4. 12), we see that
higher orders in the expansion produce higher order
singularities in the far field, so that the domain of
validity of our solution is restricted tox < 1, or

TABLE I: a, , and b, for aspect ratios of 10, 5,and 3. For values of # < 0 use the relation «_,

J. D. LOVE

¥ 2 R = a(R/a). Hence as the aspect ratio of the ring
decreases, for fixed a, the domain becomes inereas-
ingly smaller. We, therefore, conclude that the toroid-
icity of the ring cannot be described approximately at
all points of space by an inverse ratio expansion that
uses a straight cylinder as its lowest approximation.
Nevertheless, it is possible to obtain an approximation
to the exact solution that has any desired accuracy at
all points of space. As we shall show in the next sec-
tion, it is sufficient to retain the first few 7 modes in
the exact solution, as the dominant effects of toroidi-
city are contained in the 5 dependence of these modes.

5. APPROXIMATE SOLUTION

As we saw in the previous section, the inverse aspect
ratio expansion technique was inadequate for des-
cribing an approximate solution at all points of space.
We shall now show that such an approximation can be
obtained by simply truncating the exact solutions,
apartfrom the appliedfield terms, beyondthe first few
7 modes. These low order modes contain all the do-
minant effects of toroidicity in their # dependence.
For example, as will be shown in the next section, the
cylindrical limit of the exact solution is contained in
thetwotermsn=1,N=1landn=—-1,N=—1.

We now demonstrate how the truncation procedure is
effected for a given value of the ring aspect ratio
coshng, and, further, show that the number of terms to
be retained in the exact solutions for a given accuracy
increases as the aspect ratio of the ring decreases.

The associated Legendre functions possess the follow-
ing monotonic properties:

Q,-1/2 (coshn), Q1,5 (coshn) decrease as 7 in-
creases, 5.1)
P, 1,5 (coshn), P;,_, ;, (coshn) decrease as 7 de-

creases,n = 0.

In any truncation we shall always retain the terms
n=—1 and 1. It then follows that the maximum trun-
cation error in the potentials or the fields for both
the regions inside and outside the ring occurs at the
ring surface 11 = 71y, as can be seen by applying Eq.
(5.1) to Eqgs. (2. 24)-(2.27). Thus we need only con-
sider the exact solutions for 1 = 7n,.

=

e, - N n N

coshn, n= 1 L AE,,ﬁ,i
10
a, 4 5
3 0.003
10 —1.163 —0.049 x 102
4u1 5 —0.808 —0.007
3 —0.5%4 —0.009 .
10 —0.875 x 10
a,, 5 —0.123
' 3 -~ 0.004 - 0,155
10
ty 5 5
" 3
10
an.4 5
3
10
an,5 g
10 —1.163 - 0.924 x 10-1
b, 5 —0.808 - 0.130
3 —0.595 —0.164

n=3 n=4

—0.17 x 102

--0.005 x 10-1

—0.011 x 101

- 0.24 x 102

—0.007 x 101

—0.015 x 10°1

—0.546 x 10°2

—0.155 x 10-1 - 0.016 x 10°2

— 0.343 x 1071 —0.099 x 10-2
—0.183 x 102

—0.006 x 1071 — 0.665 x 10-2
—0.002 x 10-2

— 0.956 X 1072

- 0.167 x 101 —0.199 x 102

-~ 0.375 x 10-1 —0.766 x 102
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For each mode number », we have to evaluate

b,= 27 A,y (5.2)
N==-00
as a function of coshn,. The expression for a, , Eq.

(2. 26) falls off as exp(—IN —nln,) for IN —n] > 1,
and the dominant contribution to (5.2) is always from
the n = N term. Thus in our calculated examples, as
are shown in Table I,6 for coshn, = 10, 5, and 3, it is
not necessary to include more than five terms for
each b, to achieve an accuracy of 1%. For this accu-
racy the number of terms increases as coshrn, de-
creases.

The expressions for the potentials and field compo-
nents contain summation over n of terms of the form

o’ Pg’
bnezm’, ln]bn eint, Qg bn eint, _Pg bn ein,
P
) 5 R n
]legeznr’ In nge"‘T, ]n]Qg p_o eint,

n

With the exception of the second term, the coefficients
of eir in all these expressions decrease as » in-
creases, and therefore for a 1% accuracy in the n sum-
mation it is only necessary to retain the first few
terms in n. The decrease in the value of &, for in-
creasing |n| is also sufficiently rapid so that the sum-
mation over |n lbn converges to the given accuracy
almost as quickly as the other summations. We also
observe that for a given accuracy, the number of
terms in the #» summation to be retained increases as
coshn, increases.

6. CYLINDRICAL LIMIT

The cylindrical limit of toroidal coordinates for this
problem is affected by holding the value of the minor
radius of the ring constant and allowing the major ra-
dius to increase indefinitely. This transformation ex-
pands the ring into an infinite straight dielectric cy-
linder of radius a, transverse to the uniform electric
field. In terms of (7, 6) coordinates in the cross-sec~
tion of the cylinder, the cylindrical potentials are
given by Eqs. (4.5) and (4. 6). We shall show that both
the exact and approximate solutions in toroidal co-
ordinates reduce to the cylindrical solution in this li-
mit.

The following relationships exist between R,d, and 7:

R =7 coshn, d =7 sinhn. (6.1)

Further, the surface n = 7y will correspond to the
cylindrical surface » = a and, therefore,

R = a coshyy,. (6.2)

Thus, as we follow a particular point under the trans-
formation R,d, n, and 7, increases indefinitely, while
a and 7 remain fixed. From the definitions of 7 and 6
it follows that T > 6 as R — ¢,

For large values of 7, the asymptotic forms of the
associated Legendre functions are

(Inl —1)!
r'(nl + %)
|nl >0,

2 Ini-1/2

lim P _ (coshn) =
n—oo n-1/2 ”1/2

X cosh'rl-1/2q, (6. 3)
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. o 12 T(lnl+ )
%—1}2 @,-1/2 (coshr) = 9 Inl+1/2 [n]1
1
X CoshTel+1/ I (6.4)
lim P_;,, (coshn) =~ S S (6.5)
=00 7 coshn/2

Applying the cylindrical limit to the series of @-type
harmonics in the expression for 90, (2. 25) and substi-
tuting for d from Eq. (6. 1), we obtain, using Eq. (6. 4),

—iEgr | nI(ln] + %) eind
lim = Ey7 siné,
g2 -0 T [n| 12 tnl-1eogh Inl-1y !

which is the representation of the uniform field in Eq.
(3. 6).

To evaluate the cylindrical limit of the remaining
terms in Egs. (2. 24) and (2.25) we need the asymp-
totic forms of 9, ¢,, @, , and 8, for large n,. Substi-
tuting Egs. (6. 3)—(6.5) in Eq. (2. 9) vields

= {e—=1) +2lnle + 1)

lim 9 = , n=0,+1, ...,
N7 2 coshng

(6. 6)
and from Eq. (2.12),

4|nl(e + 1) coshr,,

lim ¢, = , mn==z1,...,
g0 (e —1) + 2[nl(e + 1)]

6.7)

1

2 coshny, n=0.
It therefore follows from Eqgs. (2. 25) and (2. 26) that
for all n

lim o, =
T]O—N)O

lim 8, =0.

flg—>c0

(6.8)

Hence the only terms that remain in the summation
over N in the expressions for ¢ and &0 are those for
which N = n. This holds for both the exact and appro-
ximate expressions.

The cylindrical limit of ¢?, consequently, is
4V2E
lim

m n—=oo0

d(coshn — cost)1/2

sinh27,

f) nQ .1/ (coshn) eir”

x coshn,
g 9Q9PY

n=-o0

— 2V2E,

d coshl/2y
—_— lim ——
(e + 1) -

coshn

nQ,-1/2 (coshn) einé
[nQOPO

using Eqgs. (6. 6) and (6. 7). Finally, using Eqgs. (6.1)
and (6.4), we have

x 5

n=o0

’

) — 2iEyr
lim & ~ ——————
- /(e + 1)
o nT(ln| + %) eind
x lim 2, =)
1200 4o [7]2171-1(|n| — 1)! cosh!nl-1p
2Eor
= siné
(€+1) 0 (6.9)
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which is identical with Eq. (4. 5).

Similarly, the cylindrical limit of the field perturba-
tion in #9 is

2V2iE nP,_1 . (coshy
9 lim d(coshn — cos7)1/2 f‘, M~—-—)
it —>c0 N =00 Ps
2coshn iE (e —1
%g , sinh2y, 72(¢ + 1)

) nI’ nt! + L ‘Osh'”'*l
X lim (Inl + 2)c " ine
10 e 1|12 Inl-1cogh2lnly

; {6.10)

J. D. LOVE

by Egs. (6.1), (6. 3), (6. 6), and (6.7). Hence
lim 0 = E 7 sind — [Eg(e — 1)/(e + 1)]

T-s00

X (@2/r) siné,
which is exactly Eq. (4. 6).

It is clear from Egs. (6. 9) and (6.10) that the only
terms in the » summation that contribute to the cy-
lindrical limit are those for whichn = —1 andn = 1,
Since the truncation procedure of the previous section
always retains these two terms, it follows that the cy-
lindrical limit of the truncated potentials will ap-
proach the same limit as the exact solutions.

1 W.M. Hicks, Phil. Trans. 176, 161 (1884).

2 E.W.Hobson, The Theory of Spherical and Ellipsoidal Harmonics
{Chelsea, New York, 1955}, p. 433.

3 Higher Transcendenlal Funclions edited by A. Erdelyi (McGraw-
Hill, New York, 1953}, Vol. 1.

4 L.M. Milne Thomsom, The Calculus of Finite Differences (Mac-

Millan, London 1960), p, 531.

5 A proof of this result is given in Ref. 4, pp. 532-34.

8 The values of PO and Q0 are taken from Tables of Associated
Legendre Funclions, National Bureau of Standards (Columbia
U.P., New York, 1945).
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Unitary irreducible representations of the homogeneous Lorentz group 0(3, 1} belonging to the principal series
are reduced with respect to the subgroup O(1, 1) ® O(2). As an application we determine the mixed basis mat-
rix elements between O3} and 0O(1, 1) ® 0(2) bases and derive recurrence relations for them. This set of func-
tions is then used to obtain invariant expansions of solutions of the Dirac and Proca free field equations. These
expansions are shown to have the correct nonrelativistic limit.

INTRODUCTION

In recent years there has been considerable interest
in the unitary irreducible representations (UIR's) of
the homogeneous Lorentz group in various bases.1,2
Harmonic analysis of a scalar function in terms of the
four subgroup bases [i.e., O(3), 0(2, 1), £(2), and
0(1,1) ® 0(2)] has first been given by Smorodingki
and Vilenkin.2 Since this work most of the attention
has been paid to the little group bases as these also
play a role in the usual Poincaré invariant partial
wave analysis3;4 of scalar functions and helicity amp-
litudes. The properties of the reduction of O(3, 1) with
respect to O(1, 1) ® O(2) are, however, not so well
known. It is the purpose of this paper to develop
these properties and indicate some possible uses.
The content of the paper is arranged as follows. In
Sec.1 we collect the pertinent facts concerning

SL(2, O) [the covering group of O(3, 1)], its Lie alge~
bra and UIR's. In Sec.2 we carry out the reduction of
the principal series of SL(2, C) with respect to
D(1,1) ® D(2) (see Sec.2) the universal covering
group of O(1, 1) ® O(2), The action of the infinitesi-
mal generators of the Lie algebra in such a basis is
also determined. In Sec. 3 we develop the expansion
of a single particle helicity state in terms of mixed
basis matrix elements. An explicit expression for
these matrix elements is obtained for the first time.
In Sec. 4 we derive recurrence relations for these
mixed basis matrix elements, which are used in Sec.
5 to develop invariant expansions of solutions of the
free field Proca and Dirac equations., Finally in Sec.
6 the nonrelativistic limit of these solutions is ob-
tained.
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1. RESUME OF SL(2, C) AND ITS UIR'S

The group SL(2, C)5 is the universal covering group
of the homogeneous Lorentz group 0(3, 1), The ele-
ments of SL(2, C} are the unimodular complex mat-
rices in two dimensions

The subgroup SU(2) consists of all unitary unimodular
matrices of the form

@%g) lalz + |82 = 1.

SU(2) is of course the covering group of O(3) the real
orthogonal group in three dimensions. The covering
group of O(1, 1) ® 0(2) is denoted by D(1, 1) ® D(2)
and consists of all diagonal unimodular matrices:

a0
<0 ), apf=1.

[Note: D(2) is the set of all diagonal matrices of the
form

Rw=@

(1.1)

(1.2)

(1.3)

w2
e-iW’Z)s 0=y=2n,

such that to each rotation in the plane of the group
0(2) there corresponds the matrices + R(¥). This is
just the usual two to one homomorphism between an
orthogonal group and its spinor group. Similar re-
marks apply to D(1, 1) the set of matrices
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which is identical with Eq. (4. 5).
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mal generators of the Lie algebra in such a basis is
also determined. In Sec. 3 we develop the expansion
of a single particle helicity state in terms of mixed
basis matrix elements. An explicit expression for
these matrix elements is obtained for the first time.
In Sec. 4 we derive recurrence relations for these
mixed basis matrix elements, which are used in Sec.
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ments of SL(2, C} are the unimodular complex mat-
rices in two dimensions

The subgroup SU(2) consists of all unitary unimodular
matrices of the form
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orthogonal group in three dimensions. The covering
group of O(1, 1) ® 0(2) is denoted by D(1, 1) ® D(2)
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form
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i<(e)“/2"2_a,2), —w<a<+ oo].

The Lie algebra of SL(2, C) is six dimensional, being
spanned by the generators M;,N; (i = 1, 2, 3) which
satisfy the commutation relations

(M, M] = €M, [M;,N;] = €N

ikt ko
N, N;] = — €,,,M,.

RN ]

(1.4)

There are two independent Casimir invariants of
SL(2, C) which label each irreducible representation.
They are

K, =M2_—-N2, K,=M"N. (1.5)
The Casimir invariant of SU(2) is well known to be
M2, Each inequivalent UIR of SU(2) is labeled by the
eigenvalue j, where

Mz:_j(j+1); ]':0,%,1,%,"' (1'6)
Each UIR for given j is (2 + 1)-dimensional and the
spectiam. of 3, in it is

My=—j,—j+1,...,5—1,ij. a.m

A UIR of D(1,1) ® D(2) is labeled by the two eigen-
values of M, and N, {m, 7} where

—0l T +®, m=0,+3,+1 x5, -+, (1.8)
It is easy to see that each such UIR is one-

dimensional.

We now give the spectrum of the Casimir operators
K,,K, corresponding to the principal series {jo, o}
of SL%Z, C) together with the spectrum of j values of
the UIR's of SU(2) that appear in each such UIR of
SL(2, C), For the principal series

Kzz_pjoa
—0p< + o

Kl =1+ p2_j(2),
jO: Oyéyl’%""y (1'9)
and the spectrum of j values is
j:j0;j0+1‘..’

The other set of UIR's of SL(2, C) belong to the com-
plementary series which we write as {0,7p}, where

K1: 1—p29
j0:0,1,2,"‘.

K,=0, 0<p<1,

This set of UIR's does not figure in the completeness
relation® of SL(2, C) and so will not be considered
subsequently.

Finally in this section we give the formulas for the
action of the generators M;, N; on an SU(2) basis of
the principal series .

My lj,m) = m|j,m),

M.|j,m)
M_|j,m) = —idd 1j,m — 1),

N, lj,m) = — iV[j2 — m 2] C].l j—1,m)

—ial,lj,m + 1),

I

It
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+iAm]|j,m)

+iConV[(5+ V2 —m2]|j + 1,m), (1.10)

N.Jjm) =—iCiV[(j—m)(j—m — D] lj—1,m + 1)

+iAN[(G—m)(j+m + D]lj,m + 1)

—iCqV[(j+m + DG +m +2)]lj+ L,m + 1),

N_ljmy =iC[(G+m)(j+m —D]lj—1,m — 1)
+iAV[(G+m)G—m + D] ljm — 1)
+iCVl(i—m + D(G—m + 2]j+ ,m — 1),

where

_ —JoP C’:i<(jz_jg)(j2+p2>>1/2
TG+’ I 42 1 ’

m=—j,—3+1,.000,4, F=Jgdog+t L.,

and |j,m) is an abbreviation for |pj,; jm):
ol = V(GGG + 1) — A — D).

2. REDUCTION OF THE PRINCIPAL SERIES OF
SL(2, C) UNDER O(1,1) ® 0(2)

As is well known5 the principal series of SL(2, C) is
realized via unitary transformations in a Hilbert
space H of square integrable functions in a certain
domain. The elements of H are specified by functions
f(z) of a single complex variable z varying over the
entire complex plane. (This specification is only pos-
sible up to sets of measure zero.) The scalar product
and norm are given by

()= [T ax[7 ay @),
Il = (£, V2 <o,

2 =Xx+1iy,
2.1)

In the UIR { j,, p} of the principal series, the unitary
operator U(g) representing the group element g acts
on f(z) in the following way:

[ = (6 + 82079 + Fo) W2

X fl(az +9)/(Bz + 8)] (2.2)
This realization is not the most convenient one for
our purposes. In order to realize the principal series
in a D(1, 1) ® D(2) basis, we make the following trans-
formation:
e? = (x2 +92)1/2  t{an¢ = y/x,
— 0V =g=+ 90, O=¢ =21 (2.3)
Instead of specifying an element of H by f(z) we speci-
fy it by the new function

Fa, & = e et e, (2.4)
With this indentification the scalar product can be
written

2m 0 T T -~

(hiy = [ de [ daa fla, ¢)i(a, 9). (2.5)

The generators M,, N; acting on the fla, ¢) functions

can be expressed as differential operators acting on
a and ¢ as

J. Math. Phys., Vol. 13, No. 9, September 1972



1306

M, = j, cosha cos¢ — (p + i) sinh ¢ sin¢

o i . 0
+ 4 <blnha cos ¢ Fri cosha sing 521'),
. 0
Als:—la—(-p—, (2.6)

N, =j, sinha sin¢ + (p + i) cosha cos¢

: : 0 . 0
+ i <cosha sin¢ 7 + sinha cos¢ %>,
.0

—

Ny 5q°

I

The operators i,, N, can be obtained from the ex-
pressions for M; and N,, respectively, via the substitu-
tion ¢ > — 37 + ¢. The principal series of SL(2, C)

is now realized as the set of functions f(«, ¢) on the
domain (— %, + ©) ® [0, 27] which satisfy

(h0) = J, "do )7 dal fla, @) < .

The two Casimir invariants of O(1,1) ® O(2) are N,
and M,, so that the simultaneous eigenfunctions of N,
and M, in this realization are

2.7

¥, = [1/(2m)]eireeins, (2.8)
where
NV, = 1%, MY, =m¥,,
(‘I’T/m" ‘I/T”L) = amlmé(T’ - T)’ (2' 9)
so together with the completeness relations®
L [®siw-ar gr = s(a' — a) (2.10a)
2T Y oo

00 00
o L €ipo7o) = 33 (¢ — ¢’ — 2mm), (2.10b)
P

=-00 n=-00

we get the following result.

Each UIR {jg, p} of the principal series of SL(2,C)
contains each UIR {m, 7} of D(1, 1) ® D(2) exactly
once, provided

m :].07].0:t 19j0i 2,000, (2.11)

Thus eachfe H can be expanded in terms of the
eigenfunctions ¥, according to

F= 5 2 ar fme.,,
far) = [ ae [2 daf, (2.12)

Finally in this section we calculate the action of the
generators M,, N, on the ¥, basis

MY, = %(]0 tip FaT ¥ 11— m)\pr—i,mxl
+ %(]O ¥ ’ip FiTxl+ nz)q,f*i,mil’
N, (2. 13)

=3(F Gy tp—THiE M)V, g
P djy +p + T HiEim)Y,

T+i,mx1?

+
N, =N, +iN,, M, = M, + iMy;

The action of M, and N, already having been given
in Eq. (2.9).
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3. CALCULATION OF THE MIXED BASIS
MATRIX ELEMENTS AND SINGLE PARTICLE
HELICITY STATES

In this section we construct relativistic functions
with helicity for nonvanishing mass which are at the
same time basis functions of a UIR {j,, p} of the
homogeneous Lorentz group O(3, 1) realized on the
upper sheet of a double sheeted hyperboloid. In
order to do this we use the method of Integral geo-
metry.2.7 In this method?:8 a one-particle state of
spin s, helicity A, and four velocity u, denoted by

lu, s, A}, is expressed in terms of a function on the
light cone ¢j0p(g) via the relation

S
TPRE jZ:)_s j_m dp(p2 +53)

x [ [, 67370 Dg R)®, (a2, (3.1)
where T" is the integration path on the light cone,

d2¢ the invariant measure on the cone, and [u, {] the
usual Lorentz scalar product

lu, s,0) =

[uyg]—_—uogo_u' E- (3.2)

The rotation specified by D, ; (R) is the rotation
necessary to account for the requantization of the
helicity component from the direction £ to that of u.
The parametrization of the four velocity «# in the
coordinate system of interest (the C system or
cylindrical system?) is

u = (cosha coshb, sinha cosy, sinha siny/, cosha sinhd),
(3.3)
and the 4-vector £ is parametrized by

£ = e¢(coshB, coso, sing, sinhg). (3.4)

The choice of T for the C system is £§ — £% = 1,and
the consequent invariant measure is d2¢ = d¢dB.
In the realization on the cone the generators of the
Lorentz group corresponding to a “photon” of dis-
crete helicity A are®

M1 = i(gyv)]_ + A [‘El/(go + gg)],

M, =— i(&,v)z + 2 [gz/(go + 53)]:

My =—i(§,9); +2a,
. £
Ny =—ibogg ~2 g7 0 (3.5)
] &
) FA R S
N, &, 3z, A L+
. 0
N3 = Zﬁo —8?3 .
For the parametrization (3.4) of £, the Casimir
invariants have the form
2
M2 N2 =L 4 2 4 +A2, M ¢ N:i)\(l +i>.
dc? dce dc
(3. 6)

From (3.4) and (3. 6) it is not hard to show that the
simultaneous eigenfunctions of M2 — N2, M * N,
M, and N; have the form
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@p}\(fr’ p) _ e—(l’ip)Ceip‘beiTﬁe"i)\q)’ (3. 7)
in particular, on the C system contour
@p)\(’r,p) — eipPiTBegmir®, (3. 8)

The function &; ,(£) is now expanded in terms of the
€,,(7, p) functions according to

B (®) =5 42r,0)€,, (7, 0)- (3.9)
For evaluation of the integral over d2{ in (3.1),it is
most convenient to assume # in the form

u =u, = (cosha, sinhg, 0, 0); (3.10)
the required expansion for the more general form of
u can be obtained by using the simple group proper-
ties of the O(1, 1) ® O(2) matrix elements. So com-
bining (3.9) and (3. 1) requires the calculation of the
following integral:

2 .
I= fo ndd’ f_: dp (cosha coshf — sinha cosp) 1%
X D§; R)C,; (7,p). (3-11)

We now turn our attention to the explicit form of
Dg; (R). For this it is convenient to write
Q
n = ((cos¢/coshg), (sine/coshB), tanhp), (3.12)
the direction vector of the photon 3-momentum. Now
if n is rotated by — ¢ about the z axis, n becomes
n- n, = ((1/coshB), 0, tanhB). (3.13)
According to the prescription of Ref. 7, the remaining
rotation is a rotation in the xz plane by an amount
1 given by
ugy cosé — |ul

cosp = ——————,

T—— (3.14)

where 6 is the angle between ny and u = (sha, 0, 0).
In our case

cosf = 1/coshfB

and

coon = Eoo o™ Soma @1
so that we finally have

R =M;(37 — ¢)M;(MMy(— 3m). (3.16)

The integral / can now be evaluated. It is found to
be given by
. PRACEY T + 2, +ip)

Tl +idp) ¥, Ty +1— 1p)Tlr; +1 +1p)

@y +1 +ip),, (1), (~ i + b

(é)yarzl 7!

X .
Asr4 ,)\]O

(3.17)
8 T'(s)T'(c — b) .
r'(c)

X (4 tanha)?"1 (cosha)-1-ip Iy(s,b5c;— e%%)

a(\=jo+2r,)

b
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where
b=30—jg) +7y +7y 7, +1,
c=2 tip—iT + 3N —Jo) v, try tyy + 3,
oy i = [T(s +2 + 1)T(s —x + 1)T'(s +j, + 1)
XT(s—j, + D}Y2[T(s —x —jy +1)
XT(s +jog—7, + DIry +1 —jp +1)
xT(rd + 1)]1
@), =T d +n)/T@),

A

p=p—nxr

We now identify I with the mixed basis matrix ele-
ment in the following way:

{pjo; SXIN 1 (@)l pjg; T6) = C°,, (a) = 1. (3.18)

The expansion of a single particle helicity state in
terms of C system matrix elements is then

1 & e .
2(2m)3 jo§s Lo d0? +33)

[oe]
o . L
x % [ dralo@,p)CHy @) e’ e

p="c0

|u;s,k> =

(3.19)

4. RECURRENCE RELATIONS FOR THE MIXED
BASIS MATRIX ELEMENTS

In this section we use the infinitesmal operator
methodi0.11 to establish recurrence relations and
differential equations for the mixed basis matrix
elements. For this method we use a fixed column of
the mixed basis matrix element {pjy; JM | L | pjg; T)
(i.e.,7 and p fixed) as a set of SU(23 basis vectors
spanning the UIR{ j,, p} of SL(2,C). L is a general
lorentz transformation. The generators M,, N, are
then differential operators acting on the six para-
meters needed to specify L. Now using Eqgs. (1. 10)
and (1.9) and making a particular choice for L we
can derive the relations we need. For the C system
we parametrize L as follows

L = M3(6)M, (0)M3(a )N (@)X, (0 )M (), (4.1)
so that the mixed basis matrix element is
{pio; TM | L | pjo; 70) = C33g .,
= ? D (9,9, a)Cﬁ‘:Tp(a)e”beiM . (4.2

The generators M,, N, corresponding to the paramet-
rization (4.1) are

M, = — cotf sind %) + cosé % +§%ZZ a%’
I

N, = — sin¢ cosa tanha %b + tanha sin¢g sinf sina —aa—e
- m (sing cos6 cosa + cos¢ sina cosh2a)
X % + (cos¢ cosa — sing sina cosd) aa—a + —S%s%xﬁ
x aib +W1ha (cos¢ sina + sing cosa cos) 8%7 s

N3 = — cotf cosa tanha %} + tanha cosf sine ’aa—g

+ cosa (tanha cotd cosd + sinb cotha) 5’2‘

. . Gl
+ 8inf sina i (4.3)
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M, and N, can be obtained from M, and N;, respec-
tively, via the transformation ¢ = — 27 + ¢.

In the SU(2) basis we have chosen, the Casimir in-
variant equations have the form

M2 — NZ)C%}’TP (1 +p2-j3) Cﬁgrp’

M- NCJM T —PJOC%M we (4.4)
The explicit expression of the Casimir invariants in
terms of differential operators is found from (4. 3)

to be

L. 8 1 @2
N2 — M2 = —— + (tanhe + cotha) — —_—
da? da cosh2a 0b2
2 2 _
1 0¢ 9 cotha ¢ tanh2a 3
sinh2a oy 2 sinha dady
— 0 2
—m2 4282 7 C L othza 22
cosha 0b o2
(4. 5)
— (0 — 0
M+*N=M, (ﬁ + tanha) + M, ((tanha — cotha) —
1 0 1 92
+ Sinha W/) cotha 3b3a’ (4.6)
where
= d .8 cosw O
M, = cotd coso 3a + sina 56 sind 36’

1

[ +2)E +x +1)]Y2 <d‘é + Siflha

sinha
pi
A2] V2 Cns TH

— [V — )\)(J——A-l—l)]l/z(da 2

— (2i7/cosha) [(7 + 1)2

+ (1 +A)cotha + (J + 1 + l)tanha) ch

E. G. KALNINS

M; =— cotf sina aa + cosa % Sinat 9 |
So applying the Casimir invariants (4.5) to the

C %‘,’ rp functions and separating out all but the a
dependence using known recurrence relations of the
SU(2) matrix elements12 and the orthogonality pro-
perties of the O(1, 1) ® 0(2) matrix elements, we get
the relations

oy (di +x tanha + (1 —2) cotha + siﬁha) o P

+ O‘x+1 (dd — Atanha + (1 + A) cotha — siﬁha)

Pig 27 ; pj -
*Coderim (cosha p7°> Co¥iap = 4.7)
2 2 2
<i— + (tanha + cotha)————z———— P
da? da cosh2a sinhZ2a

cotha

+ 2 ——— +JJ + 1) + 3 tanh2a[JY + 1)
sinha
— A2 coth2a + (1 —j,2 + p2)> Cj’])f’ -

1 J J d pdo

+ 3 tanh?q [a)\+1a)\+2C5,)?+2',Tp + a)\ “x 1C7R-24m)

+ 47 (tanha/cosha) (@) €532, , — @)1 CH235.,,) = 0.
(4.8)

The remaining recurrence relations are determined
from the known action of the generators N, inan
SU(2) basis [Egs. (1, 10)]. They are

+(1—=2a)cotha + (J—r +1) tanha)CJ,\ 1i7p

J)\+1 e

4.9)

= 2[0 + 12— 3] [( + 1)2 +p2][(27 +1)/(27 + )}V Cig ..,

d
—[(J =) —r + 1))V (da + sitha

_a b Py 2 _
X <da ~Siia t (1 +A)cotha + (J —A)tanha)c Reterp T v

=2{02 — P2 + p2)[(27 + 1)/ (2F — V]}1/2 CFoy oy

These relations we have developed here are the ones
we will use in the next section in our analysis of the
Proca and Dirac fields.

5. SOLUTION OF THE DIRAC AND PROCA FREE
FIELD EQUATIONS IN THE C SYSTEM

As an application of the previous three sections we
derive invariant expansions of solutions of the Dirac
and Proca equations in terms of the functions

D, (a,0,9) = Che. (@) eirbeiss, (5.1)
This has already been done in the S system for these
equations!3 and more general ones,14.15

An outline of the general method is as follows. In
order to achieve an invariant expansion of an
arbitrary field Fj;°(x), it is convenient to go over
into a coordinate system in which each component
transforms independently. The components of
FFio (x) in this new coordinate system are

J. Math. Phys., Vol. 13, No. 9, September 1972

+ (1 —A)cotha + {J + x)tzmhd) 05’;3_1;,,, +[ +FANT +x + 1)]1/2

)1/2 (2i7/cosha) CJ)‘ p

(4.10)

Flo(g) = U(g)Fe (x) = o, (€71x). (5.2)

J’M’ o (&) Fy
From this definition it follows that each component
does indeed transform independently:

Ulgo)Fsio(g) = Ffio (gog8)

so that each component of F}}° (g) constitutes a
representation space for the Lorentz group and can,
therefore, be expanded in terms of matrix elements
of that group.

(5.3)

We now turn our attention to the Proca field A, (x) of
mass y,1i.e.,

2 2 2 2
(D_uz)AK(x)=< °% 4 + 0% _ ¢

X2 g2 0xg2  9xp2 —F )

A
x Afx) =0, —& =0. (5.4)
Xy

We seek a solution for this equation inside the light
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cone, so in the C system we choose x to be para-
metrized by

x = (s cosha coshb, s sinha cos¢, s sinha sing,

s cosha sinhb). (5.5)
The operators 3/3x; have the form
o h hb _ sinha coshb &  sinhb
0xg = cosha cos s da s cosha 9b’
3 . J cosha cos¢ 3 sing 3
ax sinha cos¢ == + s da s sinha 3¢’
a . . 0 cosha sing 9 cosp d
Wy sinha sing 7= + s 9a s cosha 9b
2 . 0 sinha sinhd 0
Ex—; = — sinhb COShaa—s +_S—_%
coshb @
s cosha 0b° (5.6)

The transformation to the independent variables
changes the 4-vector x as if at the point (a,b, ¢) the
space has been subjected to the Lorentz transforma-
tion

£ = Ny~ a)N;(— b)M;(— ¢). (5.7)
Under this transformation 3/3x , and A, (x) are trans-
formed according to
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o 23 _1 2
ox, 9s’ 9x S da’
o1 8 2 13 5
9%, s sinha 0¢’ 9x; s cosha b’ ’
The transformed Proca equation now becomes
(x)
(D —H ) (x) Y'Y
i
3971 o3l 8 02yl _
X (Dl _lv + 2 _lu _— i )Ay(x) =0
ox; ox, ox,; ox2
_ i i i i (5' 10)
BA-O?) _
= D,Alx) =
9x;
where
D, = _w Q-1
i axk v k
passing to the canonical basis
fo=4Ay V2, =iA;FA, fi=4A (5.11)
and expanding f,,f; and f, according to
fo =20 ("'jo)(s)ij".T AL A
(5.12)

(p.dg) Pig ith ipg
= 22X, °(s)Cy 1 mpe €,

- _ (p.j ith ipg
a_fz— =, 2 » o Al) = Q,4,k), (5.8) fi= 2 Xt ° (s)cl,o:fp € e,
X X
K " where the summation is over j, p, 7, p, the system of
where equations (5.10) becomes
|
axo 3 > 1 oC_ P
—_— 4+ - Cy +— ||—— + (tanha + cotha) C_ + C_> -
(as Xo V2s l:( da ( ) sinha X
<ac+ + (tanha + cotha) C b c) vir ]
- — anha + cotha . — e + =0,
da sinha X cosha X1€1
92 3 9 3 1 92C C
< Xo ;2 “Xo _ “Xo +u2xo> co__K O | (tanha + cotha) —°
0s s 0s 52 52 oa? oa
72 p2 eC_ P
— Cc,— c> +J2_<—+ tanha + cotha) C_ + c>
coshza °  sinhza Y X0 da ( ) sinha /%
oC, p 2iT
— «/2—<— + (tanha + cotha) C, — C+) .+ c,l =0
da ( ) sinha X cosha X1%1 !
92y, 3 9x, 1 Kazc1 ac 72
+— 2 g2y e, — = + (tanha + cothe) — ——— C
<632 s ds s X1> sz [\ ga2 ( @ cotha) da cothzq °
P2 1 tanha
— c C + 2 _C.—x.C) + =0,
sinhZa cosh2a >X1 cosha x X Gt e %o O}
02 3 0 1 /o2C, 0 T2 1
< AT e S uzm) c, — — [( + (tanha + cotha) —* — __? -
052 s 8s s2 [\oda2 da  cosh?a sinh2a sinh2«
1 cotha tanha 1 aC P
— —tanh2acC, + 2 c> £47V2 Cy+ — 2 ( 0 _ =
2 ' ? sinha Xe cosha Xt 2 tanh®a x, €+ 2\% da sinha CofXo | = 0, (5.13)

where we have used the shorthand

= ¢ Mo

pj
1,x1;7p2 _C 5

C 1,0;7°

o~ COO TP C cl

From the recurrence relations (4.7)—(4.10) we see
that the variables separate if

I

X+ = X- = — Xq-+ (5.14)

We then arrive at the same system of equations as in
Ref. 13 viz.

<i + 3> (o, o(s) L Ba+ p2 L2 <p () =
ds s

J. Math. Phys., Vol. 13, No. 9, September 1972
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d 5 d , 4+ p2 (p.0)

— + = = 4+ 42 =0, 5.1
<d32 s ds 52 M>X0 (5. 15)
a2 3 d 1+ p2 )(pil)

—_— = = 4 + p2 $S=0
<ds2 s ds s2 W)x

(remember the summation on j, consists of j, = 0
only, for f,). These equations have the solutlon

(p,t1) (2) (2)
X1 l,

(s) = (1/us)[cyH;, (us) + ¢y H 3y (us)

( )

&) = [/ (us)2][e5 HiD(s) + ey HY(us)].
(5.16)

So the solutions to the Proca equation have the form

(CH)) i
fy = _oof drf doxg (s)Cop pe’ " e,

_E_l D JCar a0 s)cps,, ¢,
R (5.17)

hy

where b = —f,,hy=f].

This then completes the derivation of an invariant ex-
pansion of solutions of the Proca equation inside the
light cone,

We now turn our attention to the Dirac equation. In
order to obtain an invariant decomposition of a solu-
tion of the Dirac equation, we write the equation in a
canonical basis

(z'w o u)tP(x) _ o, (5.18)
oxm

where
yO-(})é), ve=(0 74 ), (5.19)

(¢ = 1,2,3), where o, are the Pauli spin matrices
and I the 2 X 2 identity matrix. Under the transforma-
tion  of (5.7), Eq. (5.18) changes to
Tix -1
oY (x) iy oA

axn ox”
where ¥/(x) = AY(x),i.e., A is the 4 X 4 matrix accord-
ing to which the spinor { transforms under the
Lorentz transformation .

x) = 0, (5.20)

iy

In the C system we have that
yrA ant = i[(t:zmha + cotha) v — 3y0]. (5.21)
axn»  2s

If we now look for solutions of the form
Y = 2 F(S)C (a)eimeir9,
Y = Z)fj(s)cj(a)e”belﬁﬂ

the system of equations (5.20) becomes

(of, 3 T i(oc,
Z(W +Tsf1)cl * 5 cosha flcl—g( oa
1
+ ﬁr{;—a C; +5 (tanha + cotha) Cz> Jo—1f3C5 =0,
afz ; (0C4
(as ZSfZ) " s cosha f2Ca — (861
p 1
— Sinha + 5 (tanha + cotha) C,) f; — ufyC, = 0,
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{7

p

i 6C4

2s J3)€ “oa
Sinha Cy+ 3 (tanha + cotha) C ) Jy—1fCy =0,

74
l(as Zsf4>

1
ty (tanha + cotha) Cs> Ja — BfCy =0,

f33

" s cosha

T oCc,  p
s cosha /404 + ( 3a ~ sinha

(5.22)

from which we see that the variables separate if we
take

F1(8) = f5(8),  f3(8) = fu(9),
Ci(a) = clpj/g,l /2;Tp(a)’ t=1,3, (5.23)
Cia = Cf]@,—l/z:rp(a), i=24

The form of f;(s) and f;(s) is now determined by the
pair of coupled equations

@, 3
ds2
d3
d2

which have solutions of the form16

0, (5.24)

Zijop) fy +iuf;

0,

I

5o + 2ijop> Ji + s,

f1(8) = (V/us)[e,d, (1) + cyd, (19)],

f3(S) = (1/“8)[62‘]1)(“8) - ClJ-u(“s)] (5' 25)

with v = 3 + 2ij,p.
So the solutions of the Dirac equation are

+1/2 ol o j
Y = :Zi/z p_E_w I deo S (S)CL/3 1 /2:ry (0)
xe'TPet? 1,3
/2 ® :
wj = ; _2/2 pz:;w f de dpf 1/%,1/2;110(0)

% ei‘rbeimp’

j=2,4.

This then completes this section on the solution of the
Proca and Dirac equation in the C system.

6. DIFFERENTIAL EQUATIONS SATISFIED BY THE
EXPANSION MATRIX ELEMENTS AND THE
NONRELATIVISTIC LIMIT

From the recurrence relations derived in Sec. 4 we
deduce that the matrix elements used in the expan-
sions of Sec. 5 satisfy the following differential equa-
tions:

(i) Using the shorthand

pj Pj
CJ)\O; T (@) = o,

we have for j, = J = A = 0 the differential equation

dz d T2
Lot + cotha) — —
(da2 (tanha + cotha) da coshZa
P2__ (1 4 p2) 0. (6.1)
~ sinhZa P ) ) )
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C9, may be calculated from C3, by using
— i7/cosha C§, = [4(1 + p2)-1/2CY,,

d p 4
+ \/E(Ei—a im> Clo=1[3(1+ pz)]”zC?,u'(G 2

(ii) j, = 1; C}, satisfies the equation

2
[d_z + <(tanha + cotha) +

_L__>i
da 72 — p2 cosh2a/da

2 2
L LS + 2+ p2 4 tanh2a
cosh2a  sinh2a
471 tanha

(27 tanha — pp cotha)j' Cl,=0;
(6.3)

the other j, = 1 matrix elements may be deduced
from the relations

i 27 1 = ol P\ c1
‘ (; cosha p> Cleg = V2 <da * tanha sinha) Clo-

72 — p2 coshZ?a

(6. 4)
(iii) j, = 3; C1 2,1 /o satisfies the equation
2 2
[d— + <(tanha + cotha) + 7 tanha >i S
da2 7 +p cosha/da cosh2a

2
_ P2 peothd s hanh2a — cothza)
sinh2a sinha
g <% (tanha + cotha) ¥ b > + pZ}
T = p cosha sinha
1/2
X Ciyg,e172 = 0. (6.5)

Similar equations to those of (ii) and (iii) hold for the
cases j, = — 1,j, = — 2, respectively.

These equations are useful in the passage to the non-
relativistic 1limit,13-17 In this limit we have

a0 s> gt Ssa=v,

(6.6)

where 7 is the polar radius in the xy plane in non-
relativistic 3~space

b—>0, s—o© st sb=az. 6.7

In addition we must require that

7= 9 in such a way that

T/s->'r’, —0 7 o, (6. 8)
finally

p— Ipls.

In this limit Eq. (6. 1) becomes
2
(_d_ +

dar2

so taking the regular solution at » = 0, we have

1 4d , p2
—— + |p}2—72—7—2—>C80(7’):0; (6.9)

v dr
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C8y — cd,y(ar), @2 = |pl2 — 72,
From relations (6.2) we see that
CQy = cyd,(ar), C(l)’i 17 Cudp g (7). (6.10)

Similar results hold in the j, = 1 case as C}, then
satisfies Eq. (6. 9)

This then gives the correct set of functions in 3-
space corresponding to the expansion of Maxwell's
equations in cylindrical coordinates,18 viz.,

E)\(y5 Z, d)) = Jp+>\(a1’)ei‘f’z eiPQS,

A=x1,0, p=0,=1,22,,,.., -0 7<©0,

(6.11)
We note that the solution in cylindrical coordinates is
an expansion invariant with respect to the group
0(2) ® T,,the direct product of rotations about Oz,
and translations along Oz. So the reduction O(1,1) ®
0(2) € 0(3, 1) becomes in the nonrelativistic limit
the reduction 0(2) & T, © E(3).

For the nonrelativistic limit of the functions used in
the Dirac equation solution we have the following dif-
ferential equations

dz 1 d , £ 3)2\ 172
<d—’}/‘2—+__+ |P'2—72— 72 Cl/2,i1/2:0’

v dr
(6.12)

so that this corresponds to a nonrelativistic solution
of the Dirac equation in terms of the complete set of
functions

P (r,a, ¢) = inl /2(0”’)6“,26”)@- (6.13)
This coincides with the solution in cylindrical co-
ordinates in 3-space.

7. CONCLUSION

In this paper we have carried out the reduction of the
principal series of 0(3,1) in an O(1, 1) ® O(2) basis
and examined the properties of the O(3) <> 0(1, 1) ®
0(2) mixed basis matrix elements. It was shown that
the expansion of solutions of the Proca and Dirac
free fields (inside the light cone) corresponds to the
relativistic generalization of cylindrical coordinates
in 3-space. In future developments we propose to
study the solution of other wave equations (both in-
side and outside the light cone) using these mixed
basis matrix elements. Other related problems of
interest include the reduction of the supplementary
series of O(3, 1) with respect to O(1,1) € 0(2)19 and
a study of the matrix elements in an O(1, 1) ® O(2)
basis.
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The dynamics of semi-infinite and infinite linear chains of identical masses and ideal springs is studied. In
addition to the harmonic coupling between nearest neighbors, each particle is harmonically bound to ts equili-
brium position and is subject to friction and time-dependent applied forces. The Laplace transform method is
used to express the motion of all the particles. The exact solutions are found and discussed for four different
cases: (a) an infinite chain, (b) a semi-infinite chain, (¢) 2 semi-infinite chain with the position of the end par-
ticle specified as a function of time, and (d) an infinite chain with the position of one particle specified as a
function of time. By specializing some results of the present work, those of previous calculations on simpler

systems by other authors are recovered,

There are two main approaches to the mathematical
description of physical phenomena., One sometimes
tries to study as exactly as possible a simplified
model with only the main features of a real system,
while some are more interested in an approximate
solution of a realistic model. The one-dimensional
systems have been favorite models for the first
approach.! One such system extensively studied is
the infinite chain of point masses and ideal massless
springs1 2 because it is one of the very few many-
body systems in which exact calculations are pos-
sible. However, there has not been much study of an
exact treatment of a semi-infinite chain. Although
there have been many calculations treating semi-
infinite lattices in conjunction with studies on surface
phenomena, 3 most of them can be classified under the
second approach above.

The present work studies the exact dynamics of
semi-infinite and infinite linear chains of identical
masses and ideal massless springs with identical
force constants. In addition to the harmonic coupling
between nearest neighbors, each mass is harmonical-
ly bound to its equilibrium position and is subject to
friction and time-dependent applied forces. The mo-
tion of each of the particles is expressed exactly in
terms of the given quantities and initial conditions.
Four different systems are studied: (a) an infinite
chain, (b) a semi-infinite chain, {(¢) a semi-infinite
chain with the position of the end particle specified
as a function of time, and (d)} an infinite chain with
the position of one particle specified as a function
of time. By specializing some of the results, those
of previous calculations on simpler systems by
other authors are recovered.

Let x,(f) represent the displacement of the nth
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particle measured from its equilibrium position.
The integer n is restricted to n = 0 for the semi-
infinite systems (b) and (c). The coupled equations
for the system are

mx, =—klx, —%,.1)

K ) 1 X ar + (1a, 1d)
T [(1—5,,0)] TR S 1)

where m is the particle mass, # and K are the spring
constants, 8 is the friction coefficient, & is the Kro-
necker delta, ¢,(f) represents the external force
applied to the nth particle and is assumed to be a
known function of time. This system of equations is
to be solved for x,(t) subject to the initial conditions
x,(0) =d %,(0) = v,. (2)

n?

For cases (c) and (d), in which x,(¢) is specified, Eq.
(1) for n = 0 determines the applied force ¢,(f) re-
quired to achieve such a specified motion for the par-
ticlen = 0.

If one assumes that x, and ¢, have the Laplace trans-
forms

X,(s)= L{xﬁ(t ) = fomdtxn {t) exp(—st), (3)
@,(s) = L{g, (¢)/k}, (4)
then Eqgs. (1) and (2) lead to an inhomogeneous linear

difference equation of second order

0
X, — 2(202 +4po + 202 —(1/2) [6 })X’g
n0

i x [ 1 :l_ P (5a, 5d)
#-1 (1*57‘0) - n?

(5b, 5¢)
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of time. By specializing some of the results, those
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particle measured from its equilibrium position.
The integer n is restricted to n = 0 for the semi-
infinite systems (b) and (c). The coupled equations
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necker delta, ¢,(f) represents the external force
applied to the nth particle and is assumed to be a
known function of time. This system of equations is
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For cases (c) and (d), in which x,(¢) is specified, Eq.
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quired to achieve such a specified motion for the par-
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where
0= (s/2w), w=(k/m)1/2, (6)
U = B(16km) /2, M
a =[2 + (K/R)]2/2, ®)

H,=(o+2u)D, +V, +&, D =(2d,/w),
v, = (v,/w?). (9)

One can show (Appendix A) that Eq. (5) has the fol-
lowing solutions:

1 o0
X, =3 L HL2»r (10a)
- o0
1 8 2n+r-1
X, =5 % Bl s g2ern), (10b)

o0
X, = Xot# 4§ 2 BJgAeri—g2een] - (100)

X, ___X0§|2nl
1/& -~
e 5 (5 o D) lezmr g
@320) w<0) (10d)
where
D = 4[(02 + 2u0 + 02)2 — (3)2]1/2, (11)

C = (0’2 + 2“0 + (12 + %)1/2 —_ (02 + 2“'0 + az _ %)1/2.
(12)

1t can be shown (Appendix B) that the inverse trans-
forms of X, are

()= & {K,)6,,(0), (132)
%,() = 5 {K,}G, () +G,.,., (O], (13b)
0

x,(t) = Gnoxo(t) + wzxo(t)*[Gn_l(t) _Gn+1(t)]
¥ 515{1{,}[0”_,&) —G,. ()], (13¢)

%, (t) =0,0%0(t) + w2x(t )*[G |, -1(1) — G, 1(t)]

+<§ or §>{K,}[Gn_7(t)—an(t)], (134d)
(n%O) (nSlo)

where
{K,} =d (d/dt) + (4pwd, + v,) + (1/m),(¢)*, (14)

G,(t) =G_,(t)
t
= exp(—2uwt) [ dt'Jo[2bw(t? —1'2)1/2]
X J,,(2wt"), (15)

b=(a2—uz—Hre, (16)

The J 's are the ordinary Bessel functions with the
property J_,, = J,, and * stands for the convolution.
It is to be noted that the inverse Laplace transforms
for the case

aZ —p2 —1<0, b =(—a2+p2+HU2 (1)

’

lead to
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t
G,(t) = exp(—2uwt) [ dt'Io[2b'w(t2 — 1'2)1/2]

X Jo,(2wt’) (18)
with the modified Bessel function [, a result con-
tained in Eqs.(15) and (16) because J(iz) =I4(z).

Study of the results given in Eq. (13) can be made
most naturally by examining the properties of G,. To
this end, one defines

F(t) =G, (t) = F,(t), (19)

1]

g.(t) = exp2uwt)G,(t) =g ,(t) = —g,(—t), (20)
f,)=g,()=f,() =f,(—1), (21)

reducing the problem to the study of g,. It can be
shown (Appendix C) that

gu(1) = [ at'To[2b(t? — 220y, 0t)  (22)
1" sin{2wt[b2 + sin2(¢/2)]1/2}
= d¢ cos(ne)

§ b < 2w[b2 + sin2(¢/2)]1/2 >’ (23)
Fu(t) =J5,(20t) — t(2bw)2[g,(t) + g,1(t)]/2 (24)

= }Tfoﬂ do cos(ng) cos{2wt[b2 + sin2(¢/2)]1/2}, (25)

gn = (th/zn)(gn—l _gn+1)9 n # 07 (26)

fo =1/t + (tw2/20(f, 1 —foy), n =0, (27)
h, = — 4w2(b2 + 1/2)h, + w2k, | +h,, ),

h=gorf, (28)
g,(0) =§,(0) =,(0) = 0, (29)
£,(0) =£,(0) =5,,, (30)
£,(0) =8,,/(2w), (31)
£,(®) = £,(0) = £,(®) = £, () = 0, (32)

where g, in Eq. (24) is an integral of the form (22)
with J, instead of J,. It is straightforward to write
expressions similar to Eqs. (22)-(32) for G and F.
For example, one obtains

G,(0) = G, () = G, (0) = F,(0) = F,(0) =0, (33)

n

G,(0)=F,(0)=5 ,, (34)
G,(0)=F (0) = — 4uwd,,, (35)
G, (®) = 0y00,0/(2w). (36)

By use of the properties (33)—(35), one easily verifies
that the solutions (13a)—(13d) satisfy the initial and
boundary conditions.

Egs. (13) and (14) provide the physical interpretation
of G and F as ‘“‘propagators.” For example, one ob-
serves that [F,_ (t) + 4uwG,_,(¢)|d, and G, _,(f)v,
represent the displacement components in x,(¢) due
tod, = x,(0) and », = %,(0). It is to be noted that the
second propagators in Egs. (13b)—(13d) represent the
following reflections: (13b) a stiff-to-soft reflection
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without phase reversal, (13c) and (13d) a soft-to-stiff
reflection with phase reversal. The second terms of
Egs. (13c) and (13d) combined with the last term of
Eq. (14) imply that the effect of specifying x,(¢) is
equivalent to an effective force mw2x,(t) = kx(¢)
applied to the particle |#| = 1, an expected result.

Special cases of (a) and (c) have been studied, 4:5 and
those results can be recovered very easily by special-
izing the present results. For systems without fric-
tion and applied forces, one sets

B(16km) V2 = u =0 = ¢,(t) (31)
for all r, whence
b= (a2 -—1/2)V/2, (38)

Then Eq. (25) reduces to

f) = ;-fOT d¢ cos(ng) cos[Qt(1 — 2y cosd)l/2], (39)
where

Q =200 = [(K + 20)/m]V/2, ¥y = (w/Q)2. (40)
Huetra et al.4 obtained Eq. (39) for this special case
of (a), and their g,(¢)/Q is identical to g,(¢) of the
present work with (38). For a special case of (c),
namely the simple semi-infinite chain, one sets

K=8=¢,()=0 (41)
to get
L=0, a=1/N2, b=0. (42)

Morse and Ingard5 studied the propagation of a dis-
turbance along such a chain. Their initial and boun-
dary conditions were

d, =x,0)=0, v (43)

n :56'"(0)—'—‘5”000,

n
xo(t) = vyt (44)
For these conditions, Eq. (13¢) becomes

t
%, (1) =0, ovot + w2(vyl)* (fo dat'(d,,_o(2wt’)

—Jonen (2wt’)]>

—(.-UQ E (27’ + 1)J2n+27+1(2wt); (45)
r=0

<

=08,0Vpt *

which is the result of Morse and Ingard.

APPENDIX A

The highlights of the procedure for (c) are sketched
below. The other cases can be treated similarly.
Write the solution of Eq. (5¢c) as

K. HH LEE

(A1)
(A2)

where £7 are the solutions of the homogeneous equa-
tion and

X, =A% + B, gn
= A,8%% + Bt

€. =(0% +2u0 + a2 +1/2)1/2 £ (02 + 2uc + a2

—1/2)1/2,  (A3)
Using the variation of parameter method for the dif-
ference equation,® one finds

%= g D) o g Ha)se
(A4)

where A, and B, are independent of » but dependent
on § and are to be determined by the boundary con-
ditions. Since £/ and £7/D for m > 0 are unaccept-
able solutions? and £,£_ = 1, the choice of
1 o0

AO = 5 Zl> H,,gl'
is made. Imposing the boundary condition, namely the
specified X, one gets

1 o0

By=X,— 5 }i) H 7

and the final result, Eq.(10¢) with £ = ¢_.

(A5)

(1\6)

APPENDIX B
If one writes
p = {02 + 2u0 + a2 —1/2)1/2

=[(o + u)2 + b2]V/2, (B1)

with b given in Eq. (16), it follows from Egs. (11) and
(12) that

¢ =(p2+ )2 —p,
D= 4p(p2 +1)1/2,

(B2)
(B3)

With these, all the terms in Eq. (10) become easily
recognizable from tables.8

APPENDIX C
In Eq. (22) use the integral representation
Jou(201’) = = [ d cos(ng) cos[2wt” sin(¢/2)] (CD)

for J,, and make the power series expansions for J,
and for the second factor of the above integrand. The
resulting series after the {' integration reduces to
the second factor of the integrand in Eq. (23). For (31)
and (32), use the relationship

lim y(/) = lim [sY(s)], where Y(s)=L{y(t)}.
(C2)

{->00 s-0
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Lattice Wind-Tree Models. 1l. Analytic Property

D.J.Gates™
Mathematics Deparviment, Rockefellery Universily, New York, New York 10021
(Received 10 March 1972)

Three lattice versions of the wind-tree model of Ehrenfest are studied. It is shown that various moments, in-
cluding the recurrence time and the Cesaro limits lim,,, (1/T) 25T, A(f) of the mean-square displacement

A(t) and of the one-particle distribution p(¢, x) at time £, are analytic functions of the reciprocal of the fugacity
of the trees, or equivalently of the deviation 1 —p of the density p of the trees from their close packing density 1,
in certain disks in the complex plane. Two of the models were considered in Paper I, but the third is new.

1. INTRODUCTION

In Paper I1 we introduced four lattice versions of the
wind-tree model of Ehrenfest, and showed that various
moments, including the mean-square displacement
and the recurrence time, are bounded above if the
density of the trees is sufficiently high. We begin by
introducing another model (V) and prove the analo-
gous results., We shall then prove a new analytic
property of models I,II, and V.

We consider a system of square particles, called
trees, with diagonal of length 1, centered on the points
(Z2) of a simple square lattice with unit spacing. A
typical configuration is illustrated in Fig.1l. We sup-
pose that a particle, called a wind particle, starts at
some point with unit velocity to the right, and is de-
flected through a right angle whenever it strikes a
tree while the tree remains fixed, as shown in Fig. 1.
It is clear that in this model a wind particle is de-
flected always in the same direction by a tree, the
actual direction depending on the starting point. It is
therefore essentially equivalent to a model? (Fig. 2)
in which the wind particles move only on the lattice

FIG.1. A typical trajectory in model V. Note that trajectories
bend always in the same direction;in the case shown, to the left.

L ] [ ] [ ] L) [ ] L LJ L ] [ ] L] [
[ ] . [
L] [ 4
A
° >
1

[ - [ o . ®
) - [ ] . . >— . °
[ ] [ ] [ ] [ ] ® [ [ ] [ ] [ ] L] [ ]

FIG.2. The model, which is essentially model V, in
which trajectories are confined to the lattice bonds.

lines and are deflected always to the left by point
trees. We henceforth confine our attention to this
latter model, and suppose for definiteness that the
wind particle starts at the origin.

Only a certain set R(¢) of trees can be reached in
time ¢{. The position q,(C) and velocity p,(C) at time
t depend only on ¢ and the set C C R(t) of sites occu-
pied by trees. The probability of a set C in R(¢) is
taken to be (| | indicates number of points)

2ICI(1 + z) RO, (1.1)
This means that the probability of finding a tree on
any site (i.e., the density of the trees) is just z/(1 +z).
We define the moment ma(t) as the average with res-
pect to tree configurations of |q,(C)|%, viz.

m(t) = (1 + 2y 1RO 35
CCR(t)

z'Clq,(C)] . (1.2)
If the system is enclosed in a box, formed by a close-
packed array of trees, there will be a set A of sites
available to trees. We define a trajectory J as the
complete continuation of the path of the wind particle
for all {. It is clear that all J in A are closed. The
probability P,(J) of a trajectory is just the total prob-
ability of all sets C which result in J (see Paper I
for details). The recurrence time 7(A) is defined as
the average time taken for the particle to return to
the origin with its initial velocity, namely

Je[0]

where |J| is the length of J and [0] is the set of J's
which pass through 0 in the horizontal direction. We
also define the moments

T(A) = (1.3)

M) = B P
JE[0]
The PA(J) are independent of A if J does not touch the
boundary trees: They therefore have well-defined
limits P(J) as A — o, given by

(1.4)

P(J) = zFUX1 + 2y FU-EW), (1.5)

where F(J) is the number of occupied (i.e., filled) lat-
tice sites which J meets and E(J) is the number of
empty sites through J passes.

2. MODEL V: ABSENCE OF DIFFUSION

QOur first result is

Theovem I: If z > 216 — 1 in model V, then the
m,(t) are bounded uniformly in £, and the limits
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New York, 1954), Vol. I [p. 227-(6), p. 237—(43), p. 240-(23),
p. 228-(13) instead of p. 227—(6) when b2 < 0, etc.].

Lattice Wind-Tree Models. 1l. Analytic Property

D.J.Gates™
Mathematics Deparviment, Rockefellery Universily, New York, New York 10021
(Received 10 March 1972)

Three lattice versions of the wind-tree model of Ehrenfest are studied. It is shown that various moments, in-
cluding the recurrence time and the Cesaro limits lim,,, (1/T) 25T, A(f) of the mean-square displacement

A(t) and of the one-particle distribution p(¢, x) at time £, are analytic functions of the reciprocal of the fugacity
of the trees, or equivalently of the deviation 1 —p of the density p of the trees from their close packing density 1,
in certain disks in the complex plane. Two of the models were considered in Paper I, but the third is new.

1. INTRODUCTION

In Paper I1 we introduced four lattice versions of the
wind-tree model of Ehrenfest, and showed that various
moments, including the mean-square displacement
and the recurrence time, are bounded above if the
density of the trees is sufficiently high. We begin by
introducing another model (V) and prove the analo-
gous results., We shall then prove a new analytic
property of models I,II, and V.
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trees, with diagonal of length 1, centered on the points
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typical configuration is illustrated in Fig.1l. We sup-
pose that a particle, called a wind particle, starts at
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flected through a right angle whenever it strikes a
tree while the tree remains fixed, as shown in Fig. 1.
It is clear that in this model a wind particle is de-
flected always in the same direction by a tree, the
actual direction depending on the starting point. It is
therefore essentially equivalent to a model? (Fig. 2)
in which the wind particles move only on the lattice

FIG.1. A typical trajectory in model V. Note that trajectories
bend always in the same direction;in the case shown, to the left.
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[ ] . [
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FIG.2. The model, which is essentially model V, in
which trajectories are confined to the lattice bonds.

lines and are deflected always to the left by point
trees. We henceforth confine our attention to this
latter model, and suppose for definiteness that the
wind particle starts at the origin.

Only a certain set R(¢) of trees can be reached in
time ¢{. The position q,(C) and velocity p,(C) at time
t depend only on ¢ and the set C C R(t) of sites occu-
pied by trees. The probability of a set C in R(¢) is
taken to be (| | indicates number of points)

2ICI(1 + z) RO, (1.1)
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any site (i.e., the density of the trees) is just z/(1 +z).
We define the moment ma(t) as the average with res-
pect to tree configurations of |q,(C)|%, viz.

m(t) = (1 + 2y 1RO 35
CCR(t)

z'Clq,(C)] . (1.2)
If the system is enclosed in a box, formed by a close-
packed array of trees, there will be a set A of sites
available to trees. We define a trajectory J as the
complete continuation of the path of the wind particle
for all {. It is clear that all J in A are closed. The
probability P,(J) of a trajectory is just the total prob-
ability of all sets C which result in J (see Paper I
for details). The recurrence time 7(A) is defined as
the average time taken for the particle to return to
the origin with its initial velocity, namely

Je[0]

where |J| is the length of J and [0] is the set of J's
which pass through 0 in the horizontal direction. We
also define the moments

T(A) = (1.3)

M) = B P
JE[0]
The PA(J) are independent of A if J does not touch the
boundary trees: They therefore have well-defined
limits P(J) as A — o, given by

(1.4)

P(J) = zFUX1 + 2y FU-EW), (1.5)

where F(J) is the number of occupied (i.e., filled) lat-
tice sites which J meets and E(J) is the number of
empty sites through J passes.

2. MODEL V: ABSENCE OF DIFFUSION

QOur first result is

Theovem I: If z > 216 — 1 in model V, then the
m,(t) are bounded uniformly in £, and the limits
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M, = I{i—»’& M (A) (2.1)
and
R ‘
M, = Hm 2 m,(t) (2.2)
exist and are given by
M,= 5 PW)J|e (2.3)
Je[0]
and
_ 1 Wl
m,= 2, P{) 71 2o gl e, (2.4)
Je[o] AR

where q;(J) is the position at time of a particle mov-
ing on J.

One can also replace the sums over ¢ in (2. 2) and

(2. 4) by integrals. The theorem implies in particular
a finite recurrence time, absence of diffusion, and
randomization of the initial velocity as described in
Paper 1. Note that only closed J's appear in (2. 3) and
(2. 4) even though the box is infinitely large.

To prove the theorem, we first need an upper bound
on P,(J). We note that a trajectory of lengthj > 4
cannot meet trees on more than three successive
sites, since it cannot have more than three successive
bends. If we call the absence of a bend a conlinuation,
we deduce that there must be at least j /4 continua-
tions in a trajectory of length j > 4. However, at most
four different continuations in the same trajectory
may occur at the same lattice site, as illustrated in
Fig.3. There are therefore at least j/16 different
empty lattice sites traversed by the trajectory. This
implies (see Paper I) that

P,(J) < (1 +2z)yi/16, (2.5)
Next we note that the number of trajectories of length
j is less than 2/-1 because a trajectory has only two
possibilities at each lattice point: a bend to the left
or a continuation. The probability of the trajectory
of length 4 is just 24/(1 + 2)4. It follows that

M (A) < 23 2711 + 2)i/16ja + z4(1 + z) 44«
j>4

(2.6)

If we let the sum extend to infinity, we have a bound
for all A, and this bound is finite for 2(1 + z)"1/16<1,
The boundedness of ma(t) follows from the inequality

m () < 27oM,

which follows in turn from Sec. 2 of Paper I. The
existence of M, and m, and the formulas (2.3) and
(2. 4) follow from the arguments of Sec. 6 in Paper I.
These arguments also prove the existence of the
Cesaro limit

T
1
o) = 1i = t,x 2.7
plx)= Jim, 7 25 pltsx) (2.7
-0 -0
\ 1
FIG. 3. A trajectory in model V for
®  which empty and occupied sites are
traversed more than once.
4
. e >
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of the one-particle distribution function p(¢,x) defined
inI.

3. MODEL V: ANALYTICITY

The density p of the trees is related to their fugacity
2 by p =2z/(1 + 2) so that z = © corresponds to the
close-packing density p = 1. The natural variables
for a series expansion of the moments M, and 7%, at
high density are therefore
{=1—-p=1/(1+2) and £=1/z, 3.1)
The purpose of this section is to show that the mo-
ments are analytic functions of these variables in a
certain disk in the complex plane, so that such series
expansions are possible and, hopefully, may be useful
for extrapolation to lower densities. We shall prove

Theovem 2: The moments M, and 7, for model V
exist as functions of the complex variables ¢ or &,
and are analytic in the disks

lel < 2716(1 + 2-16)-15 (3.2)
or

[E] < 2716(1 + 2716)"15/[1 — 2-16(1 + 2°16)-15], (3.3)

To prove the theorem, we note from (1.5) and (3.1)

that
P(J) = LE(1 — §)7, (3.4)

which is an entire function of { in the complex plane.
If J has length j > 4, thén E > j /16 as before, and also

F<j—E<13j. (3.5)
These yield, provided |¢| < 1,
|P)|<|¢lEl1 —¢|F
<|¢IEQ + |g)F
< |§|j/16(1 + |§l)15j/16. (3.6)
Now (2. 3) can be written
Mq = Ep(])]a,
where ’ 3.7
p() = P()

JE[0]:lJdl=j

is the probability of a trajectory in [0] of length j.
We deduce that for j > 4

lp() < 25°1|E]i/16(1 + |g})255/286, (3.8)

It follows from the Weierstrass M-test that (2. 3)
converges uniformly in { provided

21¢l1/18(1 + |¢])15/16 < 1, (3.9)

It is clearly necessary that || < 216, This is not
sufficient, but substituting it in (3. 9) yields the suffi-
cient condition

21¢]1/16(1 + 2716)15/16 < 1,

which is just (3.2). Every term in (2.3) is analytic,
so that the uniform convergence in the disk (3.2) im-
plies that M, is analytic in this disk. The same argu-
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ment applied to (2. 4) proves the analyticity of the
m,. Finally we use (3.1) to obtain

el = 1¢l /11—l < [el/a =1t

which in combination with (3. 2) yields (3. 3).

The same argument can be used to prove the analy-
ticity of p(x) defined by (2. 7).

4, ANALYTICITY IN MODEL I

For a description of model I we refer the reader to
Paper 1. It too has only closed trajectories. The
analog of Theorem 1 was proved in Secs.2 and 6 of I.
Formula (1.5) for P(J) also holds if we reinterpret
F({J) and E(J) as the numbers of occupied and empty
squares respectively, of one sublattice of Z2, which
are contained in a “sausage” formed by the squares
which border j (see Fig.4). Now E =>j/4 as shown in
Sec. 2 of I. Also we can have at most one tree per
unit length of J, so that F < j, This yields by the argu-
ment of the previous section

7

1V

/

/) . .

FIG. 4. The “sausage” formed by the squares which border a trajec-
tory in model I. Only the sublattice of squares containing dots are
possible sites for trees. Trees are shown by shaded squares. The
number of occupied sites in the sausage is F(J) = 8, and the num-
ber of empty sites is E{J) = 18.
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|p() < 2-1[g]i/a(1 + |§) (4.1)
for |¢| < 1, which in turn leads to
Theorem 3: The moments M, and m, for model I

exist as functions of the complex variables ¢ and &,
and are analytic in the disks

[g1<2a+ 2y (4.2)
or
lel<a+2yeyp—2a+ 2y (4.3)

5. ANALYTICITY IN MODEL I

Model II is described fully in Paper I. It differs from
model I in that all squares of the lattice may contain
trees. Again formula (1.5) for P(J) holds with the
same definition of F(J) and E(J) as for model 1. Now
we find instead that E > j/2, while again F < j. Thus
the argument of Sec. 3 yields

lp() < 3a-1lgli2(1 + I¢1), (5.1)

which in turn leads to
Theorvem 4: The moments M, and m,, for model II

exist as complex functions of the variables { or £ and
are analytic in the disks

le1< 21 +3)2 (5.2)
or
el <5 +g2/[1 -5 +2). (5.3)

Again the function p (x) defined by (2. 7) is analytic for
models I and II in the appropriate disks. An open
problem is to extend the results of this paper to the
models III and IV defined in Paper 1.
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It is shown that A(n,,, ¢, N), the number of ways of arranging q indistinguishable particles on a one-dimensional
lattice space of N compartments in such a way as to create n,,; nearest neighbor pairs is A(n;,4,N) = (N-q+1

q-1
X ("11

")

). A similar expression is also derived for ngq, the number of pairs of vacant nearest neighbors. The

normalization, first moment, and most probable value of these statistics are also discussed,

I. INTRODUCTION

A complete statistical mechanical treatment of co-
operative phenomena based on the nearest neighbor
approximation requires knowledge of the degeneracy
associated with pairs of nearest neighbors which have

(1) both sites vacant (0-0),
(2) one site vacant and one occupied (0-1),
(3) both sites occupied (1-1).

If ny4,%gq,and 2,4 are the numbers of these pairs,
respectively, in an arrangement, then they are related
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A complete statistical mechanical treatment of co-
operative phenomena based on the nearest neighbor
approximation requires knowledge of the degeneracy
associated with pairs of nearest neighbors which have

(1) both sites vacant (0-0),
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(3) both sites occupied (1-1).

If ny4,%gq,and 2,4 are the numbers of these pairs,
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byl
2q =2nyy t+ngyq, (1)
2N —q) = 2ny + 1y, (2)

where N is the number of sites and g the number of
particles.

The degeneracy associated with 0—-1 pairs has been
considered in connection with the statistical mechani-
cal treatment of the one-dimensional Ising model of
magnetism,? The present paper is concerned with a
determination of the exact degeneracy of 0-0 and 1-1
nearest neighbor pairs. Specifically, we first wish to
calculate A(n, , ¢, N), the number of arrangements
containing 7, , occupied nearest neighbor pairs, creat-
ed when ¢ indistinguishable particles are arranged on
a one-dimensional lattice space of N sites.

In previous papers the exact statistics of one-dimen-
sional random arrays of dumbbells,3 A-bells,4 and
the exact ensemble average5 of the number of nearest,
next nearest and third nearest occupied neighbor
pairs for simple particles on a two-dimensional
lattice space have been treated. To a considerable
degree these papers serve as a point of departure for
the present calculation.

O. DETERMINATION OF A(n,,,4,N)

If we consider the number of arrangements possible
when ¢ indistinguishable particles are arranged in all
possible ways on a one-dimensional lattice space
having N sites and select those which contain n,
occupied nearest neighbor pairs, we find that the se-
lected arrangements always contain ¢ —#n,; “units”
(see Fig.1). These “units” consist of one or more
contiguous occupied sites together with a vacancy if

ofo| PAotetel V4otol W4°

ofofoto| 77| %,
o [ofotototo| V70| 4010
ofofo] | llotore] ]

L—Jd
FIG.1. Eight indistinguishable particles are arranged on a one-
dimensional lattice space of N = 15 sites to yield four nearest
neighbor pairs. Regardless of the configuration, there are always
g —n;, = 4 “units”. (The “units” are shown as the unshaded sites).
Each of these “units” is separated from other “units” by ¢ —n;;,— 1
vacancies which cannot be permuted, i.e., the occupied nearest
neighbor groups and their terminating vacancy (if needed) form an
indistinguishable unit, There are N —q —(¢ —n,3 —1} =N —2q +
7., + 1 = 4 permutable vacancies (shaded). Thus there are (8) ways
of arranging the four “units” (including their separating vacancies)
and the four permutable vacancies. This figure shows five possible
arrangements in which the indistinguishable “units” are composed of
all the possible various groups of nearest neighbor pairs.
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FIG.2. The eight particles illustrated in Fig. 1 have ¢ — 1 = 7 par-
tition between them. Of the seven partitions »,, = 4 separate occu-
pied nearest neighbor pairs (short horizontal lines) and ¢ —n,; —

1 = 3 (the jagged lines) do not. Thus there are (}) ways of arranging
the separating partitions to form the ¢ —n,, = 4 indistinguishable
“units” discussed in Fig, 1.

one is needed to isolate a “unit” from other particles
or other vacancies. Thus, the number of separating
vacancy is one less than the number of “units.”

There are N — g vacancies, but not all of these are
permutable, i.e., not all of the N — ¢ vacancies can be
interchanged to form additional arrangements. There
are ¢ —mn,, — 1 vacancies which must be utilized to
separate the ¢ —»,; “units.” Thus the number of in-
distinguishable, permutable vacancies is N — ¢ —(q —
ny; —1)=N—2q +ny, + 1.

It follows then that the total number of individual
things to be permuted is the sum of the “units” and
permutable vacancies, (g —n,,) +(N—2¢ + n,, + 1) =
N —gq + 1. The number of ways of arranging N—qg+1
things of which ¢ —#n,, are one kind and N — 2g + #n,,
are another is

N—qg+1| _ N—gq+1 (3)
q—ng, T \N—2q tn,, +1°

Equation (3) describes the number of ways the “units”
and permutable vacancies may be arranged. To de-
termine A(n,,, g, N), we must multiply Eq. (3) by the
number of ways the particles can be arranged within
the indistinguishable “units.”” There are g — 1 parti-
tions separating the ¢ particles in the “units” (see
Fig. 2);n,, of these partitions separate occupied
nearest neighbor pairs and ¢ —n,; — 1 do not. There
are

g—1 _( a¢-1 4
() = a3 @
ways of arranging the ¢ — 1 partitions, where n,, are
partitions separating occupied nearest neighbor pairs

and g —n,,; — 1 are the number of partitions which
do not.

Thus A(n,,, ¢, N) is the product of Egs. (3) and (4),
i.e.,

A(nu,q,N)=(N“"“) ("—l>. (5)

4Ny 711

II. DETERMINATION OF A(n,,, 4, N)

To determine A(n,,, g, N), the number of arrange-
ments containing 7, vacant nearest neighbor pairs
which are created when g particles are arranged on
a one-dimensional array of N sites, we consider the
“units” to consist of one or more contiguous vacant
sites together with a filled site if one is needed to
isolate the “unit” from other particles or vacancies
(see Fig.3). There are always N — q — nyq “units,”
and they are initially considered to be indistinguish-
able.

There are g occupied sites;but not all of these can
be permuted to create additional arrangements,i.e.,
some of the particles are utilized to isolate the
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‘“units.” More specifically, N — g — 1,7 — 1 occupied
sites must be used to isolate the N —q — n,, “units.”
Thus the number of indistinguishable, permutable
occupied sites is

g—N—q—ngo—1)=2g9 +n4o—N+1,

There are g + 1 things to be permuted, N — g — ng,
“units,” and 2q + ny,, — N + 1 permutable vacancies.

These can be arranged in

N —q—ny 2q +ngg — N+ 1

ways.

The positions of the vacancies of which the “units”
are composed can be changed to other units to yield
additional arrangements. There are N — q — 1 parti-
tions separating these vacancies (see Fig. 4); of these
partitions n,, separate vacant nearest neighbors and
N —¢ —1—n,, do not. These partitions may be per-
muted in

(N—q—1>:<N——q—1 > )
Ngo N—q—nyy—1
independent ways.

Afngo, g, N), the total number of arrangements each
containing n,, vacant nearest neighbor pairs created
when g particles are arranged on a one-dimensional
lattice space of N sites, is the product of Eq. (6) with
Eq.(7),i.e.,

r

Za|

oVi2) o7

FIG.3. For ny, = 3,4 = 8,and N = 15, the number of “units” is
N—g—ny = 4 (the unshaded sites) and the number of permutable
vacancies (shaded) is ¢ —(N —q —ngy — 1) =2¢ + g — N + 1 =15,
There are (g) = 126 ways of arranging the “units” and the per-
mutable vacancies.

IR

FIG. 4. The seven vacancies shown in Fig.3have N —g¢ —1 =6
partitions between them. n,, = 3 of these partitions separate vacant
nearest neighbor pairs (short horizontal lines) and three do not
(jagged lines). There are (§) = 20 ways of arranging the separating
partitions to form the N — ¢ — ny, = 4 “units” illustrated in Fig. 3.
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+1 N—qg—1
A‘”OO*"’N):@—q—nooﬂ o0 ) ©

IV. NORMALIZATION

The zeroth moment of the statistics characterized by
A(nq,,q,N) is obtained by summing A(r,,, g, N) over
all possible values of #n,,,1.e.,for n;; = O up to ny, =
g — 1. The Vandermonde theorem® shows this sum

to be

q-1
N —q + 1> <q —1 N
= . 9
n.Z:;O <q — 11 g, )T \4 ®)
The result explicitly stated in Eq. (9) is to be expect-

ed because (2’), the totality of all arrangements is

composed of those arrangements having no nearest
neighbor pairs (nnp's), one nnp, two nnp's, etc.

A similar result for A(n,, ¢, N) is obtained, i.e.,

B )

V. FIRST MOMENT AND MOST PROBABLE VALUE

The mean value of these statistics,i.e., the ensemble
average number of occupied nearest neighbor pairs
per arrangement is

= o) ()

=

(@—1) 150 @I:XJ 1) <n’il__21> (ﬁj) (11)

- (572) (2)

_ qlg—1)

b

Il

1

a relationship consistent with previously published
results® which indicate that the average number of
nearest neighbors that a particle has varies as the
coverage, § = q/N,for a one-dimensional lattice
space. A similar result,

Ry = (N —q)(N — g — 1)/N, (12)

is obtained for the average number of vacant nearest
neighbor pairs per arrangement,

The most probable value of A("ns q,N),i.e., the value
of n,, at which A(n,,, g, N) is 2 maximum, can be de-
termined by using the Stirling approximation. It is
found to be ¢(g — 1)/N, so that the most probable
value and the average value are the same,
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A quantum anharmonic oscillator with a polynomial self-interaction is defined in coordinate space by a Hamil-
tonian of the form H = —d2/dx2 + 5x2 + g[(3x2)¥ + a(3x2)¥1 + b(;x2)¥2 + - ). Using WKB techniques we
derive a secular equation which determines the eigenvalues of H for small | g|. We find that the qualitative
analytic structure of these eigenvalues as functions of complex g remains unchanged for all fixed values of a,
b,...,includinga = b = --- = 0. The secular equation also implies an elegant theorem which predicts how the
a,b, - -terms in H affect the large-order growth of perturbation theory. We use this theorem to compare the
perturbative behavior of non-Wick-ordered and Wick-ordered field theories in one-dimensional space-time.
In particular, we show that the perturbation series 77 A,g" and ) B, g" for the energy levels of the (gw2Y),

and (:gd/ZN:)l field theories differ in large order by an over-all multiplicative constant lim

exp[N(2N — 1)/(2N — 2)].
1. INTRODUCTION

This study was originally motivated by some remark-
able computer output. We compared the first 100
Rayleigh—Schrédinger coefficients?! in the perturba-
tion series for the ground-state energy of two very
different theories, the non-Wick-ordered and the
Wick-ordered x6 anharmonic oscillators., We obser-
ved that as », the order of perturbation theory, gets
large, the ratio of the nth coefficients for each oscil-
lator approaches a constant. Numerical analysis of
successive ratios2 determined that the value of this
constant is 42.521082 - --. We then recognized that
this number was probably equal to e15/4, A subse-
quent search for a theoretical explanation of this re-
sult led us to formulate a completely general proce-
dure for analyzing anharmonic oscillators with poly-
nomial self-interactions. (The Wick-ordered x% os-
cillator is one such example).

A quantum anharmonic oscillator with a polynomial
self-interaction is defined by the differential equation

-2 2 2\ N-1 2\ N-2
_£+L+g[<x_>”+a<x_> +b<x_> +]
dx2 4 2 2 2

“E(g,a,b,)lp(x)zo (1)
and the boundary condition
lim y¥(x) = 0. (2)
Ix 100
The special case of an anharmonic oscillator with a
monomial self-interaction (@ = b = - -+ = 0) has al-

ready been investigated.S It was shown that WKB
techniques lead to an approximate relation (secular
equation) between the eigenvalues E and the coupling
constant g for small | g|.

In Sec.II we extend the WKB techniques of Ref. 3 and
derive Eq. (32), the corresponding secular equation
for the general problem (a,b,--- # 0). Then, follow-
ing the approach of Ref. 3, we use the general secular
equation to ascertain the analytic structure of E as a
function of complex g. We find that for fixed a,b,...,
the array of singularities that E(g) exhibits (an infi-
nite sequence of square-root-type branch points with
a limit point at g = 0) is qualitatively independent of
the choice (zero or nonzero) of ¢.b,* . As a,b, "
vary, the locations of the singularities shift but the
number and nature of the singularities remain con-
stant. This result strongly supports the conjecture
made in Ref. 3 that the singularity structure and the
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associated phenomenon of level crossing4 are very
general and model independent characteristics of sin-
gulay perturbation theory.

In Sec.III we turn our attention to the large-order be-
havior of perturbation theory. Applying some recent-
ly published dispersion techniques® to the general
secular equation derived in Sec. II gives the following
theorem: Let EX.N.a.b.--+(g) the Kth energy eigen-
value of the differential equation (1), have a perturba-
tion expansion of the form

o0
EXNab — K4 3 4+ ), AENab o gn (3)
e
Then, for large =,

A#’N'a’b"” 1

_ / (N~
aEwee T = ¢/ (1 + €,y (K, N,a,b)—

1 1
+Cz(K’N7a7b’C)ﬁ+CB(K)Nya,b,C,d)ﬁ'l' > .
4)

(The leading large-n behavior of AX.¥.0.0.°" j5 giyen
in Ref. 5).

From Eq. (4) and Ref.5 we observe that the domi-
nant growth of AX.¥.a..--- is controlled by the x2¥
term in the Hamiltonian H in Eq. (1). The x2¥2 term
in H only affects the over-all constant. The x2¥-4
term can at most influence the O(1/n) correction to
the growth;the x2¥-6 term can only affect the O(1/n2)
correction, and so on. Thus,when we consider the
large-order behavior of perturbation theory, the
a,b,- - terms in the Hamiltonian may be considered
“small.” In this sense, Eq. (4) tells how to “perturb
about infinite order” in perturbation theory.®

In Sec.IV we show that the quantum anharmonic os-
cillator defined in Eq. (1) is equivalent to a self-in-
teracting Bose quantum field theory in one-dimen-
sional space—time. We then define Wick ordering
and discuss its effect upon perturbation theory. In
particular, we show that a Wick-ordered monomial
(gy?2¥), field theory is equivalent to a non-Wick-
ordered field theory with a Hermite polynomial self-
interaction. We then apply the theorem of Sec. III
and show that as n — « the ratio of the nth Rayleigh—
Schrodinger coefficients for the perturbation expan-
sion of the energy levels of the (gy¥2¥), and
(:g¥2¥:), field theories is exp[N(2N — 1)/ (2N — 2)].
When N = 2, this expression attains the value e3,a
result already derived in Ref.5. When N = 3, it re-
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duces to e15/4, which is precisely the result of our
computer calculation.

I. DERIVATION OF THE SECULAR EQUATION

In this section we follow Ref. 3 closely. We sum-
marize the techniques needed to obtain the secular
equation and emphasize the important new difficul -
ties encountered in treating polynomial interactions.

A. Analytic Continuation of E(g)

As in Ref. 3 we define E(g) for complex g by Eq. (1)
and the general boundary condition

lim Y(x) =0 for

1% 1= o0

larg(xx) + (2N + 2)-Largg| <@(2N + 2)"1.  (5)

[The sector in Eq. (5) is unchanged by the x2¥-2
x2N-4 ... terms in Eq. (1) because for |x| suffici-
ently large, only the x2¥ term determines the size
and location of the sector.] Equation (5) tells us that
as g rotates into the complex g plane, the differential
equation [Eq. (1)] and its associated boundary condi-

tion [Eq. (5)] must be rotated into the complex x plane.

B. The Turning Points

The turning points for the zeroth-order WKB solu-
tion to Eq. (1) are solutions of the equation

2+ g[Ga2N + a(za?) N+ DAV 4 -]
—E=0. (6)

Two of the turning points lie near the origin at a dis-
tance of order 1:

x ~ +(2E)V/2, (M

The others lie approximately equally spaced on a
circle of radius g-1/(2¥-2),

x ~ g ~1(2N-2) gni/2N-2) 9 WV-2)/(2N-2) prim/(N-1)
m=0,1,...,2N— 3. (8)

As g rotates into the complex plane, the circle of
turning points rotates in the same direction as, but
Jaster than, the sector in Eq. (5). Thus, turning points
periodically enter on one side and leave from the
other side of the rotating sector. The sector is so
narrow that there is either zero or one, but never
more than one, turning point lying inside it.7?

C. The WKB Approach

There are two methods for solving Eq. (1) approxi-
mately using matched asymptotic expansions, the
choice of method depending upon whether or not a
distant turning point lies in the rotating sector. When
there is no turning point in the sector (for example,
when g is real and positive), (a) Eq. (1) is solved near
[x |~ 0, where it is approximated by a parabolic cy-
linder (Weber) equation; (b) it is solved again near
Ix| ~ 0 using WKB theory; (c) the two solutions are
matched asymptotically in the intermediate region;
(d) the matching places a condition on E, which in
zeroth-order WKB gives the expected result

E=K+ 3+ 0(g). 9)
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When a turning point lies in the sector, it interferes
with the above connection by distorting the approxi-
mations to the function Y(x). To treat this configura-
tion (a) Eq. (1) is approximated for }x |~ 0 by a para-
bolic cylinder equation as above; (b) the approxima-
tion in part (a) is matched asymptotically to a WKB
solution valid between the origin and the turning point;
(c) the WKB solution in part (b) is matched asymp-
totically to the Airy equation solution valid near the
turning point; (d) the Airy solution from part (c) is

in turn matched asymptotically to a WKB solution
valid as |x| — w; (e) the condition for matching is the
desired secular equation obeyed by g and E.

D. Derivation of the Secular Equation

To simplify the derivation of the secular equation we
introduce new notation

g =N (10)

— X exp[—in(N + 1)/(2N — 2)], (11)
7 = xein/4 2~ (-2/2N-2), (12)
€ = {E2NVW-D, (13)
= 9-LAN-1), (14)

In terms of the new notation, Eq. (1) becomes

9 .
[3—72 + Tz(,,z — y2NpN-1 __ ’T_a,,zn—zpzv—l

4 }b_sz-l'yZN"l 4. — €>] Yr) =0. (15)

Keeping in mind that [p] is small, we proceed with
the zeroth-order WKB solution outlined above. We
will retain terms to lowest order in powers of p. €
is of order 1.

The locations of the turning points are

7o~ €V2[1+ 0(pV 1)) (16)
and

vy~ e M1+ p/(2N — 2)[— € — (ia/T)] + 0(p2)}. (17)

Note that the first-order correction to »; depends
only on a, the second-order involves a and b, and so
on.

Careful analysis shows that when only lowest-order
powers in p are kept, the parabolic cylinder function
and Airy solutions do not depend on a,b, . More-
over, although the WKB solution does depend on a,

b, ..., the expression for the asymptotic matching
between the parabolic cylinder and WKB functions
does not contain a, b, -+ +. The only dependence on
a,b,:++ comes from matching the WKB to the Airy
function, and this is all contained in the WKB function

Vel ~ [ V4K exp(:tz'T IO dr), (18)
where
Fr) =72 —y2ZNpN-1 — (iq/T)r2N-2pN-1

+ (b/T2)pN1y2N4 ... ¢ (19)

To evaluate the asymptotic behavior of Yyyp (#) in
Eq. (18) for » ~ 7,,We break the integral in the expo-
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nent into two pieces:

S r@2ar =4 + B, (20)
where

A= [larrm)ye (21)
and

B@) = — [,  dr[F(r)]V2. (22)

For » very near v,we let R =%, —#. Then itis
easy to show that

B(R) ~ —p‘1/4R3/2% (2N — 2) 1/2’ (23)

which again does not depend on a, b, - -+ . Hence, the
entire a, b, - -+ dependence resides in A,

To approximate A, we introduce an intermediate
value #,say # = (ror,)1/2,8 and decompose A by

A=A, +A4, (24)

Using Eq. (16), we can appoximate

Ay = I ar[ ) (25)
ny dv(r2 y1/2
= 3772 — ;e log(27/Ve) — fe (26)

To evaluate A,, we let x = »/r:

f dr[f(¥)]1/2

. €

=7r? f_ dx(xz — pNlygN2 2N . —
2]

&
. 1/2
_ _Zy_c‘le-leN—ZV%N“‘l + ) : @7)

The first two terms in the brackets in Eq. (27) are
large compared with the others, so we expand the
integrand using the binomial theorem and then Eq.
(17):

r%f

lpf dx ex2¥ + (ia/T)x2N — (ia/T)x2N"2 — ¢
lr, x(1 — x2N-2)1/2 ’

xdx(1 — x2N-2)1/2
l

(28)

Equation (28) no longer contains b, ¢, - - because
those terms contain more and more powers of p
which we neglect.

To do the first integral in Eq.(28) we use

r2 fo xdx(l — x28-2)1/2 ~ 172,

Subtracting and adding this quantity gives a new inte-
gral which, after one substitutes

t = x282 (29)

reduces to an Eulerian integral of the first kind. The
result for the first integral in Eq. (28) is thus
N— 1rE)

+ (N— 1)1

2
__1_,7-2.;_ i r[(

(30)
2 N+1T[3
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There are three different integrals to perform in the
second term of Eq. (28). The first,

f,l

dx x2N-1 (1 — x2N—2)‘2
r/ry

is done by replacing the lower limit with 0 and using
Eq. (29). The second is an exact differential and may
be done directly. The third is also an exact differen-
tial, Equation (29) reduces it to an integral of the

form fdt t71(1 — £)~1/2 which may be done easily.
Performing all of the indicated integrals and using

Eq. (17) repeatedly gives a rather complicated ex-
pression which then simplifies markedly to

A ~—£+——i—a——+-€—10g<T2p—€>
4 T@N_—2) 4 4
R (et U C B
p(N+1) T[z + V—1)1]

Equation (31) contains no reference to #, which veri-
fies the correctness of the above lengthy sequence of
approximations. This completes the evaluation of A.

The expression for 4 in Eq. (31) is now used to com-
plete the matching of the WKB and Airy functions as
was done in Ref. 3. The resulting general secular
equation is

Iz +3E) <5ni _E log(T
fC_ip ~ exp| og(Tp)
; — D1t
iITT[(N — 1)7L0(3) N a ) (322)
(N+ Dpl[z +(N—1y1] N-—1
for even-parity energy levels and
I(; + 3E) 5mi £ log(To)
TG - L) exp( 1 osLp
; — 1)1t
ITT(N — 1)71T(3) ,_a > (32b)
(N+DpT[z+N—1)1] N-—1

for odd-parity energy levels.

The parameter « only enters Eq.(32) in an over-all
multiplicative constant. When we set a = 0,we re-
cover the results of Ref.3. Had we carried out the
above analysis using higher-order WKB (following
the procedure of Appendix F of Ref. 2, for example),
the parameter b would have appeared as an addition-
al term in the secular equation multiplied by p, ¢
would have appeared multiplied by p2,and so on.

The implications of the secular equation [Eq. (32)]
are the same regardless of the choice of a. It pre-
dicts the existence of an infinite sequence of square-
root-type branch points in the complex g plane with
a limit point at g = 0. Level crossing occurs at the
branch points. Quantitative descriptions of these
phenomena may be found in Refs.2 and 3 and need
not be repeated here. However, we strongly empha-
size the apparent model independence and universa-
lity of these phenomena. It has now been demon-
strated that these same features are exhibited by an
extraordinarily wide class of singular perturbation
theories.
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H. LARGE-ORDER BEHAVIOR OF PERTURBA-
TION THEORY

The perturbation series for the Kth energy eigen-
value for Eq.(1) is given in Eq.(3). To determine
how AK.N.a.b.--- behaves for large n,we use the dis-
persion techniques introduced in Ref.5. There it was
shown that

1

K.N,a,b,--
An
2mi

SO ax xmpKFan (), (33)

where

DEN.@.b, - (x) = m% [FEN.ab .- (x + {€)
€=

— FENGb - (x —ie)] (34)
and
FENab . (x)= x l[EKNab-(x) —K—3}]. (35

The discontinuity in Eq.(34) may be computed direct-
ly from the secular equation [Eq.(32)]. We do not
present the details of this calculation here as it will
appear elsewhere.? However, it is clear that the only
dependence of DX.¥.e.b.---(x) on the parameter a is
contained in an over-all multiplicative constant. Spe-
cifically, we find that in zeroth-order WKB

DEN.ab, - (x) = ga/ W1 M <_x>-(K+1/2)/(N—1)

K| 9,
—T2(N/N — 1)

< o (w1 gnve) - 9

As n — ©,we may insert the expression for
DX.N.a.b.---(x) in Eq.(36) into the integral in Eq.(33)
because for large n the integral is only sensitive to
the small |x| behavior of D. (Recall that the WKB
techniques in Sec.II become accurate in the limit as
gl — 0). Therefore,using Eq. (33) we establish that
in lowest-order WKB

K N,ab, -
AfN.a

im — = ea/N-1)
}LHE;A;{,N,O,O,--. =¢ ’ (7

As was seen in Ref. 5,the corrections to Eq. (37) that
arise from higher-order WKB calculations of
DXN.ab. - are of order n1,n2,and so on. These
large-n corrections take the form

K N,ab, ---
An

Cn .~ ea/ND[L + Cy(K,N,a,b)n !
A’IL{'N'O'O'“.

+C,o(K,N,a,b,c)n2+C4(K,N,a,b,c,dn3 + ---).
(38)

The specific functions C;,C,, -+ have not been de-
termined because we have not carried out the higher-
order WKB calculations. However,to verify the the-
orem in Eq.(38),it is important to establish that C,
just depends on @ and b,C, on a,b,and c,and so on.
We do this by noticing that b enters the secular equ-
ation multiplied by p, ¢ is multiplied by p2,d by p3,
and so on. Combining this observation with the ra-
ther complicated arguments given to establish Eq.

(4) of Ref. 5 proves the above assertions on the struc-
tures of C,,Cy, -

This theorem [Eq.(38)] on the large-order behavior
of the Rayleigh—Schrédinger coefficients is most un-
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usual. It tells how to “perturb about infinite order”
in perturbation theory, which is indeed a strange con-
cept. In the next section we present a straightfor-
ward application of this theorem. We ascertain the
effect of Wick-ordering on one-dimensional field-
theoretic perturbation theory.

IV. WICK-ORDERING IN ONE-DIMENSIONAL
FIELD THEORY

The (2%}, quantum field theory in one-dimensional
space-time is defined by the Hamiltonian and com-
mutation relation

H =30 + b2y + g2, (39)
W] =i (40)

To Wick-order the Hamiltonian, one rewrites it in
terms of creation and annihilation operators where
the annihilation operators stand to the right of the
creation operators. In terms of fields

W2 =92 — (1/2m),
=yt — (3/m)y? + (3/4m?), (41)
1y =6 —(15/2m) Y?* + (45/4m2) Y2 — (15/8m3).

The polynomials in Eq.(41) are the Hermite polyno-
mials10;

Hy(zx) =x2 —2,
Hy(3x) = x4 — 1222 + 12, (42)
Hg(3x) = x6 — 30x% + 180x2 — 120.

When m = §,the coefficients in Eqs.(41) and (42) be-
come identical.

The Feynman diagrammatic expansion of a one-di-
mensional field theory is topologically identical to
that of a higher-dimensional theory. (The Feynman
rules may be found in Ref. 3.) Wick-ordering the per-
turbation expansion removes all Feynman diagrams
having self-loops (lines with both ends connected to
the same vertex). The energy levels of a field theory
are the eigenvalues of the Hamiltonian H:

H|E)=E|E). (43)

These eigenvalues may be computed perturbatively in
terms of diagrams. The Kth energy level is the K-
particle pole of the 2K-point Green's function. The
ground-state energy is the sum of all diagrams with
no external legs.

How does Wick-ordering the Hamiltonian in Eq. (39)
affect the large-order behavior of the perturbation
expansions of the energy levels? To answer this ques-
tion we transform from a creation~annihilation oper-
ator to a coordinate space representation of H:

Yo 22y, o — 212 %, (44)

and we set m = 1. Then Eq.(43) becomes

dz | x2 xZ\V
et ) e e

If H is Wick-ordered before using Eq.(44), we have
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2 2
N ] *Ei"b(x) —0, (46)

42 a2 1 +g[(zci>N~ N(2N — 1)<_x_2>N‘1

using the formula for the coefficients of a Hermite
polynomial.

If we define the perturbation expansions of the eigen-
values of Eqgs. (45) and (46) to be 2;A, g" and 2B, g",

then for large » the ratio A, /Bn is given by the the-
orem in Eq.(38):

A, N(2N — 1)
lim — = exp———. (47)
2N — 2

When N = 3,the right-hand side of Eq. (47) reduces
to e15/4,in spectacular agreement with the computer
result mentioned at the beginning of this paper.
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Quantum Electromagnetic Zero-Point Energy of a Conducting Spherical Shell
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The quantum zero-point energy of a conducting spherical shell was first calculated by Boyer [Phys. Rev.174,
1764 (1968)]. Because of the importance of this calculation and also of Boyer's uncertainty about the analytical
dependence of the energy on the cutoff function, we have checked the calculation independently. We determine an
analytic continuation of the energy function using the Mellin transform, and thereby show how an exact value of
the self-energy can be obtained from the divergent series. We also compute an approximate value of the self-
energy by extrapolating a direct numerical evaluation of the cutoff integrals. These calculations confirm

Boyer's result.
1. INTRODUCTION

Recently there has been a considerable amount of
interest in calculating the quantum zero-point energy
of various objects.1 ™3 In particular, the calculation
of quantum electromagnetic zero-point energies has
turned out to be a useful way of evaluating long range
electromagnetic forces in some cases of interest.3
Casimir evaluated the attractive force between two
conducting parallel plates separated by vacuum more
than twenty years ago,% and went on to suggest an
intriguing model for a charged particle on the basis
of this result.5 The idea is that the electron is a
charged, perfectly conducting sphere, and that its
Coulomb self-energy is balanced by the quantum
electromagnetic zero-point energy, which Casimir
considered would be negative. Since the electrostatic
energy is proportional to ¢2, and the quantum zero-
point energy to fic, this raises the exciting possibility
of being able to calculate a rough value for the fine
structure constant and of gaining some insight into
the structure of the electron. The calculation of the
zero-point energy was performed by Boyer,1 who
found that it is in fact positive, so that Casimir's
model cannot account for the stability of a charged
particle. Since Boyer's evaluation of this self-energy
involves delicate numerical calculations including a
limiting procedure which he could not show to be
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valid (although it appears to be so), we have thought
it worthwhile to perform the calculation by alternate
means, It is disappointing to report that the result
of our calculations is to confirm Boyer's result;
however, we think that the methods which we have
applied, and the confirmation of a tricky but impor-
tant calculation, are of some interest in their own
right, Furthermore, we intend to extend these me-
thods to investigate the quantum zero-point energy
of other systems which have spherical symmetry.

In talking about the zero-point energy of a conduct-
ing spherical shell of radius a, we mean the differ-
ence between the zero-point energy of the “universe”
when the sphere is present and when it is absent, In
order to make the calculation feasible, we take the
“universe” to be a sphere of radius R > a and the
two spheres to be concentric, We have three regions
to consider: the interior of the small sphere (I), the
concentric shell between the two spheres (II), and the
interior of the large sphere when the small one is
absent (III).6 Each of these regions has a set of nor-
mal electromagnetic modes of frequency w,, and the
zero-point energy of each region is defined by

E ZL? %hwk- (1)

The zero-point energy of the conducting shell of
radius a is then
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2 2
N ] *Ei"b(x) —0, (46)

42 a2 1 +g[(zci>N~ N(2N — 1)<_x_2>N‘1

using the formula for the coefficients of a Hermite
polynomial.

If we define the perturbation expansions of the eigen-
values of Eqgs. (45) and (46) to be 2;A, g" and 2B, g",

then for large » the ratio A, /Bn is given by the the-
orem in Eq.(38):

A, N(2N — 1)
lim — = exp———. (47)
2N — 2

When N = 3,the right-hand side of Eq. (47) reduces
to e15/4,in spectacular agreement with the computer
result mentioned at the beginning of this paper.
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The quantum zero-point energy of a conducting spherical shell was first calculated by Boyer [Phys. Rev.174,
1764 (1968)]. Because of the importance of this calculation and also of Boyer's uncertainty about the analytical
dependence of the energy on the cutoff function, we have checked the calculation independently. We determine an
analytic continuation of the energy function using the Mellin transform, and thereby show how an exact value of
the self-energy can be obtained from the divergent series. We also compute an approximate value of the self-
energy by extrapolating a direct numerical evaluation of the cutoff integrals. These calculations confirm

Boyer's result.
1. INTRODUCTION

Recently there has been a considerable amount of
interest in calculating the quantum zero-point energy
of various objects.1 ™3 In particular, the calculation
of quantum electromagnetic zero-point energies has
turned out to be a useful way of evaluating long range
electromagnetic forces in some cases of interest.3
Casimir evaluated the attractive force between two
conducting parallel plates separated by vacuum more
than twenty years ago,% and went on to suggest an
intriguing model for a charged particle on the basis
of this result.5 The idea is that the electron is a
charged, perfectly conducting sphere, and that its
Coulomb self-energy is balanced by the quantum
electromagnetic zero-point energy, which Casimir
considered would be negative. Since the electrostatic
energy is proportional to ¢2, and the quantum zero-
point energy to fic, this raises the exciting possibility
of being able to calculate a rough value for the fine
structure constant and of gaining some insight into
the structure of the electron. The calculation of the
zero-point energy was performed by Boyer,1 who
found that it is in fact positive, so that Casimir's
model cannot account for the stability of a charged
particle. Since Boyer's evaluation of this self-energy
involves delicate numerical calculations including a
limiting procedure which he could not show to be
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valid (although it appears to be so), we have thought
it worthwhile to perform the calculation by alternate
means, It is disappointing to report that the result
of our calculations is to confirm Boyer's result;
however, we think that the methods which we have
applied, and the confirmation of a tricky but impor-
tant calculation, are of some interest in their own
right, Furthermore, we intend to extend these me-
thods to investigate the quantum zero-point energy
of other systems which have spherical symmetry.

In talking about the zero-point energy of a conduct-
ing spherical shell of radius a, we mean the differ-
ence between the zero-point energy of the “universe”
when the sphere is present and when it is absent, In
order to make the calculation feasible, we take the
“universe” to be a sphere of radius R > a and the
two spheres to be concentric, We have three regions
to consider: the interior of the small sphere (I), the
concentric shell between the two spheres (II), and the
interior of the large sphere when the small one is
absent (III).6 Each of these regions has a set of nor-
mal electromagnetic modes of frequency w,, and the
zero-point energy of each region is defined by

E ZL? %hwk- (1)

The zero-point energy of the conducting shell of
radius a is then
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AE(a) = ii_fg(EI + By — Eyy). (2)

Of course, each of the sums involved in (2) is infinite
and this represents an aspect of the problem which
is not yet well understood. In Boyer's calculation,
this problem is overcome by introducing a cutoff
function into each of the sums, performing the sub-
traction, and then removing the cut-off functions
again. By suitable choice of these cutoff functions,
we could recover any finite or infinite answer that
we please; but Boyer argues on physical grounds that
the cutoff functions for each sum must be the same
function, and that it must depend only on the ratio of
the frequency to a cutoff frequency. This then makes
the answer unique for a wide range of cutoff func~
tions. We must emphasize that although the energy
is unique in this sense, the decision to base the cut-
off on frequency, and to apply the same function to
each region, is a part of the physical model.

2. APPLICATION OF THE MELLIN TRANSFORM

We show in the Appendix how the self-energy (2) may
be evaluated by contour integrals. The cutoff function
which we shall use in this section is exp(— Ak) and
we denote the corresponding energy by AE(a, ). It
is given by

AE(a,)) = .OZOE AE(a, ), (3)
1=
where
AE(a,x) = Dle M) + De ) (4)

and the linear functionals O, and D, are defined in
the Appendix. Numerical evaluations, which are pre-
sented in Sec. 3, indicate that AE(a,)) is finite for

A > 0, but that the sum diverges for A = 0. This be-
havior shows that the series is not uniformly con-
vergent around A = 0, and also raises the possibility
that AE(a, 0) is infinite.

This ambiguity in the value of AE(a, 0) has led us to
apply the Mellin transform to investigate more pre-
cisely the analytic behavior of AE(a,)) around A = 0.
The Mellin transform of AE(a, ) is

AF(a,p) = j(;wm-l AE(a,\)dA

- i L7221 [De ) + Be ) in (5)

=T(p) Z[iDl(kP + Dk ?)], Relp)>c=0,
where the constant ¢ should be equal to zero if

AE(a, 0) is finite or +1 if it diverges as A~1. Now
the residues at the poles of AE(a p) determlne the
coefficients of various powers of A (not necessarily
integer powers) in an asymptotic expansion of
AE(a,)). In particular, T'(p) has a pole of unit resi-
due at p = 0, so that we have

AE(a,0) = lZ? [D(e70) + D(k~9)]. (6)
However, each of the terms in the sum (6) is equal to
AE(a, 0), so that it diverges. Now this is precisely
what we should expect if AE(a,p) had a pole atp =1,
for then we would restrict (5) to Re(p) > 1. What we
must do, therefore, is to investigate AFE(a,p) for

Re(p) > 1,and find an analytic continuation to p = 0.
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Application of (A10) and (A12) gives

_ Tl + 3) <_ cos(mp /2)

m

aEa,p) = LRI

x £7 6 2[08) + 6))at
XD + O + D + 1))
(7)

where the notation is defined in the Appendix. Now
the integrals in (7) diverge if Re(p) = 1, so we need

to proceed carefully. An alternative expression for
AE(a,p) is given by using (A7) and we see that if we
use this expression, the factor £ 7, which causes (7)
to diverge at the origin, gives no trouble for Re(p)<4.
Hence to use (7) for Re(p) = 1, we analytically con-
tinue by treating the divergent part of the integral
directly. To do this, we need the following expansions
of the functions ¢, and ¢, defined in (A13):

&, (&) =
3,(8)

(21 + I{1 + @ 82 +a 84 + -0 ]

= (20 +1{1 + 0,82 + @, 84 + -0, ®

Now we write
£, e rlede) + Fus =2
+ [T ere) + ¢l(s) — 41— 2]t
+ £7E 1o (8) + )] dt 9)

and this performs the necessary extension for Re(p)
< 3. Note that there is no pole at p =1, as we would
expect from our comments above on the possible use
of (A7). Atp =1, the factor cos(mp/2) cancels the
finite integrals in (9), so that (7) becomes

AE(a, 1)

The two sums are equal to the total number of com-
plex zeroes of B2 and (y4{2)’; that is7 to (2 + 1), so
that AEl(a 1) = 0

We have evaluated (7) numerically using (9) for
0 < p < 2,and we find that for large [ we have the
asymptotic form

=Fc(l + 3)[— (2 +1) + 22 +X/2). (10)

AE(a,p)/T(p) = f@)[(2L +1)7# + 021 + 1)7#2].  (11)

We show in Fig.1 a graph of f(p), which is seen to
have a zero at p = 1, as we have just proved. It is

2.0 W
]
1.0 1
£(P)
0.5 1
0.0
-0.5 v —— -
0.0 0.5 1.0 1.5 2.0
FIG.1. Coefficient f(p) in asymptotic expansion (11).
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TABLE I. Computed values of AE(a, ) defined by (4).
by 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1
1 —0.094 542 —0.093 440 -0.090 233 -—-0.085173 —0.078 603 —0.070 904 —0.062 456 —0.053 614 —0.044 690 —0.035 946
—0.093 970 -0.091 048 —0.082 923 ~—0.071 046 —0.057 043 —0.042 373 —0.028 177 —0.015 242 —0.004 038 0. 005 231
—0,093 852 —0.088 286 -—0.073 715 -—0.054 333 —0.034 006 —0.015 434 —0.000 092 0.011 505 0.019 480 0.024 309
—0.093 809 -—-0.084 863 —0.063 032 —0.036 975 —0.013 110 0.005 373 0.017 738 0.024 648 0.027 342 0.027 130
5 —0.093 788 —0.080 821 —0.051 570 ~-—0.020 623 0.003 628 0.018 861 0.026 144 0.027 751 0.025 936 0.022 445

—0.093 777 -—0.076 247 —0.039 954 --0,006 327 0.015 620 0.025 863 0.027 844 0.025 233 0.020 746 0.0186 007
—0.093 770 —-0.071 239 —0.028 686 0. 005 396 0.023 172 0.028 006 0.025 620 0. 020 443 0.015 005 0.010 409
-0,093 766 —0.065 894 --0,018 141 0.014 419 0.027 039 0.026 968 0.021 606 0.015 371 0.010 139 0.006 348
—0.093 762 0,060 307 —0.008 575 0.020 883 0.028 117 0.024 143 0.017171 0.010 960 0.006 518 0.003 692

10 —0,093 760 -—0.054 563 —0.000 139 0.025 084 0.027 256 0.020 545 0.013 064 0. 007 507 0.004 035 0.002 069
—0.093 758 —0.048 T44 0. 007 096 0.027 389 0.025 177 0.016 835 0. 009 610 0.004 982 0.002 422 0.001 126
—0.093 757 —0.042 921 0.013 125 0.028 182 0.022 441 0.013 393 0.006 882 0.003 223 0.001 419 0.000 598
—0.093 756 —0.037 158 0.017 994 0.027 828 0.019 455 0.010 404 0.004 820 0.002 042 0.000 814 0.000 311
—0.093 755 —0.031 509 0.021 779 0.026 647 0.016 494 0.007 925 0.003 314 0.001 270 0.000 459 0. 000 159

15 —0.093 755 —0.026 023 0.024 580 0.024 912 0.013 728 0. 005 937 0.002 243 0.000 778 0.000 255 0.000 080
—0.093 754 —0.020 738 0.026 506 0.022 844 0.011 250 0.004 385 0.001 498 0.000 471 0.000 140 0.000 040
—0.093 754 —0.015 685 0.027 674 0.020 615 0.009 097 0.003 199 0. 000 988 0.000 281 0.900 076 0. 000 020
—0.093 753 ~0.010 891 0.028 196 0.018 352 0.007 272 0.002 308 0.000 645 0.000 166 0.000 041 0.000 010
—0.093 753 —0.006 374 0.028 181 0.016 149 0.005 754 0.001 650 0. 000 417 0.000 098 0.000 022 0. 000 005

20 —0.093 753 -0.002 148 0.027 730 0.014 068 0.004 513 0.001 189 0,000 268 0.000 057 0.000 011 0. 000 002
—0.093 752 0.001 779 0. 026 934 0.012 145 0.003 511 0,000 822 0.000171 0. 000 033 0. 000 006 0.000 001
—0.093 752 0. 005 403 0.025 874 0.010 403 0.002 712 0.000 574 0. 000 108 0.000 019 0.000 003 0. 000 001
—0.093 752 0.008 723 0.024 621 0,008 848 0.002 081 0.000 399 0. 000 068 0.000 011 0. 000 002 0. 000 000
—0.093 752 0.011 743 0.023 234 0.007 477 0. 001 588 0.000 275 0. 000 042 0. 000 006 0. 000 001 0. 000 000

25 —0.093 752 0.014 467 0.021 766 0.006 283 0.001 205 0. 000 189 0.000 026 0.000 003 0. 000 000 0.000 000
—0.093 752 0.016 904 0. 020 258 0.005 251 0.000 910 0.000 129 0.000 016 0.000 002 0. 000 000 0. 000 000
—0,093 752 0.019 064 0.018 744 0.004 368 0.000 684 0.000 088 0. 000 010 0.000 001 0.000 000 0. 000 000
—0. 093 752 0.020 958 0.017 252 0.003 617 0.000 512 0. 000 059 0.000 006 0. 000 001 0. 000 000 0.000 000
—0.093 752 0.022 598 0.015 802 0. 002 983 0. 000 382 0. 000 040 0. 000 004 0. 000 001 0. 000 000 0.000 000

30 -—0.093 752 0. 023 998 0.014 411 0.002 451 0.000 284 0. 000 026 0. 000 003 0.000 001 0. 000 000 0.000 000

also possible to evaluate analytically the derivative
of (11) with respect top atp = 1, to get

'87)- ——_—r(p) :lp:l = éﬁ (l + ) 1r1<
hc[(20 +1)71 + 021 + 1)73],

[a AEfa,p)

G+ 1)
ii+1

(12)

which provides added strength to the numerical evi-
dence in support of (11). With the information which
we now have, we can perform an analytic continuation

of AE(a,p) to Re(p) <

1. For Re(p) > 1,(11) shows

that the series converges, so that we can rearrange
the terms to write

aB(a,p) = TP)(p) £ 2 + 1%

+ 5 [aBa,p) — T(p)F(p) (@ + 1)F]

l:

= T(P)F(P)(1 — 2 2)¢(p) — 1]

+ 2 [Ba,p) — TSP + 1)),
1=

(13)

The series which now appears in (13) is convergent
for Re(p) — 1, so that we have an analytic continua-
tion of AE(a,p) mto this region. Note that the con-
junction of a pole in&(p)and a zero in flp)atp =1
causes AE(a,p) to be finite there, even though each
term in the series expansion is zero atp = 1. This
shows why it is necessary to use an analytic con-
tinuation to reach p = 0; the situation is entirely
analogous to the computation of the series

S —1)ns
7=1

(14)

for p = 0. This series defines the function (p —1DE(p),
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which is analytic in the entire plane, and which has
the value + 1 atp = 1, Nevertheless, each term is
zero at p = 1 and the series diverges for Re(p) < 1.

The upshot of this is that AE(a, ) approaches a finite
limit as A — 0, because (13) defines a function which
has no poles for 0 < Re(p) <1, Atp = 0,thereis a
pole due to the function I'(p), and the residue of the
inverse Mellin transform at this pole gives the value
of AE(a,0): It is

AE(a, 0) = —(0) + ;'21 {8E(a,0)—fO)}.  (15)

It is interesting to note that this formula was sug-
gested by Boyer to be a reasonable approximation to
the self energy, although not used by him for the
actual evaluation. However, the steps leading to the
derivation in Boyer's paper are incorrect, as we
shall show in the next section. Numerical values of
the quantities needed in (15) are given in Table I for
{ up to 30; inserting them into this formula gives the
result

E(a,0) = + 0,092 43. (16)

3. NUMERICAL EVALUATION OF AE(a, )

We have evaluated the quantities AE(a, 1) for various
values of X and /, and the results are given in Table I.
Each of these numbers is the difference between the
value of the integrals and the residues, both of which
are of order /3 exp(— Al). It is therefore apparent
that computer round-off errors limit the maximum
value of ! for which the error is acceptable. Our
experience leads us to believe that the values given
in Table I are correct to within one in the sixth deci-
mal place; but that we could not extend the results to
higher ! values or higher accuracy for I = 30, with
the present computing facilities. Since the series
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TABLE II. Values of AE(a, A} obtained by application of summation
formula (18).

A 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

11 —0.5067 0.2721 0.1143 0.0948 0.0894 0.0865 0,0842
—1.1540 0.1737 0.1034 0.0923 0.0887 0.0863 0.0841
2.0573 0.1359 0.0979 0.0910 0.0883 0.0862 0.0841
0.5026 0.1175 0.0949 0.0904 0.0882 0.0862 0.0841

15 0.2840 0.1075 0.0933 0.0900 0.0881 0.0862 0.0841
0.2014 0.1017 0.0923 0.0898 0.0880 0.0862 0.0840
0.1603 0.0982 0.0918 0.0897 0.0880 0.0861 0.0840
0.1370 0.0960 0.0914 0.0897 0.0880 0.0861 0.0840
0.1226 0.0946 0.0912 0.0896 0.0880 0.0861 0.0840

20 0.1133 0.0937 0.0911 0.0896 0,.0880 0.0861 0.0840
0.1072 0.0931 0.0910 0.0896 0.0880 0.0861 0.0840
0.1030 0.0927 0.0910 0.0896 0.0880 0.0861 0.0840
0.1000 0.0924 0.0910 0.0896 0.0880 0.0861 0.0840
0.0980 0.0922 0.0909 0.0896 0.0880 0.0861 0,0840

25 0.0965 0.0921 0.0909 0.0896 0.0880 0.0861 0,0840
0.0954 0.0921 0.0909 0.0896 0.0880 0.0861 0.0840
0.0947 0.0920 0.0909 0,0896 0.0880 0.0861 0.0840
0.0941 0.0920 0.0909 0,08%6 0.0880 0.0861 0.0840
0.0937 0.0920 0.0909 0,0896 0.0880 0.0861 0.0840

30 0.0934 0.0919 0.0909 0.0896 0.0880 0.0861 0,0840

does not converge uniformly, we have to compute
AE(a,)) for various values of » and extrapolate to

A = 0. We are limited to a maximum value of / = 30
in forming the infinite sums and we see from Table 1
that as a result of this we will not be able to evaluate
AE(a, 1) for values of A smaller than about 0. 3. Even
for this value of A, there is an appreciable contribu-
tion from terms with ! > 30, so that we have to use a
summation formula to estimate the tail of the series.
Any such formula depends on an assumed asymptotic
form for the terms in the series. Boyer has conjec-
tured that this asymptotic form is

AEl(a,}\) ~ qe—[z+(1/2)]>\; (171

but it is obvious from our results that this cannot
hold for small values of (I + 3. In fact, if (17) did
hold, then AE{(a, 1) would diverge as A~1 for small A,
which is not the case. The trouble with (17) is that it
appears to be an asymptotic form for large / and
fixed A, and in fact our numerical results show that
it is not too bad if Ix < 10. However, Boyer uses this
asymptotic form to sum the series and then takes

A — 0, which violates the condition for the validity of
the approximation. Now (17) expresses the fact that
the terms become close to those of a geometric pro-
gression for large [, and using this fact, we have
made the approximation

P()

95

A

FIG. 2. Extrapolation of AE(a, 1) to A = 0 given by quadratic
p(x) = 0.0929 + 0.0035x — 0.0150x2, Data points from Table II.
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2 AEZ,(a,))
AE(a,)\) = 2, AE(a,x) — ,
(a,2) 121 (@) AE; ,(a,\) — AE(a,))

which would be exact if the series were exactly a
geometric progression for / = L — 1. The values of
this approximation to AE(a, ) are shown in Table II.
For x = 0. 3, it would seem that we have values of
AFE(a, ) to within one digit in the fourth decimal
place, except for A = 0. 3, where the calculation has
obviously not yet converged, and the value is too high.
We have fitted these results to the quadratic expres-
sion p(A) = 0.0929 + 0.0035x — 0.01502, which fits
the values from A = 0.4 to 0.8 exactly. These results
are displayed in Fig. 2, where it is seen that the point
for A = 0. 3 is above the curve. The extrapolation
given by p(a) leads to

(18)

AE(a,0) ~ 0.0929, (19)

which is in reasonable agreement with the exact re-
sult (16). In theory, the extrapolation could be im-
proved by including higher powers of A, but this would
make it necessary to obtain values of AEj(a,)) to
higher accuracy and for higher values of /. In view
of the ease with which the value of AE(a, 0) can be
computed using the Mellin transform, there is no
point in improving the accuracy of this extrapolation.
The most important aspect of these numerical cal-
culations is that they demonstrate the nature of the
conditional convergence of the series (3) around A =
0. From Table I we see that the initial negative
terms in the series, of which there are an increasing
number as A decreases, almost cancel the positive
terms in the tail. An example of a simple series
with these properties is

an(h) = e‘nk — 26—2}1 )\’ (20)
which has the properties
a,(0)=—1, lim2 a)=+3, (21)
A0 n=1

which are very similar to those which we have al-
ready encountered.

4. CONCLUSIONS

We have determined the necessary analytic proper-
ties of AE(a, ) to allow an accurate determination of
AE(a, 0). The physical reason why this energy is
positive is not clear; and the situation is made more
puzzling by the following considerations

(a) If the sphere is flattened, it must eventually
approximate a pair of parallel plates, for which the
energy is negative. In faet, it was the fact that the
force ig attractive for parallel plates which led Casi-
mir to suggest his model of the electron.

(b) If we consider a sphere of dielectric material,
we would expect a negative energy, because the model
is also appropriate for a macroscopic sphere of
material held together by Van der Waals' forces and
these are attractive.

We are at present attempting to elucidate these prob-
lems, and in particular to develop an effective way of
evaluating the quantum electromagnetic energy of a
dielectric sphere. It is too early to say what the re-
sults of this investigation will be, or what light (if
any) will be shed on the present problem.
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APPENDIX

In this appendix we derive an expression for AE(a)
as a contour integral. In order to avoid unnecessary
duplication of technical details contained in Boyer's
paper,l we use his notation for the frequencies of
the various normal modes. The reader should there-
fore refer to this paper for definitions and details of
the various symbols which we use in the following,
For the TE modes, we need to evaluate the quantities

ﬁDt(EF) )[2 kls(a)sz(kls(a))
+ E K s(a,R)F(K,s(a,R)) -—E sR)F (ks (R))].

(A1)

1t is important to our analysis in Sec. 2 that this sum
is a linear functional in the cut-off function, and so
we have denoted it by §(F). For large R, we have8

T Kisla, RIS (@, R) ~ [ KisF(K,g)ds
3S,(a,R,K)

~ f0°°KsF(K) <—"l"aK—“> dI({AZ)

=Fc(l + 3

~ [k k) ds
Nf kEF(k)( Sl k)>dk

and, using the relation Sj(a,R, K) = s,(R, K)
we get

(F) = ﬁc(l [Z}ws (m) f 12 <>(asal)(, )>d7},

(A3)

¥ by (R)F (ko (R))

- s[(a’ K))

where v, and s;(y) are related by

g(s,y) = cos(ns)j,(x) + sin(ns)y,(x) = 0. (A4)

Note that we use y,(x) for the spherical Neumann
functions in place of Boyer's n(x).

For the TM modes the analysis is very similar, giv-
ing the result

D(F) = ﬁc(H L 715§ <ns>—f0°°75?<§><i§§—)>dv],
(A5)
Im(x)

r Re (3)

FIG. 3. Contour of integration for (AS).
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where

&/(5,y) = cos(n8) (7j,(y))" + sin(@3) (7y,(7))’ = 0.  (AS6)

By using the Euler—Mclaurin summation formula and
integrating by parts, we get the final expression given
in Boyer:

AE(a) = lim OZOJ [D(F) + B(F)]

D [ fs,0x)
+ 50 = [5,00)] — 1) Pg@]

We may now use (A4) to obtain an expression for the
quantity 2s;/8y which appears in (A3), as follows:

os _ 1 (’1&’&) _”‘_2)(1))

= 11m E h’c(l 2 [s,(x)]

(AT)

(A8)

Equation (A3) may now be rewritten as a contour
integral involving various spherical Bessel functions.
The contour is chosen so as to encircle all the real
zeroes of j,(x) and to avoid all the complex zeroes of
the spherical Hankel functions. This is shown in Fig.
3. Using (A8), we may therefore write (A3) as

D(F) = _ﬁc(zl + 3)
mia
By) B WDby)
X [f ySly/a )<]l('>’) h,(l)(y)>dy

+ [orSly/ )@E—)—h’m(y))dy] (A9)

ifky)  R2(y)

Finally we deform this contour so that the integra-
tions are taken along the imaginary axis. In the pro-
cess, we must pick up the residues at the complex
poles of the Hankel functions, j,(x) having no complex
poles.? Furthermore, the Hankel functions have a
zero on the imaginary axis for odd values of /; we
therefore have to pick up only half of the residue at
this pole and evaluate the integral as a principal
value integral. The integrand itself can be simpli-
fied by using the Wronskian relations on the square
braces, changing variables to { = 7y, and using the
parity relations for spherical Bessel functions to
express all quantities in the lower half plane in
terms of quantities in the upper half plane. The re-
sult of all these manipulations is

ny(5) = =fellt2) £ [EF(%> + 5(%1’5” $i(£)ds
. zc_(za_@ E’[y” <yn>+ v &(%’Z)] (A10)

Here the stroke through the integral sign indicates
that a principal value is to be taken if there is a pole
in the integrand. The quantities y,; and yl‘; are those
complex zeroes of the functions k{2) and k{1) res-
pectively, which fall in the right-hand half-plane. The
prime on the summation sign indicates that if one of
the roots y,; is pure imaginary, only half of the con-
tribution is to be taken. ¢,(£¢) will be defined below.
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Now a similar series of manipulations yield a simi~
lar result for the TM modes. Corresponding to (A9),
we get

_he(l + 3)
2mia

5 <(w'z(7))”_ bR
Xl:fr_'y <a> (i ,(y)) (7’11(1)(7))') 4

WAV N (RED )"
+ |, vF (- — dy|, All
ff 4 <a>cwjz(7))’ (vhz(z’(y))’> vj (Al

and corresponding to (A10) we get
50 =552 £ (s (3 )+ o(%)|awas

. h’c(la +14) 2,[;“3:(%% 71*5(27;_’:)] (A12)

Here the quantities y,; and 71’; are the complex roots
of the functions (y#{?)" and (yh{?)’, respectively,

5(F) =
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which fall in the right-hand hailf plane. The functions
¢, and ¢, are defined by

&,(8) = [E,(E)(2(iE)] L,
— [l(l +1) + 52]
[E(&,(8)) (R D(E)) ]

where the prime denotes d/d&.

— (A13)
¢1(§) =

Equations (A10) and (Al12) represent a convenient
form for computation, compared with an expression
of the type (AT). The integrals converge rapidly be-
cause of the exponential rate of decrease of the func-
tions ¢, and ¢, for large ¢, and for each value of / a
knowledge of the (2! + 1) complex zeroes involved in
(A10) and (A12) is sufficient to allow determination
of these quantities to arbitrary accuracy. With (A7),
however, the rate of convergence of the integral is
determined by the cutoff function, and increasing the
accuracy of a particular evaluation involves the
evaluation of more of the infinite number of real
zeroes of the Bessel functions.
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The algebraic expressions for the matrix elements of symmetric tensor operators (the powers of infinitesimal

operators) of the unitary groups in the Gel'fand basis have been studied. The expressions for the isoscalar fac-
tors of the related Clebsch~Gordan coefficients, one of the two representations to be coupled being symmetric,

as well as the elements of a special recoupling matrix have been found. The supplementary symmetry proper-

ties of the isoscalar factors corresponding to the Regge symmetries of the Wigner and 6j coefficients of sU,

have been examined.
1. INTRODUCTION

The mathematical apparatus of the irreducible tensor
operators of the unitary groups?! is a very important
generalization of the theory of angular momentum of
contemporary theoretical physics. The main problem
of this apparatus is to obtain the algebraic expres-
sions for Clebsch—Gordan (CG) coefficients, recoup-
ling matrices and matrix elements of irreducible
tensor operators. It is useful at first to solve the
simpler special problems, for example, to consider
the matrix elements of the extremal tensor operators
of the unitary groups.2

An interesting and more difficult problem is to ob-
tain the expressions for the matrix elements of the
symmetric tensor operators, which enables one to
find the expressions for the general tensor opera-

tors. The main aim of this paper is to consider
these symmetric operators. We take the product of
powers of commuting infinitesimal operators (gene-
rators) of U, ; of thetype E,,,, (i =1,2,...,n),asa
realization of the symmetric tensor operatur of U,.
The matrix elements of such an operator can be ex-
pressed as a product of the reduced matrix elements
and isoscalar factors (i.f.) of CG coefficients with
one of the two representations symmetric. The com-
binatorial-graphical techniques for calculating such
a special i.f. has been found by one? of the authors by
the use of the Young operators of the symmetric
groups as projection operators. The expressions of
Ref. 3 are not optimal ones with respect to the num-
ber of terms in the sum, because the summation is
taking place over the permutations of labeled squares
of the Young tableau. Here we are going to obtain the
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corresponding expressions with a greatly reduced
number of terms in the sums, the summation taking
place over integers only. Furthermore, a rather
simple recurrence method is described for obtaining
the expressions under consideration. The technique
resembles that used by one of the authors? in the
case of SU,. The two classes of expressions are
given and their symmetry properties, partly given

in Ref. 3, discussed.

In Appendix A it is shown how the corresponding
formulas can be obtained from the results of Ref. 3.

In Appendix B there is given a useful relation be-
tween the isoscalar factors of the Gel'fand basis and
the elements of the recoupling matrix described in
Ref. 5.

The results of this paper can be used for obtaining
the general expressions for the CG coefficients of
U,. For this purpose one can use the projection
operators in the form of polynomials of infinitesimal
operators® as has been done in the case of SU;.7
Alternatively, one can use the recurrence relations
obtained by forming the general tensor operators
from the symmetric ones. The normalization proce-
dure in the second case can be carried out using the
relation of Ref. 5.

2. THE MATRIX ELEMENTS OF POWERS OF
INFINITESIMAL OPERATORS

At first we obtain the expression for the i.f.of a
special kind

[[M],, b Fﬂ T :!

[ml],.1 O ml, -y

1<jgksn 7"
D({m],, [m'],)T(m"],, [m],-1)
F([m]n’ [m]n-l) '

—ml, —j + R)VE

1

Here [m], = [my,, Mg, ..., m,,] means the corres-
ponding row of the Gel'fand pattern of the represen-
tation of U, (c.f.Ref.1),p is the single parameter of
the symmetrlc representation. In (1), and in what
follows, we use the notations

r([m]n’ [m]n—l)

IR 1
( 1<l$£{( _l(min My — 1 +4)1 V2
=| . H (2)
1¢j<icn - d771 My + 1= = 1)!

I<i<jsn

(m,,, ~mj;2 R 1)!)1/2

s mj, — my, +i—j)!
l<jeisn (3)
The dependence of the i.f, of Eq. (1) on the para-
meters of the representations of the subgroup U, 4 is
confined to T, this dependence being deduced by fac-
torizing the simpler i.f.8 The remaining part of the
expression on the right-hand side of Eq. (1) is a nor-
malization factor. This factor can be deduced by
equatmg the particular case of Eq. (1) (m],_; = [m],,

= 0) to the one calculated with the help of projec-
tlon operators (Refs 6 and 7). It must be noted that
we use the general weight lowering operators of the
form
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-1 ho— h!— i+ s)!
el =Rt T
ln-1 FANGy — B) 00 (o — B -7+ s)!

2 ('~ h,—i+s—1)! >1/2

S:i"thi.— hy —i+s— 1)

-1 o
W ey T By (4)

=1 ni

X Pmax[
rather than that of Ref. 9. Here P, [h ],-1 is a pro-
jection operator of maximal Welght as defined in Ref.
6.

The easiest way to obtain (1) is to use the results of
Ref. 3 [these last ones being contained in Eq. (A2) of
Appendix A]. The sum F, (x; — y,) in this case re-

duces to one term equal to 1.

Let us now consider the calculation of the matrix ele-
ments of powers of generators. The simplest cases
of them are obtained by factorizing the matrix ele-
ments of individual generators of the group. To these
cases belong, in the first place, the matrix elements
stretched with respect to the parameters of the re-
presentations of subgroups.

The simplest of powers of generators seems to be
(E,-1,,)?. With respect to the subgroup U/, _,, this
operator corresponds to the scalar component U, _
of the symmetric tensor T?. Hence this matrix ele-
ment is proportional to the i.f.of U,_, being calcula-
ted with the help of (1). The correspondmg reduced
matrix elements are to be obtained from the rela-
tion

(5)
=g = Mip-1 ({ <1 — 2) is the maximal weight
of U, 5. The operator P _p In F_ gives unity
in thlS case With the help of Eq (2.11) of Ref.7 we
transpose E, _;, with 7, All the powers of £, _,
with nonvanishing exponents acting on the maximal
state of U,_; give zero. For this reason, summations
arising in the process of the transposition disappear
and we are left with the matrix element of the opera-
tor

I
_P' i [‘[ E,, M i1 M1 ,
My 1n-1

M, 141 —
which is stretched in this case.
The operations described above give the following

expression for the reduced matrix element under
consideration:

/[m ]n

E )4
\\ [m ]n 1

n-1n

| [m],
| [m] +/

n-

-1
<Z/7nm l’p +Z len 1>[p‘

_ — Y11/ 2
1si<}2n—1(min‘1 m]'n*l i +])]

D({m], .1, [m'],- )T (], [7],-1) .

(], 7], (©)




ON THE SYMMETRIC TENSOR OPERATORS

1t is to be noted that this reduced matrix element
coincides with those of the operators

n-1
Ein ai7<2 Q; =P> ’ (7)

V2, 4

p!
<H ) 5
T o, ! =1
i=1 i

because they form the basis of the representation p of
U,-1. The corresponding matrix elements themselves
are obtained by multiplying the reduced matrix ele-
ments obtained above by the products of i.f."'s to be
dealt with in what follows.

3. ISOSCALAR FACTOR WITH ONE OF THE RE-
PRESENTATIONS SYMMETRIC

In generalizing and simplifying the method of Ref. 4,
we take the lowest weight component Té’ of the sym-
metric unit operator of U,. Its matrix element with
respect to the corresponding basis is equal to the
i.f.given by Eq. (1). More general components of the
same operator are

(b — g)1\V?
Tf:( p!q!q >
X [En-ln[En—ln[' . ‘[En—lnTg]' . H]
¢————qtimes 5

—a)lg!\ /2 — 1)*
_ <(p ) ) ;Ex;((q e TEE
(8)

The reduced matrix element of this operator with
respect to the subgroup U,_; is the i.f. under con-
sideration; it is

[l 2 e ]
(M- g [m'],
=[(p— q)! 1<i<£‘1n—1 (M — Moy ~— 1 +4)
x lsigsn (my, — my, — i +3)]1/2

D([m]rﬂ [Wl I]n)r([m]n’ [m]n-l)
D([m]n—l’ [Tn,]n-l)r([m’]n’ [m I]n-l

x 25

(rlp-1

- 1) Z?:_xl @i Min 1)

X 1si<njsn—1 Win-1— Vip-1— ¢ +7)
>(Dz([Wl]n--l’ V]n_l)Dz([V]"_l, [m’]n_l)

rz([ml]n’ T]n-l)
rz([m]n’[/r]n—l) ’

=

n n-1
p =.Z;(mi,n - min); q = Z; (mi’n-l - min-l)’ (9)
i= =1

[],., being the Young scheme and the summation
taking place over » — 1 parameter #;,_;. When both
of the two representations to be coupled are symmet-
ric, expression (9) reduces to the CG coefficient of
SU, [the second of Eq. (13.1) of Ref.10]. On the other
hand, when # = 3 it turns into Eq. (3. 14) of Ref. 4.
Furthermore, we can limit ourselves to the case

m,, = 0 which does not influence the value of the i.f.,
as pointed out in Ref. 1.

It is easy to see that (9), after omitting the square
root, possesses the high symmetry indicated in Ref.
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3. For example, it is possible to transpose the para-
meters my,,_; and m/,,, with the appearance of the
phase factor (~ 1) m,,.; — m/,,,. The other kind of
Regge symmetry gives the transposition of m,, with
m,, 1, without any phase factor. For the tabulation of
the symmetric part of (9), it is useful to apply the
following scheme of 4n — 2 parameters:

mlln? max(min-l’ 7n1n)7min(m1,n—1’ m ln)! max(mén’ mln-l)’

min(myg,, my,,_4), maximg, 1, My,), ..., m,, =0

" (10)

arranged in a lexical order and using specified phase
relations for the transpositions of the first Regge
symmetry type.

Another symmetry property follows from the con-
tragredience relations.® This procedure gives (— 1)¢
as a phase factor, and the set of parameters (10)
turns into the set obtained from this one by changing
the signs and writing in inverted order, all the para-
meters becoming positive after adding .

In this way one obtains 227-1 symmetry properties
for the quantity (9). It stands to reason that not all
the Regge symmetry properties1! of quantities of
SU, can be generalized to SU, withn > 2.

We observe that the symmetry property of Ref. 3
allowing one to interchange the rows in the skew
scheme belongs to the substitution group symmetry12
rather than to one of the Regge type. Equation (9) is
invariant with respect to this group which is equiva-
lent to partial hook permutations (c.f. Ref. 1).

It is to be noted that the relation between i.f.'s which
couple the bases of two symmetric representations
(of equal or different contragrediency) and SU, CG
coefficients13 follows immediately from the Regge
and substitution symmetry properties.

Expression (9) does not allow one to carry out the
summations even for particular cases. Thus, it is
worthwhile to use other methods to obtain different
expressions for the same i.f. We can obtain one such
expression by the use of the operator

pl 1/2 -

_ 1 1/2 1)y«
_<(1>—q)!q!> }; (3 —a)l{g—y + a)!

XE, 1 YE, 1, TE, .1 7 (11)

nn+l nn+l

instead of (8). After dividing its matrix element by
the reduced matrix element of the operator E,, ., ?
and the i.f. of U,_;, one obtains

[m]n—l q [m ]n-l
= [(P - Q)!]_l/z [ 1<i13j <n (mll" o mj’n —i+j)
x lsi<rj1<n—1 g = My g — 1+ 1)V 2

o Dlmln-g, [}y ))T (1, [2],-0)
D([Wl]n, [m’]n)r([m]n’ [m]n-l)

N R<[m]n [m'], > (12)

[m]n~1 [ml]n—l
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where
rk. Bl

ey i(p — )T (7], [m], 1)
i, (v — )l (g —y +a)IT2([r],[m'],-1)

(13)

The number of the summation parameters in (13) is
n. The terms of this sum depend on o{0 < ¢ <p — gq).
However, the final result must be independent of this
parameter. It turns out that in expression (13) the
summation with respect to one of parameters »;, can
be carried out by the use of the summation formula

— l)xl'l(x+A)H(B—x)

AT e = Do, 0, (14

x

a, b, ¢ being nonnegative integers. Equation (14) can
be proved by induction starting from Eq. (14.3) of
Ref. 10,

In order to use this summation formula for the pur-
pose indicated in Eq. (13), we transform the factorials
depending on 7,, (i fixed) into the quasipowers (c.f.
Ref. 10), all these being brought into the numerator.
The factors left in the denominator are

—i+n)!,

it Wlnn

(mi{n ~ ¥in +i—1)! (1’in
It is evident that the sum in (13) in this new form has
a much wider summation region, because it involves
n — 1 new regions. However, this procedure does not
change the value of the sum (13), because nonvanishing
terms in these new regions are compensated by a set
of terms equal in absolute value and opposite in sign
to the first ones. These terms can be found by re-

numerating the summation parameters ;, —j <—

7,, — t, j = ¢ labeling the newly appearing regions.

The above mentioned summation with respect to v,
leads us to the expression

) [m]n [m’]n >= —1)*
Rz([m]n-l [m’]"'l Tjn,Zj>#i( :
X IT (’an_'rlnhk-}‘l)
1< k<isn
BF1, 144 r2 (r],,[m],-1)
2 (7], [m'])DZ Lol e
X Dl,o([’y]n [m ]n) 0,1([7’7?]71:[7’]”)1_‘.2 ([T]n,{m’]n-l)
i-1 <
=]Z:>1 (mj'n_l‘mjn—l +m ) + ]lenmjn—jzal Tim:
iti  (15)

The quantities D; o, D, and I, , are obtained from
those of Eqs. (2) and 3; by removmg those factors
involving parameters with subscripts ¢, out of [],.

Since allR; (i =1,2,...,n) in (15) are equivalent,
they are connected by the elements of the substitu-
tion group of Ref.12. R, and R, are more convenient
for some problems. For example, in the semistretch-
ed case (m,, = m,,), it is useful to take R;. On the

ﬂﬂ
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other hand, in the case of the maximal state (m,

i1l
m/ ,i =1, 2 .n— 1), it is more convenient to use

in?
In the case of SU,, our expression turns into the third
of Egs. (13.1) of Ref.10. On the other hand, in the
case of the semistretched coupling of representations
of SU, (Ref. 4) it leads us to the doubly stretched 9
coefficient of SU, given by Eq. (25. 17) of Ref. 10.

It is worth noting that our expressions (13) and (15)
have n regions for » summation parameters in the
case of Eq. (13) and # — 1 summation parameters in
the case of Eq. (15). In the second case, one of the
summation regions is free. This occurs because

Eq. (15) does not possess the full Regge symmetry
exhibited by Eqg. (9), which has » — 1 summation para-
meters as well as regions.

APPENDIX A: AN ALTERNATIVE APPROACH TO
THE PROBLEM

Let [A1], [x2],[»3], [* 4] be the Young schemes such
that Al s A s a3 s At (i=1,2,...,n labeling the
rows, x; being the lengths of the corresponding rows).
We define the quantity

)\4. 2

23] 24 - ( 1 >

ol =n 1 14— 1

[A] [A2] 7 a7 k=aden gy=00n Ry —i—1;+]
. (A?—A]l—z+])'()\ AT — i)
Casisi (A — A — D HDIOS — A — i+ )]

R N B e S R R V)

X Il ——g——7 AN B .

11<J()\1—Aj—z+]—1)!()\i~)\j—z+]—1)!

(A1)

Let, further, [A?] and [A°] be the Young schemes with

Ay = min(m,,, m/, ;), A3 = max(m,,,m/, ). In the

notations of this paper, the result of Ret. 3 allows us

to write
[
_i-(lA['z]nA[m'T:ﬂP Q)!>1/2 (U[)\3] [m'],\"1
B Alm’ |, Alm], 4 [m], -1 (2] >
(2] [, ;03] )\
g <U[m]n-1 [)‘2 U[ ]n-l [)‘3] > Fpl’ (AZ)

where

A[A] = (E Ai) !/f[x],

firy being the dimension of the representation [A] of
the symmetric group on ) ; symbols. F}, is the
sum of the coefficients of those permutatlons in the

expression
(é’ + (kD) >
1= 1 —

which the symbols & < p, substitutes by the symbols
1>p,. &in (A3) is the unit element of the symmetric
group and ([k), the transposition of symbols / and &,

1 indicates that the order of multipliers with respect
to label 7 is the same for each k. F, is the symmet-
ric function on two sets of variables'x, andy,. For
calculating the i.f. according to (A2), we must substi-
tute the values of the function Fp1 with the x equal to

by*py 43)
k=py+1
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Bo—iGi=1,2, ..,k =20+ LA+ 2,0, m;

by =20i-10m), — 2}) and they to the L, —j(j = 1,2,...,
n-Lh=m,  +1,my 4 +2 cesAFp =

T 02— my, ).

Extending the definition of Fp , we can define the set
of bisymmetric functions F ¢=0,1,... P ) F
being the sum of the coefficients of those permuta-
tions in (A3) in which s arbitrary symbols from the
set 1,2,...,p, are substituted by the symbols from
another setp, + 1,p, +2,...,p; +p,. It can be
shown, that the following set of equations hold for the
F_.

S

(b1— 8)py— s)!

= PP
‘? (py— vy — )Py —va)llwy—8)I 57 "u%?
(A4)
where
htpy Aty Y b
prpy )
Vl’lvz —2(1)2(3) i=p1’lf_zllz+1 k=p,+1 1-1 j:z?-l-l

X (1 +—-'~—*1f—> <1 + 1 - > <1 + : . (a5)
X, — X, X, YV

v, and v, can take on arbitrary values from the inter-
vals 0 < v; <p, and 0 < v, < p,, respectively. The
first summation in (A5) is taken with respect to per-
mutations, one from each left coset of the group of
permutations of indices 1, 2, ...,p; with respect to
the subgroup of permutations of indices 1,...,v; and
vy +1,...,p;, within the two sets. The second sum-
mation is analogous to the first one, the group being
the permutation group of the symbols p; + 1,...,

P1 TPy and the subgroup having as its elements the
permutations within the two setsp; + 1,...,p; + v,
andp; + v, + 1,...,p; + Poe

Taking the different sets of (p; + 1) equations from
the extended set (A4), we obtain different expressions
for F, . Thus, if we take the equations with v, = p,
and »; varying from 0 to p,, we have

b4

— _ 1)1y b (A6)
—vlz:;o( 1) Vvlpz :

B,

The value of the bisymmetric function Vv‘: },‘Z 2, the
arguments taking the mentioned values, is equal to

5 gl ], g [7)

2 —
G 71 2] T ml, o [r] ?(Ai—vi)—vl.

(A7)
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Using (A6)~(A7) for the I‘;l, Young's expression for
the dimensions f;,1, and performing the simplifica-

tions needed, we obtain formula (9) for the i.f.under
consideration.

On the other hand, solving equations (A4) with v; =
pranduvy, =p, — Py~ a,pp—py— o +1,... . py—a
using the values of x; and y, indicated above, one
obtains

 yeyl(p, —y)!

gz :%;n -y —a)l(p, + @ —y)!
A3 [#)n , [7], [m']),
*Ulmlal22) VW3 ], 49

Formulas (A2) and (A8) may be brought into the form
equivalent to the result given by the Eq. (12) and (13).

APPENDIX B: RELATION BETWEEN RECOUPLING
MATRICES AND ISOSCALAR FACTORS

According to the results of Ref. 5, the following rela-
tion holds between the elements of the recoupling
matrix of four representations of U, with three of
them symmetric and the i.f.;

(mlp-q a(m'),o1)s 70 — q0');[m’], |
x | [m], 1r(m1,) a0 — q(p);[m’],)
righp — g)tA[m], Alm'],\ 172
_< r'1plA[m],Alm], >

[m] P [ml] :I _ n n-1

X " n = Lo— Ly

[[m]n-l qlm'), 1]’ 4 izz)lmm i§ Min-1
7 n-1

r'=p—qrr=_m,—2im,_,, (B1)
i=1 i=1

A[Xx] is given in (A2).

The particular cases of this relation (whenp = ¢ for
U, and for the semistretched i.f. of SU 3) have been
obtained in Refs.3 and 4. It can be seen that in the
semistretched case of the i.f. (m,, = m,,), the re-
coupling matrix goes over into the one of I, ;. A
particular case of this matrix (withp = ¢ and m,, =
mnn) gives the matrix changing the canonical chains
of subgroups in U,.3; 14 Equations (12) and (15) for
the i.f. on the right-hand side of (B1) are more con-
venient to use than Eq. (9), because in the first case
there remain only #» — 2 summation parameters, in-
stead of » — 1 as is in the second case.
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This article is devoted to the development of constitutive equations of deformable magnetically saturated media
in three dimensions. In Sec.1 we recapitulate the local balance laws and jump conditions derived previously.

A thorough study of the consequences of the objectivity requirement is given in Sec. 2. In the following sections,
the material symmetry restrictions are examined and exact and approximate constitutive equations are obtain-

ed for a variety of material classes.

1. RECAPITULATION

In this section we set forth in one place the complete
system of differential equations [valid in the body (B)],
boundary conditions [on the surface (3B)], jump con-
ditions [across a steady surface of discontinuity (I')]
and constitutive relations (the nonlinear theory) of
the theory of magnetomechanical materials develop~
ed in Part I.1 We limit the presentation to the non-
dissipative case and note that the *“ spin rotation”
equation derived in Part I1 is to be used oxrly when
the material is magnetically saturated. With the
recognition of certain quantities and use of the objec-
tivity requirement other forms obtained before will
result in the form given below.

(a) The set of field equations for saturated media
consists of:

(i) Continuity equation:

%;l +(pv?),, =0in (B—T), [pv*]n,=0on (I').

(ii) Balance of linear momentum: -y
pvt=pf*+ pBliky, + ", in (B —T),
[t 4+ 1l —pvtol]n, =0o0n (T). (1,2)
(iii) Balance of moment of momenium:
fikil = p, BUAp]  in (B —T). (1.3)
(tv) Balance of spin angular momentum:
(p/T) ik = ekim By, M,, in (B —T),
ulmt Wkl =0 on (T). (1.4)

(v} Maxwell's equalions: In the case of quasi-
magnetostatics, the set of Maxwell's equations with
lul = const. in (B) and on (2 B), reduces to:
VXB=VXM, V:B=0 in(B—T),
VXB=0, V-B=0 outside (B),
nX[B]=nx[M], n-[B]=0 on(),
where we have defined
M =pp, B(eff.)k_:Bk +LBk +p-1t§<%):l’

L, =H*BL—(3B2 —B *M)g*l.  (1.6)

Alternatively, (1. 4) may be written in the “couple
stress” form:

(1.5)

(p/2T) Skl = pLkl + Ukl + Mkim,  in (B —T),
[Mrm]p, =0 on(T'), (1.4)

with

Ski= ghtimy Lkl= Blkyll ~ Mkim = _u[kt(p()ll]r;)’

and the definitions

p=E mass density,
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Bk= magnetic field intensity,

Mk = magnetization per unit volume,

vk = velocity field,

H:= magnetic field,

uk= magnetization per unit mass

f k= nonmagnetic body force per unit mass
(e.g., gravity),

thi = stress tensor,

.B* = local magnetic field intensity,

Blg,= effective magnetic field intensity,

Lkii= ponderomotive magnetic couple,

r= gyromagnetic ratio = —e/mgc.

tli, =  Maxwell's stress tensor,

tUki = “gpip interaction” stress tensor

Skt = spin bivector

Mhtim = “magnetic” couple stress tensor,

With a strain energy function of the form
EF = ‘J(Fx,ﬂ-,F(p)’X)’
(Fe) g = 1hg

F) = xhy,
(1.8)

where x *and XK are the spatial and material coordi-
nates, the constitutive equations are

thl=p 95 w -2
dxay TR gk (1.9)
tw, 1 =p xt, or MPe¥=p pdlx” o,
o hy Ol p, x ’

The field equations (1.1)—(1.5) are supplemented with
the mixed boundary conditions:

[pv*]ln, =0 across (@3B —T),
tk =tkin, on @B, —T),

uk =uk gy on (@B —08B, —T),
€ ptWElumn, =0 on (@B —T), (1. 10)
nx [B]=Mg,Xn, n-[B]=0 on(@B-—T)

with, {cf., Eq. (6. 1) of Part I]

th = 7k — (M(p)'[B]) 2%,
where t* is the stress vector, ¢ is the mechanical
surface traction prescribed on @B, —I') with M, ,

the inside value of M on (8B — I'"); u* is the displace-
ment,

The number of unknowns (p, vk, thi, us Bk,  B#, t{#)k)
amounis to 1 + 3+ 9+ 3+ 3+ 3 +9 =31 and the
number of components of Eqgs. (1.1) to (1. 5) and (1.9)
is precisely: 1 +3+3 +3 +3+6+3 +9=31.
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With the following Cauchy's data at { = {

xR (t = to) = 6k XK
uE = L) = 8" g ik,

p(t = 1y) = pg,

v (X, =t,) = vix), (1.11)
problems relevant to the nonlinear theovy of magneti-
cally saluvated elaslic media can be solved, the mag-
netic part being statically treated. Ultimately, theo-
rems of existence and unigqueness for the system of
partial differential equations given above have to be
proved.

(b) TFor nonsaluvaled mediu, an equation such as
{1. 4) cannot be written since this equation describes
the rotation of a vector constant in magnitude. Equa-
tions (1.1}, (1. 2), and (1. 5) are still valid. With the
form of F given by (1. 8), the balance of moment of
momentum cannot be reduced to (1. 3), but reads

el = LBMMZ] — 1(;1)[km pllim (1.12)

This follows from

0 / 0F

0F
x* o+ p =
CETN I T

Bl 4 p e
° p
au’[l.K

o) purtl o =0 (1.13)
which is the Euclidean invariance requirement equa-
tion of Sec.7 of Part I, Alternatively, (1, 13) is the
partial differential equation to be verified by ¥ if §
is to be objective (invariant under time-dependent
rotations in E3). We can thus write the stress tensor
{*? in the form

tht = LA+ LRI (1.14)

where gt*! is the elastic stress tensor, the constitutive
equation of which is given by

07
ax(

gt =p XD . (1.15)

kK

In summary, for nonsaturated media, no equation des-
cribes the motion of y which is solely determined by
the solution of Maxwell's equations. The field equa-
tions are (1.1), (1.2), (1. 5), and (1. 12). The constitu-
tive equations are given by (1. 15) and the second and
third of Eqgs. (1.9). A constitutive equation must be
given in the form M = M(B) if one wants to solve
{1.5). The boundary conditions and the Cauchy's data
at t = {, are

[pvh]n, =0 across @B —T)
th=tkiy, on @B, —T),
uk =ufyp on(@B—28B, —T),

nX [B] =M, % n,

n*[B]=0 on(@B—-T), (1.16)
p(t= 1) =pg, X*I=1ly) =0 XK,
vk(x, = ty) = v{(x), (1.17)

with .
th=T1hk— (M(m)" [B])“gn’*.

This set of equations is adequate for describing
magnetoelastic effects {(such as magnetostriction) in
nonsaturated bodies. We must however remark that
in this case, theories such as those of Jordan and
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Eringen?, Dixon and Eringen3, and Grot and Eringen?
are more suited for a constitutive theory since, then,
the needed equation M = M(B) would be included in
the set of constitutive equations as well.

2. OBJECTIVITY REQUIREMENTS5

In determining the restrictions arising from the
axiom of objectivity, we distinguish between two cases:
(i) no saturation of the magnetization, (ii) saturation
of the magnetization, i.e., |p| = const. For each case
it must be understood that onlv conslilulive equalions
labelled fov lhe saluvation case (or nonsaluralion)
must be used as companions of the set of correspond-
ing field equations given in the preceding paragraph.

According to Part I, the Lagrangian density £ is ex-
pressed in terms of the strain energy function ¥ by
£ =K —pp%, K=13pzx2, F= F(F,,u,F,),X).
Making no hypothesis as to the magnetization magni-
tude per unit mass, we shall require ¥ to be invari-
ant under the orthogonal group, i.e.,

Sj(u" Fx! F(p)ax) = EF(Q-M’Q-Fx’QF(p),\X) (2- 1)

for all orthogonal constant tensors 2. In particu-
lar, we select
2 =R7, (2.2)

where R7 is the transposed of the rotation tensor.
Thus, using the polar decomposition of F,,%

F, =R-U, (2.3}

J :fF(RTﬂ,RTFx,RTF(p),X). (2.4)
Since

RTF, = U = CV/2, (2.5)
we can write

¥ = %(,C,D,X), (2.6)
where

C=F[F,, Cup=guxt x5,

H :Fpry HA :xi,Aui) (2' 7)

D =FTF), Dsg =4 Xt ut g

form a set of 18 independent quantities forming a
single-valued minimal integrvily basis for the argu-
ments involved in ¥. The same result may be arriv-
ed at in applying Cauchy's theorem (see Weyl?), ac-
cording to which & is objective if it is a function of
the following 57 quantities:

J =(1/3V)e,;, eXLMxi  xi  xk .,

L =(1/31)e€,;, ektMpi i nk

pin, =p?,
xt ax;,5 = Cyp,

W oabi = Gag, Pay = 3€;, €¥Lpxt o x7 pk
Xt gk =1, Qry = 2€5 €LMy xi L I yuk g,
xi by 5 = Dap,  Wyy = €uxt %7 yut =— Wy,
B 4 = g, Ky = ésijieeLMin.ij,Muk’

Rg = éeij ELMle'i,L”'j,M“k- (2.8)
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But one can show that only 18 (C 45, D, and II,) of the
57 quantities are independent. Thus

£ ZPR[%’.KZ —S:(CAB,HA;DAB’X)]- (2.9)
It follows that the constitutive equations (1.9) for an

anisotropic inhomogeneous elastic material with
electronic spin and unsaturated magnetization are:

aF 0F 0F
tl:p<25—61(‘13x +aH uk+aD “’,B)xl,Ky
(2. 10)
aF
LBk = an X kA (211)
t(p)kl—p ?DS xk’Axl‘K’
& (2.12)
Mpar = — p,[Px!IJ,Ax",K.

AK

Magnetically saturated media: When the material
is magnetically saturated, we must impose the con-
straints

wip; = puZ = const,  ptp, . =0, (2.13)
The minimal integrity basis is now reduced to four-
teen members since C 5,11 ,,and D, are no longer
independent and must be consistent with (2.13). In
fact, using (2. 13), we have

-1 -1
pg =1, CABNL,, J, =1,C48Dy, =0,

-1

where C42 is the reciprocal of C,p introduced by

(2. 14)

-1
C,pCBM = d Y.

We must take account of (2. 4) when we differentiate

F with respect to the different arguments. In fact,
depending on the choice of fourteen independent vari-
ables among the list (2. 8), there exist many objective
forms for the strain energy §. Of course all these
forms are equivalent to each other. For the approxi-
mate theories however, a form may be preferred over
the others depending on the class of problems under
consideration. Below, we give four interesting forms:

Theovem: For magnetically saturated media,
the strain energy is objective if it has any one of the
following forms:

F =F(Cap, 0 ,,D45X)

subject to (2.15)
-1 -1
Il ,CABIl , = const and 11 ,CABD, =0,
or
§ = §(Esp,11,,G45,%)
subject to (2.16)
-1
,CABTi; = const,
or o
§F = §(C,p, 114, DAZ X)
subject to (2.17)
fIAfIA = pg = const and ﬁAﬁAB =0,
or . ~
¥ = EF(CAB; D4B,X)
subject to (2.18)
det(ﬁAB) =0,
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where
. . -1
Eyp = 2(Cyp —04p), Gap = 0! 41 5 =D, ,CLMD, .,
(2.19)
4 3
A = CABHB, DAB = CAMDMB. (2‘ 20)

Here E,p is the classical Lagrangian strain tensor.

The equivalence of the first three forms is clear, the
last one, eq. (2. 18), can be seen as follows:

Since 11 is a left null vector for D (alternatively Da
right zero operator for II) the determinant of D must
vanish. Thus fI will no longer appear explicitly in &
since it is determined through D. One can verify that
the number of independent components for the argu-
ments of § amounts to 6 + 9 — 1 =14 [— 1 due to
restriction (2. 18)]. We take notice of the inconveni-
ence that the quantity 5D/ ofl appearing in the consti-
tutive equations must be computed from det D = 0.

3. CONSTITUTIVE EQUATIONS FOR ANISOTROPIC
MAGNETICALLY SATURATED MEDIA

Different functional forms of the strain energy func-
tion § lead to constitutive equations involving differ-
ent variables. Some of these expressions are simpler
than others. Below, we give the constitutive equations
for the four cases enumerated in Sec. 2. To this end,
we consider the material tensors

oz
LK — yL kK — viL ',
T =X .kT —X , R ax/&,K
B =p JXK , Bt =—_Jxk 2% 3.1)
L Pr , kL s -
ox
WLK — xL TWkEK — xi
T X " X ” ap‘k,}{’

and we introduce the strain energy function per unit
of undeformed volume by

Z = pg¥. 3.2)

The mixed tensors T4X and T(#) %X were encountered
in Part I.

Case (i), Strain energy given by (2.15): We intro-
duce the strain energy function
2(1) - z‘(1) (CAB, HAvDAB X) — @(1) [HAC H - “‘s]

_(p(l)MH CABDBM’ (3.3)

where @, and O}, are Lagrange's multipliers.

The following relations are useful in differentiating Z%;,

-1
acasl 1o, 0C Rk ok
3Com =—CAMC 5%, x =20fxk y, (3.4)
ablAJ -1
a—;q = — ZCAKXJ’ ks (3-5)
aEAB =6§x’2 ’ 3HA - KlJvk, 9____A_ =be’
0% .k B 0% 4.k A A '
(3.6)
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9Dyp 0D,p
aka :GIIA{NA,B: T :ngk’A,
' ’ 3.7
= 26Kt
Oy g Ak

which follow by differentiating appropriate expres-
sions in (2. 8). We also introduce the malerial form
of the magnetization vector by

pr PEF ,M¢, conversely, ut = x! M, (3.8)
By using (2. 8) it can be shown that
-1
uB = CBAHA, HA = CAMIJ-M, (8.9)
kXL -1 (3.10)
L Sl . CLAD, ;.

Upon carrying (3. 3) into (3. 1) and using (3. 4)-(3. 10),
we obtain the constitutive equations:

0z o 2 -1
Lk 9 L 77 CLA M ~ra
T = 3Cg, ol A 8Dgg C* D15

-1
*2@(1) CL[ACB]KHADBM» (3.11)
BE - g 32 9@ —ClKBH _on CKBD
L oI, &Y B [6h)
TG LK = Zq) — Pk CALH

oD, &)

Note that @y does not appear in the first of Egs.
(3.11). The corresponding spatial tensors or vec-
tors, when no saturation occurs are given by (2. 10)-
(2.12).

Case (ii), Strain enevgy given by (2.16): In this
case only one scalar Lagrange's multiplier ®, is
necessary. Thus introducing

-1
T3 = Z(o(Eyp, 1,,Gup, X) — Oy [HA CABIly — uﬁ} )

(3.12)
we find the simple equations
a9z, 020y -1
(2) (2)
K — LA
T =55, T am, ¢
X 9Z¢5) s
B =—d an - 26)(z)c HB> » (3.13)

(w) LK a(®) CLip
Tt LK =2 Cxp 1B

Corresponding to these are the mixed material-
spatial expressions

T/eK — 6—2(2) k L + 82(2) }-‘ka
0E,, , E)HK
0%
@)
B == 5, *he T 20kt (3.14)
0z
@
TWhE =2 =@ e
KL

which shows that @, is irrelevant for the spin equa-
tion. Nevertheless, the form (3. 14) can only be em-
ployedfor the case of saturation because of the use of
the Gg;'s. Thisremark holds equally for the second

CONSTITUTIVE THEORY

1337

of Egs. (3.11),(3.13) and (3. 15) given below. The
spatial forms corresponding to (2. 10)=(2.12) are

phm = P <32(2) ko + 0Zz) uk>xmx,

pg \3E,, ¥z " B,
1 /oZ
ko__ 2)
B = N (an xk g _2@(2)“k>’
3.15)
p 0% (
(Wmp — 9 (2 P
. sz 0Gkp e ¥k
P 0%y
=_ 92— & lpydl r
Mpar sz 3Cys plepd o xv ..

At this point it is of interest to remark the following
result

= , 0F
€, n LBImP /J'k,-p = 0, or equivalently, W Brx =0,
K

(3.186)

which follows immediately from the third of Egs.
(3.15) and the symmetry of G, 5. Hence the last term
of Eq. (7. 36) of Part I vanishes and Eqgs. (7. 36) and
(8.1) of Part I become identical for nondissipative
media.

Case (iii), Stvain enevgy of lhe form (2.17): In
this case we introduce

I = ) (Cep o 11y, DAB,X) — Oy (1, 114 — iZ)

— Ol DA (3.17)
and obtain the constitutive equations

0Z) ( 0%z 1 %@ dimp
afia b4, MB

— 20, M,CLB —@(3 D, CLB1L,

— ®yM HAcLNDNM>< CAK_ CA.K) ,

8%,
BK = — J< (€)
afia

z
T(WLE — 3 3
ab4,

TLK = &

CLNTI, +
KL

(3.18)
A M/\ _1/2AK
— 2@, — @ DAM> C AK

AN
— 0y nA> Ca,

For the computation of TLX  the following expressions
are used:

-1/2 -1/2 -1 _
9 CAB _3 C4B aCMN:_ClAKXB/’ (3.19)
Ax* o sCmy 0% g ’
ofia  -1/2 oft -1 -1/2
= ABx, o, _A_:_CAKXBknE+ CAKp,,
ot I ' (3.20)
A AB -1/2
apas _ 0, 3D = CAMy, |, gKB (3.21)
ok duk
ab4, -1/2
dxk :—CAKXM #Dup + C4%u, g (3.22)
K
Case (iv), Slrain enevgy of the form (2.18): Here

we write
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I8 = Iy (Cxp, DAB,X) — @,y det(D). (3.23)

It follows that

TLE =9 Zw _ %. NCLID <—E/ZMK — blMK>
C M JN ’
KL
1. aDM,

BX = — g, CaE <t

L (3.24)

-1
T(WLK = CML Ky X,

where we have set

_ 3y 3(detD)
MN T opuN WD apmy

5% (3.25)
(4)
Ry = =D 16, € nceVPODEDO,,
obM,
For this case we have fi = I(DA8) and, therefore,one
must compute 9D MN/afi4

An examination of various forms obtained above in-
dicates that the simplest form is provided by (3. 13)
which corresponds to the strain energy of the form

(2. 16). This is the form we shall employ in the rest
of this article.

4. MATERIAL SYMMETRY

Materials in their natural states may possess cer-
tain symmetry regulations in their properties. The
geometrical symmetry conditions in the physical
properties of materials can be expressed by the
form-invariance of the constitutive equations (hence
the strain energy function) under a group of ortho-
gonal transformations {S} and translations {B} at the
material frame of reference,i.e.,

X =SX = B, (4.1)
where
SST =8TS =1, detS==zx1. (4.2)

The invariance under all members of {B} provides
restrictions on the inhomogeneities and under all
members of the group {S} places restrictions on the
type of anisotropy present in the material at its
natural state. Presently all known thirty-two classes
of crystallographic elastic solids are obtained by use
of twelve members of the group {S}. However,here
we are concerned mostly with kemitropic materials
for which the symmetry group is the proper ortho-
gonal group (detS = + 1) and isotropic materials for
which the symmetry group is the full group of ortho-
gonal transformations.

The material symmetries in all classes of magnetic
materials cannot be determined by use of the crystal-
lographic {g} included in {S}. In addition to the geo-
metrical symmetries present in the lattice structure
of the crystals, the atoms of the lattice in magnetic
materials are endowed with atomic magnetic moments
(spins). It may turn out that the usual spatial sym-
metry operations, rotation and rotation-reflection,
while preserving the geometrical properties of the
lattice may reverse the orientation of spins. Thus
there is need for the enlargement of the three-dimen-
sional crystal group {G}. A separate argument in this
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regard may be made from the basic premises in the
solid state theory8: The atoms of a crystal lattice
are in constant oscillating motions and the time ave-
rage of the positions of the component parts of the
lattice constitutes the basis for the crystallographic
symmetry. If there exists a microscopic nonzero
time average for each component part, then this in-
formation is not contained in any specification of the
average positions. If the nonzero time average of the
position recurs in an identical manner in each unit
cell of the crystal, then this information is not con-
tained in the geometrical symmetry of the crystal. It
is known that ferromagnetic, ferrimagnetic and anti-
ferromagnetic crystals are characterized by orderly
distributions of spin magnetic moments.

The foregoing argument suggests that in the treatment
of the symmetry properties we must consider the
time symmetry along with the spatial symmetry
regulations. Thus a four-dimensional (space-time)
group is needed for a satisfactory discussion of the
physical properties of magnetic materials. For ex-
ample, the effect of time reversal must be taken into
account. Fortunately the time reversal adjoined to
spatial symmetry operations such as rotation and ro-
tation-reflection is the only other relevant operation
which affects the symmetry properties of magnetic
materials. Properties of diamagnetic and paramag-
netic crystals are invariant under the time reversal
so that these materials are governed solely by the
three-dimensional group {§}. However, ferromagnetic,
ferrimagnetic, and certain antiferromagnetic crystals
are not time symmetric.

The space—time symmetry operators correspond to
proper and improper spatial rotations combined with
time inversion. Zheludev® introduced the notion of
complementary operation ® referred to as reversal
of the spins (or time inversion) whose product with
R;,an element of the conventional crystallographic

int group, gives an element of the magnetic group

M}. The composition with R is noted as

®R-R, =R;. (4.3)

For instance, we have

Ry'R, =R, (since R,,R, € {§} =R, € {g}),

Ry'Ry =R, Ry R,=R;R,=R; R;c{M.
(4. 4)

The recognition of these new complementary symme-
try operations, as explained above in the context of
magnetic structures, results in a number of ninety
possible crystallographic groups {J} (32 classical
roups {§} + 58 additional groups {3}; {WM} ={G} &
IM}) for short referredio as magnetic point groups.
For the classical 32 groups it means that it is pos-
sible to orient magnetic moments in a crystal such
that there is no deterioration of spatial symmetry
even if invariance of magnetic moment orientation
under a symmetry operation is demanded. The dis-
tinct variants {9’} are obtained from the 32 ordinary
groups [cf., (4. 3)]. For example, for a cubic system
m3m (O, in Schonflies’ classification) we get m3m,
m3m, m3m,m3m.
The distinctive feature of magnetic (material) ten-

sors (i.e., the material coefficients appearing, for in-
stance, in the expansion of the strain energy function)
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consists thevefore in theiv transformation properties
under ®.

Finally we recognize the Neumann's principle of far-
reaching insight19:

Every physical property of a cvystal must possess at
least the symmetry of the point group of the crystal.

In conclusion, the macroscopic symmetry properties
of ferromagnetic crystals must be classified under
the ninety magnetic classes. It is interesting to note
that certain magnetic properties have been shown to
be possible after recognizing the magnetic symmetry
classes, and their existence has received experimen-
tal confirmation, e.g., piezomagnetism in CoF, and
MnF, (antiferromagnetic crystals € 4/mmm (Boro-
vik—-Romanovll), If the operation ® has no effect on
material properties, then the material falls in one of
the classical 32 classes. For example, diamagnetic
and paramagnetic materials, in fact, all centrosym-
metric materials, fall in this category. Therefore
there are no tensorial coefficients of odd rank in the
expansion of the free energy and, hence, the magnetic
properties are not influenced by ®. Similarly, the
second order magnetostriction effect does not require
the consideration of magnetic symmetries of crys-
tals (the first order, yes). For ferromagnetism this,
of course, implies the presence of a magnetic mo-
ment even in the absence of an external magnetic
field.

5. HEMITROPIC AND ISOTROPIC MATERIALS

Suppose that 1 is the number of independent compo-
nents of the tensorial arguments of the strain energy
function ¥. If § is form invariant under the ortho-
gonal transformations S in an n-dimensional space
then, according to a theorem of Cauchy, § is a func-
tion of n — p scalars I which form a minimal func-
tion basis of ¥, where p = n(n — 1)/2 (cf.Smithi2
Kafadar and Eringen!3). If I, -, [, 0< g<n—p)
are absolute scalars and [ .4, " " * ’In-p are axial in-
variants, then ¥ is invariant under the full group if
’Iq’1q+1:"',~’n—p) = SF(Il,---,Iq,——Iq+1,--~,

—1I (5.1)

3:([1’ P
n-P)‘
This means that we only need to select 7 —p inde-

pendent members of the minimal function basis among

the q independent members of the integrity basis (in
the sense of Spencerl4),

There remains the question of single-valuedness of
the minimal function basis which has been the basis
of certain recent controversies.15

Suppose that a minimal function basis is built up of
71 — p members chosen from the ¢ members of the
minimal integrity basis. Suppose that m members of
the remaining ¢ — (1 — p) members cannot be ex-
pressed as single-valued functions (zo!/ always poly-
nomials) of the n — p function basis members,i.e.,
the equations

flly,ds) =0, a=1,...,1—p,
B=n—p+1,--cm—p+m

cannot be solved for J; to yield a single-valued solu-
tion
JB = JB(IOL ).

(5.2)
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In that case we cannot construct a minimal function
basis only on 71 —p members (cf. Smith15) but we can
construct one based on 7 — p + m members. But as
has been pointed out by C, B, Kafadar (private com-
munication), the above mentioned result becomes ir-
relevant for the formulation of nondissipative con-
stitutive equations derivable from a strain energy
function. Indeed, consider a second order tensor-
valued function t derived from a potential F:

_ s 0%
(xK)=1 UK

B(K), = gFUW),

K=12...,1 (.23
where U (K) ig the indexed series of independent com-
ponents of the arguments involved in ¥, B{(X) are func-
tions of the U(K)'s. Let {Ia, a=1,2--- n—p}be
the minimal function basis and {JB, B=n—p +1,---,
n —p + m} the supplementary invariants that cannot
be solved uniquely from the m relations

Syl d) =0,y =12, ,m. (5.4)
Following the preceding remark, we might consider
§ = ¥(I,,J;) and (5. 3) would be read as

UNRVACE I AL P A
= — +— B(X),  (5.5)
@I, UK 3J, UK
Differentiating (5. 4) with respect to I, we obtain
d of, od,
O 0. (5. 6)
oI, ' 9J, aI,

This relation can be solved for 3J, /I, since afy/E)JB
is well defined, hence (5. 5) may be written as

t= P B(X), 5.1
(K)=1 a=1 U (K) ( )
with
0% a8 94
=2, d) = =,
Uords) =1, ad, oL
0:1,2;'.”7’—1)5 0:1723.“’1’—1)- (5'8)

It follows that, in this formulation, though we take
account of the nonsingle valuedness of the solutions
of (5. 4), there are still 7 — p coefficients A* in the
constitutive equation. Furthermore, an astute choice
of the I, may lead each constitutive equation not to
contain all these coefficients, the value of which
follows from experiment results.

For tranversely isotropic materials, there exists a
single preferred direction N which is the same at all
points of the body at its natural state. In the special
case when the direction of the spin coincides with N,
then we need no special case for the magnetic group
symmetries. If we select N in the direction of the

X 5 axis then the group of transformations under
which the strain energy function & is invariant may
be represented by the matrices

cosf sind 0 — 100
M, =|—sinf cos6 0} R;= 010, (5.9)
0 o© 1 001
0< 0= 27,
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In this case R, -M, preserves the orientation of the
spins.

There exists a class of materials which appear to
satisfy such transverse isotropy conditions. These
are the rubber bonded barium ferrite composite
materials (see Kafadar and Eringen3), In the initial
state of these materials, all magnetic moments are
alined along a direction which is also a privileged
direction as far as the mechanical properties are
studied. Under application of an external magnetic
field, the embedded ferrite particles tend in general
to rotate, a behavior that can be described by the
“spin votation” equation of the above developed
theory.16 Generally these materials are viscoelastic,
but one may assume for the sake of simplicity that
these media are nonlinear elastic, able to support
large deformations, and obviously transversely iso-
tropic.

6. CONSTITUTIVE EQUATIONS OF NONLINEAR
HEMITROPIC MAGNETO-ELASTIC SOLIDS

A. Material Expressions

Here we obtain the constitutive equations of nonlinear
magneto-elastic solids based on the strain energy
function (2. 16), i.e.,

T = Z)(Cyy Ty, Gap) (6.1)
subject to the saturation condition
-1
1,CAPN, = g = const. (6.2)

For the present case,n = 3 (space is three-dimen-
sional),p = n(n — 1)/2 = 3,1 = 18 for nonsaturated
media and, for saturated media,n = 14. Thus

7 —p = 15 for nonsaturated media,

n —p = 11 for saturated media.

For hemitropic materials ~ must be invariant under
the proper group. The axial vector II, may be re-
placed by its dual 243, We have the identities

trZ = trC2 = trC2Z = trGT =0, (6.3)
and the fact that trZ3 is not independent of tr=2,

Among the minimal integrity basis,14 for the case
of nonsaturated media, we select the following 15 in-

variants I; ,8=1,2,---,15,

I, =trC, I, =34trC2, I3=73 trC3,

I, =3trzZ2, I, =trZ2C, Ig=3trI2C?

I, =trG, Ig=3trG2, I, =73 trG3, (6.4)
I, =trCG, I, =trCG%, I,, = trGC2,

I,5 = 31trC2G2, I,,=73trL2G2, Ij5= trz2G.

For the case of saturation we may choose the first
eleven invariants [, 8 = 1,2, -+ 11. The constitutive
equations (3.1) are

TLK = 2(al — aSIJIP)gKL + q2CKL + @3CK,CML
-1
— aSTEML — @4TIKCLATL,
+ a6(ZM ENKCL, — FL, TN, CPK)

+ 210 GLE + 2011GL,GPX
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+ 205K TQ CPJCLAII
+ abe, K90, CPICLA]‘[
(BE =2JoX —2Ja5%¢, KEQ,; CPJ
—Jabep KTQ CI CFL+ ZJG’(Z)C Bll,
TWLK = 2[a7gKB + g8GKB + QQGKMGMB + alOCKE
+ all(CKMG B+ GKNCNB)] JBCLJ

(6. 5)

where gX5 ig the metric tensor in material coordin-
ates and of = 32, /01,.

It is interesting to see what happens when one starts
with the expressions (2. 17). Calling Z the dual of fi
and noting that D is a general second order tensor, we
can select 15 invariants for the nonsaturated case:

I, =trC, I,=731trC2, I;=3trC3

I,=trcD, I;=trCc2D, I;=trD,

I =3trD2, Ig=%th3, Iy= %trﬁﬁT, (6.6)
ILijp=trD2D7, 1, =$trD2(D7)2, 1, =1trE2
ILy=tr8D, 1,,=tr8D2, I, =trShcC,

where the superscript T stands for transposition.

For the case of saturation we may take account of the
constraints I, D43 = 0 by choosing to discard those
invariants which vanish as a consequence of these
constraints. For instance, we notice that

Ly=1,=1;=0 (6.7)
Hence the multipliers @3 are unlmportant and we
keep the eleven invariants 3, 8 = 1,2, -+ 11, of the
list (6. 6). Alternatively, since Iy, = const, we may
take the twelve invariants I, 8 =1,2,---,12, and the
unknown @5, may be preserved It follows that the
constitutive equations (3.1) are

12 o5 oLy
T oa O

8=1 9C,;
121; 8 -1 A -1 >
+ ab —— CIMD  — 2 @I, I,CLB
MB (3)+at'B
s-a  aD4,
-1/2 -1
X ( C/ AK — CAK)’
oIy, 1/2
. BE =—J<a12 A —2@(3)ﬁ> Cax

(6.8)

n ol -1/2
T(p)LK:(Z) b — 2 ) Far
B=4 aDAy

Twelve, one, and eight material coefficients are,
respectively, present in Egs. (6. 8). The full expres-
sions corresponding to (6. 8), especially to the first
of (6. 8) are quite involved and we choose not to give
them here. We note that minor simplifications are
still possible in formulas (6. 5) an (6. 8) by use of the
Cayley—Hamilton theorem.

B. Spatial Expressions
In many applications the spatial forms of the consti-
tutive equations are needed. To this end we set

ty =gl T R8s, — W™ uy (6.9)

where
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_p 09X _ 123z
gl =— 3xCh Xk 1Be=—T - (6.10)
Pr 0X K Pr Ol
Fn) pm A 9% X7 (6.11)
pR auk,K

Here ,t is the elastic stress tensor and t is the
“spin inlevaction” stress tensor. In addition, the fol-
lowing spalial strain measures are needed:

-1 -1
¢ k= gRLyh xb o pk A = gRixk oyl L (6.12)
Thus, we may consider
-1 -1
Z =Z(,p,d). (6.13)

The constitutive equations (2.10)=(2.12) in spalial
form are

-1 N\ T
t:ﬂ[zﬁc + 22 (d) +u®g—z—J, (6.14)
Pr -1 -1 N
Gl od

1 oz
B=—o- o

tw) = P 0z
pp on’

c
-1\ T
% o(d)
Moreover, one may verify that the form (6.13) con-
stitutes an integral of Eq. (7.35) of Part I, thus satis-

fying the Euclidean invariance requirement. In obtain-
ing (6.14) and (6.15) we have made use of the results

(6.15)

-1, -1

dcmn ddnn )

dxk - ZgKNO’/:‘x,’ﬁV, ox R = gKNG’Z o (6.16)

K K
admn
=& an"‘. (6.17)
k k.M

oM, i

For the saluralion case, we may take
(¢u,)

=2 C, U,y (6.18)
subject to

pep = p2 = const.
In (6. 18), we have defined

L= pkLk gyl RTEET

YR = EREUR B, v =yt (6.19)

-1 -1

that is related to d and ¢ through the relation

-1 [N\T 1

'y:(d) cd, (6.20)
where

<_1> 1 = KxL

c=\c/ ,ie,c,y= gg XEXT.
Setting:

¥ = T — @utp,— u2) (6.21)

to take account of the constraint, we get the constitu-
tive equations

oz 1 p 9z
t=2-L 2 ¢c+P 52 6.22
b 1 ¢ T ppH® T (6.22)
ac
B———1—<—a£—2(?u> 1) = 2.0 2Z ()7
L= = Pr a“ ’ - Pr a‘I .
4 (6. 23)
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In the last relation we have used the result

apmn
a#k,x

= ZgKNOZILLf‘N.

Note that the unknown ® appearing in (6. 23) is irrele-
vant to the spin rotation equation.
If we note the relation

-1 -1

d=cVp, (6. 24)

then the second of Egs. (6.23) can be written in the
alternative form

t) =2 £ (6. 25)

Analogous to (6. 4), spatial forms of the minimal func-
tion basis are

-1 -2 -3

I, =tre, I, =3tre, I;=jtre,
. -1 . -2
I, = 3tre2, I, =tro?c, I; =3;tro2e,
-1 L2 L. 3
17 = tr‘y) 18 = EtrYy Ig = itr‘)’, (6.26)
-1-1 -1-2 -1-2
L, =trey, I, =trey, I, =tryc,
-1

1, 7272 PO 5
I,y = 3trey, I,=3tro?y, I, =tro2y,
where ¢ = dual p. Only the first eleven invariants
need be considered for saturated magnetization. In

that case, the spatial equivalent of (6.5) is
-1 -1 -1
ty = (0/pp)2(al — a5 ud)c,, + 202¢,c™,

-1 -1 -1 1
+ 2a3c,, cmrc, + 20500, c™,

-1 -1 -1
+ 4a60P‘10n[kcm]pc"ll + 2210y, c™,

1 -1 -1
+ zall'ykn'ynm Comt — 2a4p'lp‘/a
- a -
+20%€¢,,,1,09"ch, + 2ab¢,,,09" cPTc, Ly,
1 (6.27)
Br=— (Z/pR)[~ (at + @), + 0S¢, 09"t

6 n
+ abe, 09" chre, |,

-1 -1
t(“)kl = z(p/pR)[a7ckq + aB'V/emcmq
-1 -1
+ady, vi

2 1L 1
+ a cPkymp * Con Vi) €™My,

-1 -1
c™ + al0c, cm4

7. APPROXIMATIONS, INFINITESIMAL DEFOR-
MATIONS

For infinitesimal deformations, we can takel?

1
Y zg/:l + 26“, p/pR r1-—e,

6_11/21 ®oplik = gKLg/eK wo, :ylkl ~oplsk )’ (7.1)
where ¢,; is the Eulerian strain tensor, e is its trace
and g% are the shifters. Therefore, the set of con-

stitutive equations (6.14)—(6. 15) for the nonsafurated

case, reduces to
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9z 0% 0z

—- —_—— — n
b = dekl + ol By oun ik Ko
L -2 1 82 t(“)kl =£. (7.2)
k p a“k a“k;l
For the saturated case, we get
_oz L0z
kRl — ae“ a l“k
B A g
p \auk IS
(7.3)

The equations (7. 2) constitute the magnetic counter-
part of the equations (4. 1) in Suhubi.18

For the linearized theory, one needs a strain energy
function expanded as a function of the independent
variables, i.e.,
T =ahy, +akiy,, +zaktmtug .+ 3L

+jklm“'hu‘m:l + dklekl + %dklmneklemn

1
+fklmp‘/eelm + Cklmne/el“'n;m + Exklmnekl“’mun’
(7. 4)

where the coefficients satisfy the symmetry relations
pmn = prm
d*l =gk

fkim = fhmt

The strain energy function is subject to some restric-
tions:

akimn — amnkl, chkimn — clkmnv,

dhrimn — glkmn — Jkinm _ dmnkl, (7.5)

ARimn — N lhkmn _ ) kinm

(a) If in the natural state the initial stress, the initial
local magnetic field intensity and the initial “spin
interaction” vanish, then

dkl=0, ak=0, a*=0 (7.6)
(b) TFor centrosymmetric materials, there exists no
odd rank material tensors,i.e.,

ak___jklmszlm___o; (7.7
(c) The strain energy is subject to the symmetry
operation ® (cf.Sec.4.). Since p is an axial tensor,
this implies that

ak = akl:fklm = ckimn — , (7.8)

In the case for which (7.7) and (7.8) hold true, the
coupling between magnetization and deformation
fields subsist only in the form of the magnetostrictive
effect due to the material coefficient A#¢m#, This
material coefficient, which was first introduced by
Akulov,19 admits only two independent components
for a centrosymmetric cubic crystal. Thus the strain
energy function assumes the simple form

1 1 :
Z = Eaklmnul;k Hyrom + Ebmn“m“n + 2d klmne“em"

+ %)\klmnekl“‘mu‘n (7-9)

of which the different terms are often referred to as
the exchange energy, the magnetic anisolropy energy,
the elastic energy and the magnelosirvictive energy.
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Without restrictions (7. 6)~(7. 8), from (7. 4) and (7. 2)
we obtain the constitutive relations for nonsaturated
magnetization:

tkl = dkl + dklmnemn +fmkl“'m + Crimn prim
1

+ E)\lalmn“ml""n + a by + bmlum“‘k

+ (jlmn i +flmn “P)“k

+ aknun.‘l + anki’q“qmun:l + jmhn“n:l“‘m

€+ X 1p€™"

t Ggun®fIBy, (7.10)
B =—pHay + b, m™ + G, 0+ fy et
+ Amnklemn“l)’

(), — : ;
. = Ayt Ay, KB F I mp b €™

and the following ones for the case of saturation:

bhe =iy + A ppmn€™ + [rupib™ + Cppmp W™
TN M Ay b, Wy
F Uimn K™+ [1mn€™ + X 1p €72 0P )y,

LBy ==, b, 0™ 4, b Sy et
F Ay g€ — 2 0py),

00 = 2(a () + A00mal™ ™ F G B+ Cniin @™

(7.11)

We note that the “spin interaction” stress tensor is
symmetric in the latter case while the stress tensor
t,, is not,

With the hypotheses (7.6)-
case reduces to

(7. 8), the nonsaturated

— . 1
tkl = dklmnemn + Crimn urm 4 g )‘klmnum“n

BT VL THRS o ey, (7.12)
1By = — 07 by ™+ X, e
t(”)/el = alkmnu""”‘,
and the saturated case to
Eap = G hgmn€™ + 2 Xy + b iy

F A ppe™ b, (7.13a)

By =—p 10, ™+ X, ™ ul —20u,),  (7.13b)
LWL = 240,y (7.13c)

If the material is noncentrosymmetric (for instance
if it is transversely isotropic according to the defini-
tion given in Sec. 5), we must keep jk¢m # 0. Thus, for
example in the case of saturation, we must add

wmsmLy s —p7j,,,.u™it and 2]m(/<l)“‘ to (7.13a),
(7 13b), and (7 13c) respectively.

Finally, if we disregard terms of order higher than
that of e ,,, the constitutive relations (7.13) provide
the set

t&l = d/elmnemn + %)\klmn wun + bmlumuk’ (7 148.)
[ By=—p1b, um + (2/p)®u,, (7.14b)
HB) = 20,y B ™ (7.14c)

The first term in (7. 14a) is none other than the
Hooke's law for infinitesimal deformations in Elas-
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ticity theory; the second term that represents the
magnetostrictive effect does not perturb the sym-
metry of {,,. The last term is due to the magnetic
anisotropy.

For ferromagnetic materials, the following remark
is in order. We recall that B = H + pp. For very
strong fields, we may assume that M = pp > H,
hence there are no magnetic domains in the magneti-
cally saturated crystal and the magnetic anisotropy
energy may be considered to be negligible. It follows
that M and B are parallel and the only remaining
coupling is through the magnetostrictive effect. If the
ferromagnetic material is uniaxial with H~ pu, one
must take account of the magnetic anisotropy effect
the influence of which is comparable to that of the
magnetostrictive term.

Finally we give a useful form of the strain energy
function which has applications in certain further
studies, e.g., magnetization surface energy if there is
any, study of the nonnegativeness of the strain energy,
uniqueness theorem for the linearized theory.

Starting from (7.11) which is valid only for saturated
media, considering a stress free initial state and neg-
lecting terms of order higher than that of e¢,;, we can
write

= ziyet— (p/2) Bhpk+ 3 ), ukl + Op2
T EaRAE T TR+ A b R
—3 alukekl_ %bmlumﬂkekl_ %xklmnﬂmﬂnekl

= 2 Cpaia1e™p R 4 ag u B+ 3 a(zk)ﬂ"’;l)-ls)

In the simpler case of saturated, centrosymmetric,
initially stress free materials corresponding to the
form (7.9), this reduces to
T =3t ett — (p/2) B, p* + FtW phit + @2
+ (% A4 Imn e % bml“m“’k ekl
— S X ek ur e kYY), (7.16)
‘The quantity ® u2 being a constant can be dropped
without loss of generality,

In the following paragraphs, we present three com-
monly encountered material structures likely of ap-
plications.

8. LINEAR ISOTROPIC MATERIALS

For fully isotropic materials,we have (7.7) and (7. 8)
valid.

Hence,
1 1
z = dklekl + Ed/dmneluemn +z akl”m“l:k“n:m
1
+bmrp o+ g Akmre, uou L (8.1)

The tensorial coefficients have their isotropic values:

dy =dby, bn = b5, ,
pimn = X040y + (0 + K)ﬁkmdln +uby,0,,, (8.2)
AUypmn = 06l/eémn + lJﬁlmdlm + wblnG/am’ ’

)‘klmn = aaklomn + Békmoln + 76kn61m‘

For nonsaturated media, neglecting terms of order
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higher than first for e¢,;, we obtain the constitutive
equations

Ly =ddy, +xem 8, + (20 + K)ey + (a/2)p26

+ [0+ 20 + B8]y,
B, =—0/p)y,

BB = om0y + Vi @iy,

(8.3)

Using (8.1) and (8. 2) and assuming the existence of a
stress free state (d = 0), the strain energy can be
written in a form similar to that of Eq. (21.2) of
Eringen20 for micropolar elasticity, i.e.,
Z = z[Atre)2 + (2u + X)tre2] + 3bu2
+ 3{30 + v + Wtr M)2+ (v — w) tr({ M}:{M}7)
+ (v + witr[ (M) : (M7}
+ 3{3(3e + B + y)(tre)uz

+ (B +)tr[e:,n® W]}, (8. 4)
where we have introduced the definitions
Wry = b4 ® Fyagd®, M= {m} + (M), (8.5

with
tr(M: M) = pyputim,  trM2 =y, u™l, (8.6)
and the deviators according to the relations
) = (W) — 3 ErMWI, L& p)=p&p—sp2L
8.7
From classical elasticity, it is known that

M+2p+X =20 2u4+X=0 X=0 (8.8)
are sufficient for the first term in (8. 4) to be non-

negative.

Similarly the second and third terms of (8. 4) are non-
negative if

b20, 30+v+w=20 w+rvz2020w-—u

(8.9)
It is easily verified that the third term of (8. 4) can
never be made nonnegative for all independent varia-
tions of e and p. Thus,

a=pf=y=0. (8.10)

There is no magnetostrictive effect in isotropic mag-
netized materials. Using a method similar to that
used by Eringen?0, one may prove that (8. 8), (8. 9), and
(8.10) are also necessary conditions. The only effect
of the magnetization field upon the stress is due to
the “magnetic anisotropy” coefficient b. Therefore,
Eq. (8. 3) can be written

by, =dboy +re™ b, +2p +X)e,, +bdbuyu,

1By = "‘(b/p)lv"ka (8.11)
t(")/ez =opm 8, t Vi, +_c5p.,,.k.
In (8.11) we can set d = — p when the material is in-

compressible, where p is the mechanical pressure, an
unknown to be determined upon solving a peculiar
problem with ad hoc boundary conditions.
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For saturation, the strain energy function may be de-
pendent on the direction of pu but not on its magnitude.
Hence the term 3bu2 of (8.4) may be ignored and we
obtain from (7. 3) the constitutive equations for in-
compressible isotvopic linear elastic magnetically
saturated solids:

t/!lz(—p_*-Aemm)ékl +(2u+3€)ekl,
1By = 2(0/p)uy,
t(“)kl = 2(”‘"m,'mékl + Z(V +a)“’(l:k)’

(8.12)

in which @ and p are two unknowns (® can be set
equal to zero without loss of generality, given the
form of the “spin rotation” equation). Only four
material coefficients are necessary to describe the
behavior of this material.

We see that numerous effects disappear for an iso-
tropic body. There are neither magnetostrictive
effects nor magnetic anisotropic effects. The rota-
tion of the spin is solely due to the Maxwell's mag-
netic field and the interaction of neighboring spins
through the gradients of pu. It is then certainly more
instructive to consider materials with less degrees of
symmetry, for instance transversely isotropic mater-
ials or centrosymmetric cubic materials of which the
latter is commonly encountered in micromagnetism
theory.

9. LINEAR TRANSVERSELY ISOTROPIC
MATERIALS

Here we are not concerned with the establishment of
constitutive equations for transversely isotropic
materials in the frame of the nonlinear theory. The
result would certainly be rich in effects but the treat-
ment would require finding a minimal function basis
which is unfortunately not yet at our disposal. The
purely elastic case has been studied by Ericksen and
Rivlin.2! For magnetized materials, the question of
single valuedness would be quite intractable. We thus
restrict the present work to the approximate theory
of infinitesimal deformations.

These materials are not centrosymmetric, the hypo-

theses (7.8) are therefore valid but not (7.7). Hence

we take j4;,, #* 0 and write the strain energy function
in the form

1 1
z = dklekl * Edklmne/zlemn + Exklmne/el“mu-n
+ %bmn Bt + %ahlmn“l;/au‘n;m +jklmu/‘,um;l .
9.1)

We call h the preferred direction with h parallel to u

in the reference configuration. h is normalized, thus
hehy =1, (9.2)

e = |ulhy in the reference configuration (f = ¢,).
(9. 3)

The tensorial coefficients appearing in (9. 1) must be
transversely isotropic tensors. These tensors may

be expressed as linear combinations of outer products

of h; and b,; (see Smith and Rivlin?2),i.e.,

dpy=dod s+ dihyhy,
Jktm = 910 kiltm + 320 kmhy + 330 P p + Gah b Ry,
d/almn = 006 f?lﬁmn + (115 /eméln

biy=0bg0,, +bik,h,,
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+ azéknélm + a36mnhkhl

+a,d,,h,h, + agd, b, + agd bk,

+ a761mhkhn + a86knh2hm+ th /zhlhmhn'
(9.4)

Similar expressions can be written for a ,;,,, and

A .imn With the scalar coefficients §; and v;,i = 0,1,
*++, 9, replacing o;. In general, the coefficients d;, b;,
Ji» @;,8; and y; may depend on the temperature 6 and
the magnitude of p. For the sake of simplicity, how-
ever, the material coefficient will be considered as
pure constant.

We introduce the following notations:
e=em , &E=h,h,ems, L =emrp h
V.“ =U«k;ky (thmhn“m:n’
V=Enmhrp, u, = U,

n’

U= h,u™, (9.5)

Using the notations (8.5)~(8.6) and assuming the
existence of a stress free state (d, = d; = 0), we can
write (9.1) in the form
T = 3bon? + 3b U2 + 3[ae? + a tre2 + ayeb
+a,tr(h ® h:e2) + a,82] + j; tr(p ® h: M)
+jptr(M:h @ p) + 5, UVep +j,Utrth ® h: )
+ 2[BoV 1 + By tr(MMT) + Botran2 + By RV +p
+ Bgtr(MMT:h ® h) + Bztr(MTM:h ® h)
+ Bytr(M:h © h:MT) + Botr(M2:h ® h) + ,R2]
+3[ygen? +y trie:p® p) +y 8p2

+y,U2e +y,tre:p ®h) +y56U2), (9.6)

with the new material coefficients:

Ay =0y, 0 =0 cta,, 0, a;+a,
az =0, +tag+a,+tag, 0, =a,,

By =By + By,

Yo =Y0,71 =¥ t Y2, Y2 =¥5 t¥e t¥r T g,
-'}73 = Y3 ;?4 Sy, ;;5 =vg.

For the nonsaturated case the constitutive equations
result in long expressions that we shall not give here.
For the saturated case, neglecting terms of order
higher than that of le,,|-1u,,!, we get

th= (@g€ + 30,8)8,, + (z0,e + a,8)hh
ol +agem by, + sy
F IRkl ol By
+ i Veuhu, + i Quiky,
— (/) I3V i + 4Ry + Gin™ 4k,
F Jol g mh™ + 5 Y€kl — 20u,]
1) = 2[BVp + By®R + i3 US4,
+2(B3V n + By®R + j, Whyhy
+2(j; ti by + 2(By + Bl (k)
+2(Bs + B Ry ™ b gy
+ 2(Bg + Belhqidpy;m M

(9.7

LB/e
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where we have set

bo=by =yo=v1=v3=v4=v5=0 (.8)

since, for saturation, the strain energy (9. 6) doesnot
depend on the magnitude of p 23 but only on its direc-
tion (equivalently, its components). Sixteen material
coefficients appearing in (9.7) and listed below re-
main to be experimentally determined. They are

i i=0,1,--,4, jiy i=1,-,4,
Bo» By +By, Bz, Bs+Bg, Bg+Bg, B,
Ty 9.9

1f we set h = 0, we recover Eq. (8.12) given for the
isotropic case.

o,

The following model may be more suitable for compu-
tations. We may reasonably assume that the “ex-
change” terms (of quantum mechanical origin) are of
little importance in ¢, and , B, but retain their im-
portance in t®),,, If we set |;B| = O(|nl), we can
neglect terms of the kind |p|-lel, Ulel, --. We thus
write the approximate constitutive equations for in-
compressible linear transversely isotropic elastic
magnetically saturated solids:

thy= (D +0ge +30,8)0, + (z0,e + 0 8)hhy
e, +agem hyyh, + 2ok,

1By = 20/p)us,

t W,  given by the third of Egs. (9.7).

(9. 10)

In this case, the rotation of the spin is affected by the
Maxwell's magnetic field and the magnetization field.
Second order gradients of the magnetization will ap-
pear in the velocity of rotation of u.

10. CENTROSYMMETRIC CUBIC MATERIALS

This paragraph is intended for applying to ferromag-
netic materials of cubic structure. We refer to Sec. 4
for the general features of the invariance under mag-
netic point groups and to Refs. 8, 10, and 24.

As an example we consider a cubic crystal of the
magnetic class m3m € m 4, the generators of which
are

-1 0 0 001 1 0 0
0o—1 o}, (1 00),[0 0—1]}.
0 0-—1 00 1 0 —1 0

(10.1)

This material is centrosymmetric; Egs, (7.7) and
(7.8) are therefore valid. Thus we consider the fol-
lowing expansion of the strain energy function:

— Ak 1 1
Z=d lekl+ 2dklmneklemn + 2)\kl”me/el“'m“n
+ogakimny o+ M (10, 2)

We consider only the saturated case which is of im-
portance for ferromagnetic materials. Neglecting
terms of order higher than that of u2 in t,, and |p|
in ; B, we get the approximate constitutive equations

by =dgy +d @™ b B™ iy + 3N, wT R,
1B, =— (1/p)b,,, u™ — 20u,), (10.3)

t(u)/zl = 2a(l Bdmn WP

CONSTITUTIVE THEORY

1345

For the considered symmetry, the material co-
efficients appearing in (10.2) assume the form (see
Sirotin25)
pmn — boémn, dkl = d05 kL,
dkimn — Jq§kimn 4 d126 klygmn 4 d44(§km51n5 /znalm),
ARimn — \§kimn 4 )\125 kigmn 4 A44(5 km §in 4 5kn61m),
alkdmn — gplhmn 4 ay 55k mn

+ ay,(6min + singimy (10, 4)
in which the symbol 6 %77 ig equal to one if A= 1 =
m = n and zero otherwise. Upon carrying (10.4) into
(10. 2) and assuming the existence of a stress free

state (d, = 0),we can write the strain energy function
in the form

T = 3byu2 + %[dZ}(eii)z +dy,e? + 2d44tre2:|
T Vil

+ % [)\Z)(e”piui) + Xy,en2 + 22 ,tr(e:pn @ 1)
P

+ 3z [az_)(um)z + ay ,(trim)2
7 i

+ ag,trd2 + trimmT):l , (10.5)

where we have made use of the notations (8.5)—(8. 6).

This equation is written for rectangular coordinates.

For instance, we have

2i(e;)? = ;12 + ey,% + €542,

7 it

?(e_iz“_i“z) = ey g + epu8 + eg3ul.

(10.6)

Since for saturation ~ does not depend on the magni-
tude of p we set

=2, =0,

0~ M2~ (10.7)

and we are left with 8 material coefficients, namely
d,dyg,d44,X,Xy4,a,a;, and a,,. For instance, in rec-
tangular coordinates, Eq. (10, 3) yields for an incom-
pressible solid:

tyy=—p +dyge + (d+2dy)e, + (A2 + Ng)u42,
t1g = 2d4.855 + Agqllqly,

B =2 @/P)ui, (10. 8)
tU) ) = 2(a + agy + @iy g + 205,00, 5 F By g),
t(”)lz = ag4(kq,0 + Bgn)s

ete.,

while the term which represents the magnetostrictive
energy in (10.5) is

Zhse.= (gg +M2)(e51012 + €550, + €550,2)

+ 2hg4(€q0H 1y T Eaghplig T e 0k q).  (10.9)
This form is similar to that of Landau and Lifshitz.26
It shows that only two material coefficients are need-
ed to describe the magnetostrictive effect for a
centrosymmetric cubic crystal (cf.Ref.19), Finally,
we note that, as in the case of fully isotropic mater-
ials, the local field ;B is of no importance for such a
structured medium. In fact, it is known that the mag-
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netic anisotropy energy is of fourth order in cubic
crystal26é and therefore is relatively small. In the
present work, its effects cannot be felt since the ex-
pansion of ~Z has been cut at the third order.

This last class of materials is particularly important
for it is in the realm of ferromagnetic materials that
the saturated media have been studied experimentally
for some decades19-27, The theoretical considera-
tions are shown to possess physical reality. It is
therefore expected that, in future articles, motions of
special interest and special effects predicted by the
theory will be examined more accurately for both
exact nonlinear and approximate linear theories.

11. PROSPECTS

The classical (three-dimensional) theory of magne-
tized deformable materials presented in Part I and
herein provides an insight into the continuum be-
havior of the interaction between deformable matter
and the magnetization field. It takes into account in a
macroscopical way two features of quantum mechani-
cal origin: a repartition of electronic spins throughout
the body and the interaction of neighboring spins. If
we disregard these average effects, the theory still
gives a basis for the nonlinear treatment of the mag-
netostrictive effect. The theory has been developed in
the frame of quasimagnetostatics.

Several likely applications of the theory exist. We
mention three such classes below:

(1) Nonlinear hemitropic and isotropic magnetical-
ly saturated media: The study of nonlinear deforma-
tions due to high intensity of applied magnetic fields
can be made, thus casting light onto rich nonlinear
effects. For instance, one may ask the legitimate
questions: Is there any Kelvin-type effect ? Is there a
possibility to study universal motions in order to give
a strong theoretical support to the laboratory deter-
mination of the material coefficients ? All answers
are certainly beyond the scope of the present articles.

(ii) Ferromagnetic media: The theory seems ade-
quate to tackle on the one hand piezomagnetism and
magnetostriction and, on the other, a phenomenological
approach to the problem of magnetic domains. We
have provided the necessary tools for a study of
centrosymmetric cubic materials in the frame of an
approximate theory. For example, it would be of in-
terest to study the structure28 of a wall separating
two magnetic domains and the velocity of propagation
of magnetic walls in the light of the present develop-
ment.

(iii) Rubber bonded barium ferrite composite
materials: We may reasonably assume that the
theory is fitted for studying such materials. The
“gpin rotation” equation obtained here above would
prove capable of describing the dynamical behavior
of the small magnets embedded in the matrix of
rubber-like material, upon action of an applied mag-
netic field. Although only approximate constitutive
equations are given, it is expected that fully nonlinear
ones will be constructed once minimal function bases
for transverse isotropy are established. The study of
large deformations such as bending or torsion super-
posed to an applied magnetic field of given direction
should lead to interesting results.
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Finally, we note that some categoriesof problems can
be examined such as that of the superposition of in-
finitesimal deformations to a finite deformation field
and the superposition of a small dynamical magnetic
field upon a large static magnetic field.

The limitations of the theory are quite obvious: Only
quasimagnetostatics and nondissipative processes
(except for Sec. 8 in Part I) have been considered,
thus excluding the electric field and the polarization
and their related effects e.g., magnetoelectropolariz-
ability, piezoelectricity- - - and the strong dynamical
behaviors, e.g., waves, Furthermore, we note that the
inclusion of the notions of temperature, conductivity,
and resistance would have led to numerous other ef-
fects.

To remedy some of these limitations, we give in a
forthcoming article a special relativistic theory of
nonlinear elastic elastic solids that exhibit a reparti-
tion of electronic spins, an electromagnetic field act-
ing upon the body. Current, charges, electric and
polarization fields are no longer ignored and the treat-
ment is fully dynamical due to the synthesis of space
and time as one entity. It is thus expected to give a
sound basis for the approximate theory developed
above.

We close the present article by noting three prospects
of interest:

(a) The theory developed above is concerned with a
classical mechanical behavior of materials. Mechani-
cal couple stresses and micromorphic29 (more re-
strictly micropolar) deformation fields have been ex-
cluded. It seems that some magnetized materials may
possess a plastic behavior, hence the possible intro-
duetion of “mechanical directors” (not to be confused
with the “magnetization director” or spin introduced
above). Other materials such as the aforementioned
rubber-like material are indeed composites and there-
fore manifest a more involved mechanical behavior.
More naturally, certain liquid crystals are known to
possess both microscopic orientations and magnetic
dipole moments. A synthesis of the present work and
of the concept of micropolar medium should provide
still further rich grounds for the exploration of new
physical phenomena.

(b} The considered materials have been selected
among “simple” materials. The treatment of more in-
volved materials such as those gifted of hereditary
characteristics, requires the study of functional con-
stitutive equations. Approaches“4 la” Eringen390 or
“4 1a” Noll31! if the statement of balance laws consti-
tutes the starting point, or * 4 1a” Edelen32 if use is
made of a non-local variational principle to start
with, may be envisaged.

(c) Finally we mention the attempt of Eringen and
Kafadar33 to develop a micromorphic theory of mag-
netism in matter. It is expected to explain micro-
magnetism phenomena, but it seems to be a task to
define the energetic concepts without which the con-
struction of a constitutive theory (or of a variational
principle) remains incomplete. With the construction
of the energetic concepts it will be possible to predict
the behavior of materials exhibiting extra degrees of
freedom of mechanical and electromagnetical origins,
This theory would give an insight into the behavior of
matter at an intermediate level in the midst of two
realms, microphysics and continuum physics, though
the formalism of the latter would be used throughout.
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The results of previous work are generalized to include procedures whose measurement operations correspond
to expectations as defined by Davies. For such procedures Von Neumann's projection axiom is not in general
applicable. Finite and infinite sequences of measurements and transformations as well as finite and infinite de-
cision procedures are considered. It is shown that with each such procedure there is associated in a unique

manner a probability operator measure.

1. INTRODUCTION

In an earlier paper,l hereafter denoted as I, proces-
ses consisting of finite or infinite sequences of ob-
servations separated by transformations (such as ro-
tations, translations, etc.) were considered. The pro-
cess @ was required to be such that there exist a
Hilbert space ¥ such that each observation in @ cor-
responded to a discrete self-adjoint operator in
B(%), the algebra of all bounded linear operators on
3. Also each transformation in @, considered as a
map with domain and range in the set of all state pre-
paration procedures, was taken to correspond to a
map: S(J) — S(3) which was implementable by an iso-
metry in B(¥). S(3C) is the set of all states on X.
Furthermore, Von Neumann's projection axiom? was
required to be applicable.

The main result of I was that, with each finite or in-
finite process @ which satisfied these requirements,
there is uniquely associated a probability operator
measure 09 : 29 - B(3). Z?is a o-field of Borel
subsets of 29, the set of all possible outcome se-
quences of @, and B(X) is the algebra of all bounded
linear operators on JC.

In another paper3 hereafter called II, this and other
results of I were extended to include finite and infi-
nite decision procedures. That is, for each j, the
choice of operations in the procedure for the jth step
of any path could depend on the operations and out~
comes of previous observations. The decision proce-
dures were required to satisfy the same restrictions

as were imposed in I. That is, each observation in
each procedure @ corresponded to a discrete self-
adjoint operator in B(3) and each transformation

was implementable by means of an isometry in B(X).
Also @ was to be such that Von Neumann's projection
axiom was applicable. Also, each path p of @ was re-
quired to be such that the length of every (proper) ini-
tial segment of p is finite.

Now as Margenau has pointed out? there are many
measurement procedures which do not satisfy Von
Neumann's projection axiom. Furthermore, if one
wishes to consider observables with continuous spec-
tra without replacing them by “coarse grained” ob-
servables which are discrete, then the projection
axiom fails. That is, for discrete observables the map-
ping p > p’ = I, P, pP, , where 1P li=1,2:""] isa
complete set of eigenprojectors for a discrete obser-
vable A exists. However, if A is continuous, then no
mapping of the form p — p’ given above exists.® More
generally, the map p -» p’ as defined above is a condi-
tional expectation as defined by Nakamura and
Umegaki,® and these exist only for discrete observa-
bles.

For these reasons it seems worthwhile to consider
procedures which contain measurements for which
Von Neumann's projection axiom is not applicable. In
this work, these procedures will be treated by the me-
thods of Davies? and Lewis.5 The mathematical ob-
jects one works with in these methods are expectations
and their dual—instruments. The basic correspon-
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manner a probability operator measure.

1. INTRODUCTION

In an earlier paper,l hereafter denoted as I, proces-
ses consisting of finite or infinite sequences of ob-
servations separated by transformations (such as ro-
tations, translations, etc.) were considered. The pro-
cess @ was required to be such that there exist a
Hilbert space ¥ such that each observation in @ cor-
responded to a discrete self-adjoint operator in
B(%), the algebra of all bounded linear operators on
3. Also each transformation in @, considered as a
map with domain and range in the set of all state pre-
paration procedures, was taken to correspond to a
map: S(J) — S(3) which was implementable by an iso-
metry in B(¥). S(3C) is the set of all states on X.
Furthermore, Von Neumann's projection axiom? was
required to be applicable.

The main result of I was that, with each finite or in-
finite process @ which satisfied these requirements,
there is uniquely associated a probability operator
measure 09 : 29 - B(3). Z?is a o-field of Borel
subsets of 29, the set of all possible outcome se-
quences of @, and B(X) is the algebra of all bounded
linear operators on JC.

In another paper3 hereafter called II, this and other
results of I were extended to include finite and infi-
nite decision procedures. That is, for each j, the
choice of operations in the procedure for the jth step
of any path could depend on the operations and out~
comes of previous observations. The decision proce-
dures were required to satisfy the same restrictions

as were imposed in I. That is, each observation in
each procedure @ corresponded to a discrete self-
adjoint operator in B(3) and each transformation

was implementable by means of an isometry in B(X).
Also @ was to be such that Von Neumann's projection
axiom was applicable. Also, each path p of @ was re-
quired to be such that the length of every (proper) ini-
tial segment of p is finite.

Now as Margenau has pointed out? there are many
measurement procedures which do not satisfy Von
Neumann's projection axiom. Furthermore, if one
wishes to consider observables with continuous spec-
tra without replacing them by “coarse grained” ob-
servables which are discrete, then the projection
axiom fails. That is, for discrete observables the map-
ping p > p’ = I, P, pP, , where 1P li=1,2:""] isa
complete set of eigenprojectors for a discrete obser-
vable A exists. However, if A is continuous, then no
mapping of the form p — p’ given above exists.® More
generally, the map p -» p’ as defined above is a condi-
tional expectation as defined by Nakamura and
Umegaki,® and these exist only for discrete observa-
bles.

For these reasons it seems worthwhile to consider
procedures which contain measurements for which
Von Neumann's projection axiom is not applicable. In
this work, these procedures will be treated by the me-
thods of Davies? and Lewis.5 The mathematical ob-
jects one works with in these methods are expectations
and their dual—instruments. The basic correspon-
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dence assumption is that each procedure @ must be
such that each measurement operation in @ corres-
ponds to an expectation (or an instrument). However,
before working with procedures, we must first define
expectations and instruments and give some easy
properties. This is done in Sec. . It is noted, among
other things, that the use of expectations and instru-
ments requires a generalization of the definition of an
observable to be a probability operator measure
rather than the more specialized spectral measure.

In Sec.III sequences of measurements are considered
in which each measurement corresponds to an expec-
tation. (Rather than carry both expectations and in-
struments through this work, which would be unneces-
sary, we will work almost exclusively with expecta-
tions.) Furthermore the value space need not be dis-
crete. Thus in this section the requirement, present
in I1 and I, 3 that the observables be discrete is drop-
ped.

The main result obtained is that with each finite or in-
finite sequence @ of measurements there is uniquely
associated an observable (or probability operator
measure) O9. In the case of finite sequences @, there
is also a unique expectation associated with the pro-
cess, and the observable O€ is merely a part of the
expectation.

Section 1V extends this result to finite and infinite de-
cision procedures. Here the requirement that the va-
lue space of each measurement in @ be discrete is re-
imposed. The reason is that there are some mathe-
matical problems in the nondiscrete case related to
how one expresses the dependence of the choice of the
expectation in step j in a path on the prior outcomes.
In any case it is doubtful if procedures with uncount-
ably many lines leading out of a vertex of the associa-
ted tree need be considered.

The Appendix gives some mathematical results neces-
sary to carry out the constructions of this paper. The
Kolmogorov® extension theorem, extended in I to in-
clude probability operator measures on Cartesian pro-
ducts of the real line, is extended further here to
Cartesian products of arbitrary, complete separable
metric spaces. Davies and Lewis? theorem on the
combination of instruments is given for the combina-
tion of expectations. It is noted that these theorems
can be shown to apply also to o-compact, locally com-
pact Hausdorff spaces.

II. EXPECTATIONS AND INSTRUMENTS

Expectations are defined as follows: Let X be a set
(of outcomes of a measurement procedures) and B(X)
a set of Borel subsets of X and B(3C) the algebra of
bounded linear operators on some Hilbert space IC.
An expectation & is a map, §: ®(X) X B(X) —» B(X)
such that [0 and 1 are the zero and identity operators
of B(X):

(a) If B =0 then §(E,B) =0 for each Ec®(X).

b &§(x,1)=1,

(¢} For each BEB(¥), &(—, B) is strongly count-
ably additive.

(d) For each complex number a, set E, and op-
erator B, §(E,aB) = a&8(E, B).

() 8(E,B + B')= §(E,B) + §(E,B’).

(f) LetA_ be a monotone net of operators in B(%)
with A = s-lim A, . Then for each E,
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8(E,A ) is a monotone net with §(E, A) =

s-lim &(E,A ).
This definition is the same as that given by Davies.?
The replacement of weak by strong convergence in
properties (c) and (f) has no effect since weak and
strong countable additivity are equivalent,® and in (f)
weak and strong convergence are equivalent.10

A simple example of an expectation is given by

(E,B)= ), P,BP, 1)
x€kE
for each £CX with X countable and B in B(3). Equa-
tion (1) gives the well-known form of the expectation
associated with any measurement procedure whose
outcome set X is at most countably infinite and which
satisfies Von Neumann's projection axiom.

Let S be the set of states on ¥. Then an instrument is
defined5:7 to be a map J: B(X) X S — S such that (i)
J(E,p) = 0 if p = 0 for all peS; (ii) g(-, p) is strongly
o-additive; and (iii) Trg(X, p) = Trp for all peS.

Basically an expectation can be regarded as a condi-
tioning on operators® just as an instrument is a condi-
tioning on states.5 That is, let §,, and g,, be the res-
pective expectations and instrument associated with
some measurement procedure M. Then §,(E, B) is
the conditioning of B which corresponds to the prior
carrying out of M and finding the outcome in E. Simi-
larly Jy(E, p) is the conditioning of p which corres-
ponds to the carrying out M on a system in state p

and finding the outcome in E.

The duality of g, and &, is evident from the fact
that

Tr(péy (E, B)) = Tr(Jy (E, p)B) 2)

for each p in S, E in ®(X) and B in B(X). If M corres-
ponds to a discrete observable and Von Neumann's
projection axiom holds, then g, is given by

Iu(E,p)= 2, P,pP, @)

XECE
for each EC X and peS and &, is given by Eq. (1).

The association of expectations and instruments to
measurement procedures also results in the generali-
zation of the concept of an observable, In the usual
quantum mechanics, a bounded observable corres-
ponds to a self-adjoint operator in B(XC) or, equivalent-
ly, through the spectral theorem, to a spectral mea-
sure on ®(R), the set of Borel subsets of the real line.
Here an observable corresponds5:7 to a probability
operator measure on B(X). (A spectral measure is a
probability operator measure whose range set is a
set of mutually commuting projection operators. In
general, the operators in the range set of a probability
operator measure do not have to be projection opera-
tors nor do they have to commute.) Here, if M is a
measurement procedure with associated expectation
&y, then &,,(—, 1) is the observable which M mea-
sures.®

Although the use of expectations and instruments and
the consequent generalization of the definition of ob-
servables may appear counter intuitive, they do have
some important advantages. One is that there are po-
tentially at least, many measurement procedures
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which do not satisfy the projection axiom, but can be
described by expectations and observables in the gen-
eral sense of Davies and Lewis.® Of course, there may.
be many measurement procedures which cannot be
associated with expectations either. However, the in-
creased generalization given by expectations and in-
struments does bring a potentially larger class of
measurement procedures into the domain of the the-
ory.

Another advantage is that, as will be seen, the com-
pounding of measurement procedures? each described
by an expectation (and observable) gives a procedure
which is described by an expectation. Thus an obser-
vable is associated with the compound procedures, and
it also corresponds to a measurement procedure.
This does not hold in the usual quantum mechanical
interpretation in which Von Neumann's projection
axiom holds. There the compound procedure of mea-
suring observable A; =2 ., yP, followed by a mea-
surement of observable A, = 2,,-, 2P, where A; and
A, do not commute, has associated with it a map

&(—, 1) defined by

E(E, 1) = 2]
(j,2) E
For each ECY X Z. But §(—, 1) so defined, is not a
spectral measure and thus the compound procedure
does not correspond to any observable under the
usual interpretation.

P,P,P, .

. SEQUENCES OF MEASUREMENTS

In this and the next sections only those sequences @
of measurements will be considered which are such
that each measurement operation in ¢ corresponds to
exactly one expectation. Any @ for which this is true
will be said to satisfy the correspondence assumplion
as there corresponds to each such @ a unique se-
quence of expectations. Clearly this is a weaker re-
striction than was used in I and II where the projec-
tion axiom was required to hold.

Also, in this and the next section, the simplifying re-
striction to processes with no transformations sepa-
rating the measurements will be made. This is an in-
essential simplification made simply to conserve on
notation. It will be shown later that the results ob-
tained extend easily to processes with transforma-
tions separating the measurements.

Let @ denote a process consisting of an infinite se-
quence of measurement operations and {é’QI i=
0,1,+--} the correspondmg infinite sequence of expec-
tatlons That 1s for each j, under the correspondence
assumption, é’ is the unique expectation associated
with the measurement operation @ (j). @ is also as-
sumed to be such that for each j, the outcome space
X; is a complete separable metric space. This is a
weak restriction since it includes the real line R or
any countable set such as the integers with discrete
topology.1ll Also, if each X; is a complete separable
metric space, so is the Carte51an product ® (} X; for
each n.12

Now for each », let @, denote the first » steps of @,

{8‘9 lj=0,1, — 1} the corresponding sequence of
expectatlons X "= oo"‘(} X, the Cartesian product of
the outcome spaces and B(X”) the Borel system of
subsets of X”#. By Theorem 2 in the Appendix there is
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associated with @ , a unique expectation & .,
®(X7 X B(3) —» B(3), such that for each set E in
®(X" of the form

X E

E:EOXEIX'.' n-1 (4)

with E; €®(XY), one has

8% (B, B) = 8 (Egy 83 (Eqynn, 8EUE, 1,B) )

)

For each B in B(J). By the same theorem one also
has that for each set I of the form E = F X G with
Fe®(X!) and Ge®(X"?) with X»?! =X, X --+ X X, 4,
8 (E, B) = §°I(F, §°+4(G, B). (6)
Thus one sees that by means of the correspondence
assumption, with each finite process ¢, whose out-
come spaces satisfy the restrlctlon given, there is
associated a unique expectation 8° defined on G(X")
X B{#) which satisfies Eq. (4). In particular, the uni-
que probability operator measure associated with the

process @, is given by 5Q"(—, 1).

If one assumes that to each probability operator mea-
sure there corresponds a unique observable (the con-
verse is already assumed in this section), then the
above shows that a unique observable is associated
with the process @, i.e., the observable correspond-

ing to & n (—1).

In order to better understand this description, one has
the following: If each outcome space X, is countable,
then the above results give

§ME,B) = T3 &3e, O &g, M), -,
op€

8% . { e, — 1), B). (7)
for each E€®(X"?) and BcB(X). ¢, denotes an element
of X» and {¢, (j} is the subset of X; containing the
single element ¢ _(j). I, furthermore Von Neumann's
projection a.x1om'é holds then repeated use of Eq. (1)
in (7) gives

Q Q) L) . (1)
8 "(E, B) = E </J"(O)P (l) @ (z-1)
¢pEE
Q-1 pW QO
X BP0 B, o) By (8)

which is a well-known result.

These results show that with each finite sequence of
measurements one can, under the correspondence
assumption, associate a unique expectation defined on
the product space X”*. The question now arises whe-
ther such an association is possible for infinite se-
quences.

To this end, let X« = ®, X, be the set of all possible
infinite sequences of outcomes for the process ¢. De-
fine F to be the field of all Borel cylinder subsets of
X« and B(Xv), the minimal o field over ¥. That is,
each E¢ ¥ has the form £ = FF X X X X, 4 X+« with
Fe®(X*) for some n. The questlon now becomes
“under the correspondence assumption does there
exist a unique expectation £ : B(Xv) X B(3) » B()
such that for each £€J with Borel base F in B(X")
and Be B (30),
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8%UE, B)

= S-limmgnQ"(F’ gnQ (Xm ey grg-m—l(Xn+m—l’B)' *e ))’
©)

where s-lim means convergence in the strong opera-
tor topology?”

It can be shown by means of examples that for some
sequences of expectations the limit of Eq. (9) exists
and for others it does not exist. However, one has the
following result.

Set B =1 in Eq. (9). Then from 8°(X;,1) = 1 for each
j, one has that the sequence of probability operator
measures {§ *» (—1)|n =1,2---} is consistent, and

thg limit of Eq. (9) exists trivially and equals
&"*(F,1). By Theorem 1 of the Appendix there exists
a unique probability operator measure §9(—, 1):

®(X«) - B(3¢) such that, for each Ec ¥ with base F in
®(X*) for some =,

EUE,1) = &% (F,1). (10)

Thus one has the result that (under the correspon-
dence assumption) with each infinite process @ there
is associated a unique observable or probability ope-
rator measure §9(—, 1) which satisfies Eq. (10) and
which contains the statistical properties of . This
follows from the fact that for each £ in B3(X+) and
each state p, Tr(p89(E, 1)) is the probability that
carrying out @ on a system in state p yields an out-
come sequence in E.

IV. DECISION PROCEDURES

In the above, the methods of Davies? and Lewis® have
been used to treat finite and infinite sequences of
measurements. Here these methods are extended to
include decision procedures. However, in order to
avoid many mathematical problems, the restriction
that the outcome space of each measurement proce-
dure be at most countably infinite is reimposed. This
is a quite minor restriction since it is doubtful if one
needs to consider decision procedures whose asso-
ciated trees have vertices with uncountably many
lines leading out.

Let @ denote an infinite path decision procedure and
7, the associated tree. That is, @ is such that all
paths in 7, are infinitely long. It is also required that
each path in @ be such that each initial segment be of
finite length. The necessary definitions and proper-
ties of trees and their association with decision pro-
cedures are given in II, and the reader is referred
there for details. We continue to suppress inclusion
of transformations or, more generally, of any opera-
tion (other than the identity observable) representable

0 (s,)
¢,€5, oSy ¢, €S
¥2,1° %1 Yn,n1" -1

BENIOFF

as an isometry on the underlying Hilbert space. (The
inclusion of procedures with one or more finite paths
will be discussed later on.)

For each n let @, denote the first » steps of Q. That
is, @, is obtained from @ by cutting each path of @ (or
7o) between the nth and (x + 1)th steps and discarding
the infinite terminal segments.

Under the correspondence assumption each measure-
ment in @ corresponds to an expectation with an asso-
ciated set of outcomes. For eachn = 1,2, ..., define
S, to be the set of all possible outcome sequences @,
= ¢,0),...,¢,(n —1)) of length n associated with
carrying out the first » steps of . That is, for each »

LR 11
Sn+1 = U (p" *X‘/) s ( )
Sy "

where (p"*X‘P,, isthe set of all sequences ¢, ., of length

n + 1 such that ¢,,,(j) = ¢,(j) for j=0,1,...,n —1
and ¢, (n)c Xq}” .

To motivate this definition, one notes that the first
measurement in @, denoted by @(¢), has the (discrete)
outcome space X, corresponds to an expectation é’f,
and is step 0 of Q. ® denotes the empty set. For each
n=1,2--- and each ¢85, let 8& be the expectation

corresponding to the measurement operation Q(q)n)
and X*/’n the (discrete) outcome space of @(¢,). @(¢,)
denotes the measurement operation, @ assigns to step
n of any path in 745 which corresponds to observing
the outcome sequence ¢, in the first » steps of @.
[Step number % is the (» + 1)th step.]

n’

Let Z» denote the set of all subsets of S,. For each
n one defines a mapping 0% zn o B (X) as follows:
For each ¢, €S,

0% do,h = 8. (e, 0}, 87  do, M}, ...,

&5, e, = 1)} 1)),

Yn,

(12)

where ¢, ; denotes the first j elements of ¢, and ¢,
= ¢. For each ECS , ’

> 0%de,),
[

Yn

0°n(E) = (13)

where strong convergence is implied.

It must now be shown that 0% is a probability opera-
tor measure. To this end, one first shows that the
strong limit implied by Eq. (13) exists. Consider

0%n (5,). This can be written as

(14)

&5 Uo, @, 85 do, ..., 87 de,ee = DL ).

where ¢, . denotes the first j elements of ¢, . By repeated usc of propertics (a)—=(c) and (f) in the definition of

expectations, one has for the last sum in Eq. (14),
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@S 82 G, 0} 88 Ko, ) ..., 82 (ke —1),1)--+)
‘pn,‘flﬁl:gn—l
= 85,, 00,0} 88, o)., T 88 (e, —DhD..)
‘Pn ,f:l: ‘;Lnﬂ
=82 o, O} 62 Ao, ..., 88  (o,6e —2)}1)...). 15)

The second equality of Eq. (15) follows directly from
properties(b) and (c) in the definition of expectations.
The first equality follows from the fact that by pro-
perty (a) the internal sum in the middle part of Eq.
(15), which can be written as the limit of a sequence
of partial sums, is the limit of a monotone sequence
of positive operators. Property (f) allows one to shift
the sum stepwise to the left.

Substitution of Eq. (15) into Eq. (14) and the use of

é’q? = é’f _in each term of the sum of Eq. (14)
n,j ﬂ‘l,]

(@, ; = @p-1,;for j=0,1,...n —2) and repetition of
this process over and over gives finally

0% (sn) = ZE)S 5% o({%(o)}, 1) = 5(’1'0(31,1) =1
f=% (16)
as ¢y o = ¢ is independent of ¢, .
From this one has that 0% (E) exists for each ECS”,
This follows from the fact that 0% ({cpn}) = 0 for each
¢,€S, and that 0°*(E) is the limit of a nondecreas-
ing sequence of partial sums bounded from abovel!
by 0°7(s7) = 1.
Finally the strong countable additivity of 0% follows
from the fact that if an infinite sum of positive opera-
tors exists, then the limit is independent of the order-
ing of the terms in the sum. Thus for any countable
pairwise disjoint sequence {E;lj = 1,2---} of subsets
of S, withE= U, E,,

0%(E) = T 0%dph=2 T 0%deb
‘meE m (anEm
=3 0%(E,), @)

and 0% is a probability operator measure.

Thus one sees that for each decision procedure @ and
each n the correspondence assumption associates to
the decision procedure @, consisting of the first »
steps of @, a unique observable or probability opera-
tor measure 0%, Clearly 0% satisfies Eqgs. (12) and
(13) and describes the statistical properties of @,.
The latter follows from the fact that the probability
that carrying out @, on a system in state p gives an
outcome sequence in E is given by Tr(p OQn(E)).

In order to use these results to assign an observable
0% to @, one defines X, by X, = Uy es, X¢n . Since
each X n is countable, it can be assigned a suitable

metric to make it a complete separable metric
space.1l Also since S, is countable, X, is a complete
separable metric space.13

Let B(X) and ®(X") be the o-fields of Borel subsets
of X and X*, = Xy X Xy X -++ X X__,,respectively.
Let X« denote the set of all infinite sequences of X:

r

& the field of all Borel cylinder subsets of X, and
®(X¥) the minimal o-field over ¥, For each n, define
Q" to be the subset of X¥ defined by @» =8, X X .,
X X, .0 X+, Since S, is at most countably infinite
and each X is a Borel subset of X, S,€®(X*) and
in fact, each subset of S, is a Borel subset of X7,
Clearly Q"€ ¥ for each n.

Define 9 by 9 = N,Q*. Q¢ is the set of all out-
come sequences of @. Also Q9 B(Xv¥) as B(Xv) is
closed under countable intersections. Let < be the
ring of all cylinder subsets of Q¢ with bases in S,
for some n. That is, each E in 9 has the structure

(18)

for some FCS_ and some 7. Let 9 be the minimal
o-ring over 54, Clearly Z9is a sub o-ring of B(X%),

E=(FXX,q XX, 5 X )N Qe

In order to show that there is a unique probability
operator measure O€ associated with Q, one proceeds
as in II. For each # one defines 0% on ®(X") by

0°%(B) = 0% (BnSs,) (19}

for each Be B(X") where O°" is defined by Egs. (12)
and (13). Clearly 0% is well defined and is a proba-
bility operator measure on B(X?),

One must first show that the 0% are consistent on
the B(X") for n = 1,2, .-. . First assume that the 0%
are consistent on Z", and let m > n. The for each
set A in B(X™) of the form A =D X X™n with D in
®(X*) one has from Eq. (19),with E=A4AN S, and
F=DnSs,,

0%7(4) = 0%m(E) = 0% (F) = 0% (D). (20)
It remains to show that the 0% are consistent. To
this end, let E be a subset of S, given by

E= U U e}
(anF S mESm
$m,n"%n

for some subset F of S, . [Note that by Eq. (11), E
and F are such that there are sets A and D defined as
for Eq. (20) such that E=ANS_and F=DNS,.]
From Egs. (12) and (13) one has

0™Ey =Y T )

¢n€F "n'ﬂes ntl ¢m€Sm

0o, D

Prt1,n"%n Ym,n~¥n
= > o o 82 (e,0 ...,
ST 45418841 PS5y :
$n+1,n~%n  Pm,n"%n
82, louln + D)., 82 €gpm ~ 1L 1))

By the use of the same techniques that were used to
obtain Eq. (16), the above expression gives
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0“m(E)
= ZEIF 8:;9”,0 ({(pn(o)}7 L] (gfn({q)n(n - 1)}’ 1))' ° °)
= OQ"(F), (21)

and thus the 0% are consistent.

Since the 0% are consistent, Theorem 1 of the Appen-
dix gives the result that there exists a unique proba-
bility operator measure 09 on ®(X“) such that for
each set B in ¥ with base D in ®(X*)

0% (B) = 0%(D). (22)

By Eq. (18) and the fact that Q@ is in B(Xv), F9 and
Z®are a subring and sub o-ring of § and B(X¥), res-
pectively. Thus one can define a map 0O?: 29 - ®(3)
as the restriction of 09 to 9. That is,

O%E) = O¥(E) (23)
for each E in Z?, Since 09 is strongly continuous
from abovel on B(X“) and 0¥ (Q”) =1 (Eq. (19)] and
the @ are nonincreasing, one has that 09(Q?) =
0%(Q9) = s-1im,09(Q,) = 1. Thus 09 is a proba-
bility operator measure. Also for each Ec 9 with
base FC S, for some #, Eqs. (22) and (23) give

0% E) = 0% (F), (24)
The uniqueness of O follows from the uniqueness of
0% and the fact that 09 as given by Eq. (23) is well
defined.

Thus one has the result that, under the correspon-
dence assumption, with each infinite decision proce-
dure @ consisting of measurement procedures with
countable outcome spaces only, there is associated a
unique probability operator measure or observable
09, which contains the statistical properties of the
process.

This result extends easily to finite path decision pro-
cedures as well as those with both finite and infinite
paths. To see this, the methods of II, used for a simi-
lar extension, are followed. Let @ be a decision pro-
cedure with one or more finite paths, and let @’ be the
infinite path procedure obtained by adding to each fi-
nite path of @ an infinite sequence of repetitions of
the measurement procedure whose only outcome is 1
and whose corresponding expectation §:{®, {1}} x
B(%) » B(3) is defined by &(®, B) = 0, and
&1, B) =B (25)
for each B in ¥. This corresponds to adding an infi-
nite sequence of repetitions of the measurements of
the identity observable and extends each finite out-
come sequence of @ by adding on an infinite sequence
of 1's to give the corresponding outcome sequence of
Q.
1t first must be shown that the operator associated
with each finite path of @ by the appropriate expecta-
tion string is also the same operator associated with
the extended path of @’. To this end, let p be a finite
path in @ with corresponding outcome sequence ¢?,
and let p’ be the extension of p in @’ and ¢?#’ the cor-
responding outcome sequence. Let ¢? be of length »
and @2’ be the initial segment of ¢#’ of lengthm. By
construction, for all 7, if 0 < 7 < n @?(j) = @#'(j) and
if] = n, (ﬂp'(J) =1.
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For eachm > n one has from Egs. (12) and (25)

0¥{el'})

=85, (o0 85, doplo—1)},
ng ) om0, ..., 85, (ot tm — 1)}, 1)- )
= 8(/,%/ ({QD,I:,,(O)}, e, 5(5),, ) ({q)i/(n _ 1)}, 1), (26)

where the last equality arises from repeated use of
Eq. (25), and ¢f’; denotes the first j elements of ¢?#’
(or of ¢2’). By construction, for each j < n — 1,
8%, = 6, and thus one obtains
@ @
7 J
0%nenh = 85 (e’ O} ..., 85 dot e — DL 1),
0 n
@7)
where the right-hand operator is just the operator one
would assign to path p of @ in a direct construction.
Furthermore, since the right-hand side of Eq. (26) is
independent of m ifm > n [(pfn"j = qof'and (pfn'(j) =
@”'(j) for j = 0,1,...,n — 1}, one has

lim,,0 “m({g?’})
= 85e' O+, 8360 ~1),1))...). @8)

From these results, the probability operator measure
O uniquely associated with @' can be used to asso-
ciate a probability operator measure O with @ which
satisfies Eq. (12). One first defines the g-field =9 as
follows: Let F€ and 79 be the respective sets of all
finite and infinite outcome sequences of @. Let 9 be
the set of all sets of the form E,UE, where E;C F?
and E, = BnI9 for some Borel subset B of Xv,

To define 0%: Z? — B(X), one first lets E be any set
in 29 which contains infinite sequences only. By con-
struction the corresponding paths in @ and @’ are
identical, and one sets O?(E) = O¥(E),

Next let ¢? be any finite outcome sequence corres-
ponding to a finite path p of @ with length », and let
¢?’ and p’ be the corresponding outcome sequence and
path of @’. Define O?({¢?}) by

0°({ @2}y = 0 ({pr'}),

and let E(g”n be the set of all outcome sequences of @’
which have ¢£ as an initial segment. Clearly by con-
struction E::' ={¢*’} and OQ'(E;:;) = 092’} for
m
allm > n. Since O is a probability operator mea-
sure it is continuous from above,l and one has that
0¥{e?"}) = lim,,0%({p?}). Equations (28) and (29)
then give

0%t} = 5%(‘[@"(0)}, v 6900 —1),1))...),
@4 ¢

(29)

(30)

which is just what Eq. (12) would give for a direct con-
struction.

For any set E containing finite outcome sequences of
@ only, set .

OQ(E)= 25 0°(g¢h (1)
¢EE
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with 0? ({¢}) given by Eq. (29). One has O9(E) =
O9(F), where F is the set of outcome sequences of ’
corresponding to those in E. Finally let E = E;UE,
with E; and E, containing finite and infinite sequences
only. In this case define O9(E,UE,) by

Q Q
Ogug, = Op, * E2-OE+OE

with OE and O, Ez given as above.

Since OQ’ is a probability operator measure so is O¢,
and one has the desired result that 09, constructed
through 09, is the probability operator measure asso-
ciated with the decision procedure Q. 09 is unique
since @’ is the unique extension of @ which allows Eq.
(30) to be satisfied, and 0% is unique.

So far the procedures @ were assumed to consist of
measurement procedures only without any intervening
transformations. It is easy to see that the results ob-
tained here hold without this restriction. To see this,
let the procedure @ contain transformations (imple-
mentable by isometries in the common Hilbert space
of the process) in between the measurement proce-
dures. Let ¢ be any infinite outcome sequence of @.
Then by repeated use of Eq. (2) which gives Tr(J

(E, VoVT)B) = Tr(pV1E(E, B)V), one has the result
that the right-hand sides of Egs. (5) and (12) are re-
placed by

Q
VY 8I(E,, VITEE(E,, ..., VI, 82 (E, 4, B)
XV, 1) VDIV
and
@t o@ Rt 0@
%n,o é;n,o({(pn(o)}y an,l gwn,l ({¢n(1)}7 L
et Q Q L @ Q
V‘Pn,n—l g"n,n—l({(p"(n - 1)}’1)V‘Pn.n—l) )V‘/’n,l)V‘Pn,O’

respectively, where V]Q and V;; ; are the isometries

corresponding to the appropriate transformations in
@. Note that, in the decision procedures, the possible
dependence of the transformation on previous out-
comes is taken care of by the index “¢p, ,” on V9.
Also the above expressions reduce to the right-hand
sides of Egs. (5) and (12) if V; and V, . correspond
to the identity for each j = 0, 1, 7l

By Theorem 3 of the Appendlx, if 6 is an expectation
8o is V16V for any isometry V. Thus the association
of probability operator measures {(or observables)
with procedures applies also to infinite sequences of
measurements (Sec. III) with intervening transforma-
tions and to decision procedures which contain trans-
formations; for one uses the above replacements in
Egs. (5) and (12) and proceeds exactly as before, using
Theorem 3 when necessary, to obtain the desired as-
sociation.
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APPENDIX

A. Operator Valued Measures

Let Z be a o-ring of subsets of some set £ and B (1)
the algebra of all bounded linear operators on a
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Hilbert space J¢. A map O: Z — B(X) is an operator-
valued measure if O(®) = 0 and O is strongly count-
ably additive. O is self-adjoint or positive if, for each
E in T, O(E) is a self-adjoint or positive operator,
respectively. If O is positive, Z is a o field, and

O(2) = 1, then O is a probability operator measure.
Each probability operator measure O and each state
p define a scalar probability measure P, by P, (E) =
Tr{pO(E)) for each E in =,

An operator-valued measure has the following easy
properties: O is finitely additive. If EC F, then

O(F) = O(E) + O(F —E). (A1)
If further O is positive, then
O(F) = O(E). (A2)

If O is finitely additive, positive, and strongly conti-
nuous from above at & or from below, then O is
strongly countably additive.1,14 Weak countable addi-
tivity is equivalent to strong countable additivity, but
not to uniform countable additivity.®

If ¥ is the minimal o ring over a ring S of subsets of
© and O’ is a bounded positive operator measure de-
fined on S, then, as Berberianl4 has shown, there is a
unique extension O of O’ onto Z such that O = O’ on
S.

An operator-valued measure O is bounded if there
exists a constant M such that

lo(E) < M (A3)

for each E in Z. O is decomposable if there exist
four positive operator measures Oy, Oy, O5, O4 such
that

0=0, — 0, +i0, —i0,. (A4)

It will be seen that there are many decomposable O’s.

Let X be a Hausdorff space and B(X) the o field of
subsets of X generated by the open subsets. A boun-
ded positive operator measure on ®(X) is regular if
for each EFe B(X)

O(E) = sup{O(C)| CCE and C compact},
O(E) = inf{O(V)| VDE and V open}.

If X is a complete separable metric space, it follows
from a result of Parthasarathyl2 that very bounded
positive operator measure on &(X) is regular.

For our purposes the most important property of ope-
rator measures is the extension of such measures on-
to infinite product spaces from finite product spaces.
One has the following theorem:

Theorem 1: Let {X;|j=1,2---} be a sequence of
complete separable metric spaces, X” = X; X X, X

-X, and B(X*) the o field of Borel subsets of X"
and let {O [n=1,2---} be a consistent sequence of
positive operator measures with (X”) the domain of
O0,. Let Xv=X; XX, x --- and T be the field of all
Borel cylinder subsets of X« and ®(F) the minimal
o field over §.

Then there exists a unique positive operator measure
O on B(JF) such that for each E€JF with base Fe®(X"),
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O(E) = O ,(F). (A5)
Proof: If one can show that {0, |n =1,2---} de-

fines a unique positive operator measure O’ on &,

then, by Berberian's extension theorem,14 one has

the desired result. To this end, one must show that

0’, defined on § by Eq. (Ab) with O’(E) replacing O(E),

is finitely additive and strongly continuous at & from

which it follows that O’ is strongly countably additive.

To prove strong continuity at @, it is sufficient to
prove the converse. That is,let {E,|[I1=1,2,...} be
a nonincreasing sequence of sets in § such that there
exists an € > 0 and a ¢ in JC such that [ O’E, )yl > €
for each /. We have to prove lim £, is not empty.

Let n, and F, be the base index and base for each
EfE = F XX, ., X+ with F, in ®(X")). Since
each O, is regular on B&(X"), for each 6 > 0 there is
a compact set C; in ®(X™) with C,CF, such that
o, (F, — Cyls </aw2,

From here on the proof will not be given as it is an
exact repetition of the proof given elsewhere for the
real line.1.8.15 One notes that since each X» is a
metric space each compact subset of X” is sequen-
tially compact and closed.16 QED

B. Expectations

The definition of an expectation & is given at the be-
ginning of Sec.II of the main text and will be referred
to often.

Many properties of expectations are simple conse-
quences of the definition. One has from properties
(e) and (c) of the definition

8(E,0) = 0 = 6(¢, B) (46)

for any E in ®(X) and B in B(¥). Also &(E, B) is self-
adjoint if and only if B is. To see this, let B be self-
adjoint and set

B =B, — (B, —B), (A7)
where B, is the positive operator given by
B+=f0°o’}’d§,rB, (A8)

where $Fis the spectral measure of B and 87 =
85((— «,7]). Since B, — B is also a positive operator,
properties (a), (d), and (f) give that 6(E, B) is self-ad-
joint. If B is not self-adjoint, then one can write B =
B, + iB, with By, B, self-adjoint and repeat the above
to show that §(E, B) is not self-adjoint. Another im-
mediate property is that

B> B’ implies &(E,B)= §(E,B") (A9)
for all E and self-adjoint B and B’. This follows from
(a), (d), and (e),and B — B’ = 0. Also, one notes that
for each B, §(—, B) is a decomposable operator mea-
sure. This follows from setting B = B, + iB, and
using Egs. (A7) and (A8) to decompose B, and B, fur-
ther to get B = By — B, + iB; —iB, where By, B,,
B, and B, are positive operators. Properties (a), (d),
and (f) give the desired result that §(E,B) = §(E,B,)
— 8(E,B,) + i8(E,B;) —i6(E,By) for each E in
®(X). This answers the question for such measures

J. Math. Phys., Vol. 13, No. 9, September 1972

PAUL A. BENIOFTF

raised in conjunction with Eq. (A4). Thus one sees
that & is a family of operator measures indexed by
the operators in B(¥) and whieh satisfies properties
(a), () and (d)=(f) in the definition.

Finally one has that

6(E,1)=0 implies &(E,B)=0 (A10)
for each BeB(X). Since any operator can be decom-
posed into the sum of four positive operators [Egs.
(AT) and (A8)] by properties (d) and (f), it is sufficient
to prove this for positive operators. Let B be a posi-
tive operator in B(JC) and consider B’ = B/||B]|. Since
0 < B’ <1,Eq. (A9) and §(E,1) = 0 imply that
8(E,B’) =0 and by (d) §(E, B) = 0.

The next theorem refers to the éomposition of a finite
number of expectations.

Theovem 2 (Davies and Lewis): Let X;,X,,...X
each be a complete separable metric space with
®B(X;), ..., B(X,), the respective o-fields of Borel
subsets of X;,...,X,. Let §;,8,,..., 8, be expecta-
tions defined on B(X;) X B(X), ..., ®(X,) X B(X), re-
spectively. Then there exists a unique expectation
§:®(X") x B(¥) » B(3), where ®(X") is the system
of Borel subsets of X» = X; X --- X X  such that for
each rectangle E = E; X -+ X E with E; in B(X;)
forj=1,2,...,n,

n

6(E,B) = 61(Ey, 85(Ey, ..., 6,(E,, B)) ) (All)

for each B in B(JC).

Proof: Davies and Lewis® have shown that, for
n = 2, the combination of two instruments is an instru-
ment. Clearly this holds for any finite ». The theorem
then follows from the fact that expectations and instru-
ments are uniquely related by a 1-1 corespondence?
through Eq. (2) of the text. QED

Theorems 1 and 2 can be generalised to the case in
which the X4, ...,X, are o-compact, locally compact
Hausdorff spaces. In this case one defines Baire and
Borel expectations and regularity in an obvious way.
The one can prove that every Baire expectation is re-
gular, and every Baire expectation extends to a unique
regular Borel expectation &’ such that §’ = § on the
Baire sets.17 Theorem 2, just proved, then applies
with minor changes to a sequence of Baire expecta-
tions, and one can combine these results to show that
a sequence é’l, cee, é’n of regular Borel expectations
on Bo(X{) X B(X),...,Bo(X,) X B(X) generates a
unique regular Borel expectation on Bo(X”) x B(¥),17
[Bo(X) = minimal o ring over the set of compact sub-
sets of X.]

The following simple result is needed in the text.

Theorem 3. X V is an isometry on a Hilbert space
J¢ and & is an expectation on ®(2) X B(¥) for any set
Q, then V1EV is an expectation.

Proof: Properties (a), (b), (d), and (f) of the defini-
tions of an expectation are obvious. Property (e) fol-
lows from

|vie(E,ByYV — fi VI§(E,B)V ¥
£
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< nvru.“ (é’(E,B)— ,§1 é’(Ej,B)> w/“ S0
asm — ©,

and property (f) follows from
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| VTE(E,B)V — VIE(E,B )V < IIVtl-lI(6(E, B)
— 6(E,B)Vyl - 0

as a increases. QED
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Ward-Takahashi Relations in Massive Yang-Mills Theory**
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The equivalence of massive Yang—Mills theory in the simplest gauge to a theory of vector electrodynamics
is reviewed. The resultant Feynman rules and SU{2) invariance are used to derive Ward-Takahashi relations
among the corrected vertices which are valid to all orders. One of these is employed to find a new Ward iden-

tity. A brief discussion of divergence problems is given.

1. INTRODUCTION

Investigations of massive Yang—-Mills theoryl-4 have
generally been formal and/or complicated by efforts
to include space~time dependent gauge transforma-
tions. It is the purpose of this paper to adopt a more
pedestrian approach, and examine the theory in the
simplest gauge (called the vector gauge®) by stan-
dard perturbative methods.

The ultimate goal of previous papers as well as the
present work is to determine whether massive Yang—
Mills theory is renormalizable. Since the key to the
renormalizability of spinor electrodynamics is the
existence of Ward relations, it would seem that the
first step toward the goal is to look for them in this
case also. This step is successfully carried out here,

Since the title of this work is similar to that of a
paper by Veltman,3 perhaps the main distinctions be-
tween the two should be explicitly stated. Broadly
speaking, they differ in approach (this paper does not
employ the spurious scalars introduced by Veltman)
and in the generality of the results (the Ward-Taka-
hashi relations derived here are valid off, as well as
on, the mass shell).

The development begins with Sec. 2, where the Yang-
Mills Lagrangian is interpreted as representing a
theory of vector electrodynamics in which the “pho-
ton” has the same mass as the charged particles. In
Sec. 3, it is shown that nonlocal gauge invariance may
be used to rotate Wightman functions corresponding
to different processes into one another; in this way
the apparent asymmetry introduced by labeling one
gauge field component “neutral” and the others
“charged” is removed.

The Feynman rules for the perturbation expansion
are derived in Sec. 4, and Ward-Takahashi relations
among the bare propagators and vertices are ob-
tained in Sec. 5.

The similarity of the massive Yang~Mills theory to
a theory of vector electrodynamics provides motiva-
tions for the theorems concerning general tree dia-
grams which are presented in Sec, 6. Section 7 con-
tains derivations of Ward-Takahashi relations be-
tween total propagators and vertices which are based
on these theorems. It is also shown there that al-
though the distinction between neutral and charged
fields is central to the theorems, the generality of the
Ward-Takahashi relations is not impaired, since,
essentially, gauge invariance allows a neutral field
to be rotated into a charged one.

In Secs. 8 and 9 one of the Ward-Takahashi relations
is applied to find a Ward identity between the renor-
malization constants of the formally renormalized
theory.

Section 10 concludes the paper with discussions of
the field ordering implied by the theorems and the
question of divergences.

2. FORMALISM

The Lagrangian of the massive Yang-Mills field in
the vector gauge is

L =_ iDﬁDDg” + 3 sz‘ng s
where
Dg,=8,D¢— 0,D¢— gC,, DLDg,
a,b,c,--- label the SU(r) components of the vector

fields and the C's are structure constants.
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< nvru.“ (é’(E,B)— ,§1 é’(Ej,B)> w/“ S0
asm — ©,

and property (f) follows from
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| VTE(E,B)V — VIE(E,B )V < IIVtl-lI(6(E, B)
— 6(E,B)Vyl - 0

as a increases. QED
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The equivalence of massive Yang—Mills theory in the simplest gauge to a theory of vector electrodynamics
is reviewed. The resultant Feynman rules and SU{2) invariance are used to derive Ward-Takahashi relations
among the corrected vertices which are valid to all orders. One of these is employed to find a new Ward iden-

tity. A brief discussion of divergence problems is given.

1. INTRODUCTION

Investigations of massive Yang—-Mills theoryl-4 have
generally been formal and/or complicated by efforts
to include space~time dependent gauge transforma-
tions. It is the purpose of this paper to adopt a more
pedestrian approach, and examine the theory in the
simplest gauge (called the vector gauge®) by stan-
dard perturbative methods.

The ultimate goal of previous papers as well as the
present work is to determine whether massive Yang—
Mills theory is renormalizable. Since the key to the
renormalizability of spinor electrodynamics is the
existence of Ward relations, it would seem that the
first step toward the goal is to look for them in this
case also. This step is successfully carried out here,

Since the title of this work is similar to that of a
paper by Veltman,3 perhaps the main distinctions be-
tween the two should be explicitly stated. Broadly
speaking, they differ in approach (this paper does not
employ the spurious scalars introduced by Veltman)
and in the generality of the results (the Ward-Taka-
hashi relations derived here are valid off, as well as
on, the mass shell).

The development begins with Sec. 2, where the Yang-
Mills Lagrangian is interpreted as representing a
theory of vector electrodynamics in which the “pho-
ton” has the same mass as the charged particles. In
Sec. 3, it is shown that nonlocal gauge invariance may
be used to rotate Wightman functions corresponding
to different processes into one another; in this way
the apparent asymmetry introduced by labeling one
gauge field component “neutral” and the others
“charged” is removed.

The Feynman rules for the perturbation expansion
are derived in Sec. 4, and Ward-Takahashi relations
among the bare propagators and vertices are ob-
tained in Sec. 5.

The similarity of the massive Yang~Mills theory to
a theory of vector electrodynamics provides motiva-
tions for the theorems concerning general tree dia-
grams which are presented in Sec, 6. Section 7 con-
tains derivations of Ward-Takahashi relations be-
tween total propagators and vertices which are based
on these theorems. It is also shown there that al-
though the distinction between neutral and charged
fields is central to the theorems, the generality of the
Ward-Takahashi relations is not impaired, since,
essentially, gauge invariance allows a neutral field
to be rotated into a charged one.

In Secs. 8 and 9 one of the Ward-Takahashi relations
is applied to find a Ward identity between the renor-
malization constants of the formally renormalized
theory.

Section 10 concludes the paper with discussions of
the field ordering implied by the theorems and the
question of divergences.

2. FORMALISM

The Lagrangian of the massive Yang-Mills field in
the vector gauge is

L =_ iDﬁDDg” + 3 sz‘ng s
where
Dg,=8,D¢— 0,D¢— gC,, DLDg,
a,b,c,--- label the SU(r) components of the vector

fields and the C's are structure constants.
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& is invariant under the transformations
D& (x) =R ,,D}(x) 2.1)
if R, satisfies
9,R,, =0,

and
RadeeRchdef = Cabc .

RacRZ‘b = 6ab

This implies that there are conserved currents in the
theory, which in turn suggests that there are Ward
relations.

In the remainder of this paper, only the theory cor-
responding to the group SU(2) will be studied. There
are then three independent vector fields, and if the
following identifications are made,

4, =D3(),

B, = (1N2)D} —iD?), ;= (AN2)D} +iD?),

the Lagrangian becomes

£ =—qa,,at + 3 m2A AS — 3b bV + m2B B,

pu
2.2
where 2.2)

a,, =8,A, —3,A, —ig(B;B, — B,B;),
b, =23,B, —3,B, +igA,B, —A,B,).

£ now appears to describe a theory of vector electro-
dynamics, in which the neutral and charged particles
have the same mass. Hence the case SU(2) is con-
venient in that it is particularly amenable to familiar
interpretation,6

3. SU(2) INVARIANCE

The invariance of the theory under constant rotations
in SU(2) space means that the various physical pro-
cesses are not all independent. The relations between
them are most easily displayed in terms of Wightman
functions.

In order to illustrate the method of deriving these
relations, consider

(014,(0)4,(:)10) .

If ® is the unitary Hilbert space operator correspond-
ing to a rotation R ,, in Eq. (2. 1), it follows from SU(2)
invariance of the vacuum that

(01A,()A,(»)10) =(0|® 1A, ()RR LA, (y)R|0).

Now choose & = &, with

B, i/2 —i/2 —i/N2Z||B,
@3 | B ®, = |i/2 —i/2 iN2||B 1. (3.1)
A, inNe iN2 0 A,
Then

(014, (x)A,(9)10)
= 3(0{[B,(x)B,(y) + Bj(x) B (y) + B,(x) B, (y)
+ B(x)B,()]10) . (8.2)

Another ® operator may be used to reduce the ex-
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pression on the right; this time ® is chosen to be R,
where

B, 0 eiv B,
&2 Bl ®Ro=|eiv 0 B|, (3.3)
Al 0 0 —1| {4,

7

and ¢ is an arbitrary real number. This rotation, of
course, corresponds to charge conjugation in electro-
dynamics. When invariance under this operation is
invoked, it is inferred that

(01B,(x)B,(y)10) =(0|B,(x)B;(y)|0) = 0.

In general, any Wightman function containing an un-
equal number of B and B* fields vanishes. It may
also be shown that

(0|B;(x)B,(v)|0) =(0| B, (x) B;(y)]0).
Hence, Eq. (3. 2) becomes

(014,()4,(»)10) = (0|B, () B;(3)]0). (3.4)
By proceeding in similar fashion, using invariance
under transformations which mix charged and neut-
ral fields, such as ®,,, and invariance under charge
conjugation R, it is possible to relate other Wight-
man functions involving equal numbers of different
types of fields to each other. Some additional exam-
ples are given below:

(01B}(x) B, () 4,()10) = — (01B, (x)B; ()4,()]0),

(3.5)
(0IBj(x)B,(¥)A,()]0) = —(0|B;(0)A,(y)B,(2)| 0,
(3.6)
(0lA,(x)A(y)B, (2)B}w)|0)
=(01B,(x)B}(¥)A,(&)A,w)|0), (3.7)
(0|B; (x)B;()B,(2) B,w)]0)
=(01A,(x)A(¥)A,)A,w)|0)
— (0l A, (x)A,(¥)B;(z) B,w)]0). (3.8)

These equations are valid to all orders in the pertur-
bation expansion and, therefore, in each order sepa-
rately. They will be referred to again in Sec. 7,

after some interaction representation results have
been discussed.

4. FEYNMAN RULES

A. The Renormalized Lagrangian

The Feynman rules of any theory of vector electro-
dynamics are not trivial to derive,because the time
components of the vector fields must be treated as
dependent variables. However, Nakamura? and Tzou,$
building on the work of Lee and Yang,? have shown
that in the present case the noncovariant parts of the
propagators may be dropped and the Feynman rules
again become simple if the interaction Hamiltonian
is taken to be the negative of the interaction Lagran-
gian.10 The rules found in those papers are extended
to include renormalizations in this section, and are
employed in the remaining sections.
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It is not known whether the massive Yang-Mills
theory is renormalizable; but it is still possible to
formally allow for proper normalization of physical
quantities by introducing renormalization constants
into the Lagrangian. This is accomplished with the
following replacements:

m-=> ZV2m, g~ 21253/2g, D - Z%/zD#_

Notice all fields are assumed to be renormalized by
the same constant; this must be the case if SU(2) sym-
metry is to remain unbroken by the renormalization
procedure. The Lagrangian, Eq. (2. 2), now becomes

£ =—5ZyA,, AW + 3 ZZym2A AV

— 3Z,B,,B" + ZZ,m®B B (4.1)
with
A, =8,A,—0,A —i2,Z;1¢(B,B, — B,B)),
B,, =9,B, —9,B, +iZ,2;1g(A B, — A,B)).

The constants m and & now appearing in £ are the
observed mass and coupling constant.

The free field Lagrangian £, is taken to be
Lp =— 10,4, — 0, A, )@rA— VAK) + 3 m2 A A
— $(3,B, —9,B,)@"B* —3vB**) + m2B B'",
4.2)
and the interaction Lagrangian £, is defined by
L=Lp + L,
S0
Ly =2,(Z — 1)z m2A A + Z,(Z — 1)m2B, B¢
+(Zy—1D[-30,4,—0,4,)
X (QHAY — AK) + 3 m2A AK]
+(Zy — 1)[-20,B, —9,B,)
X (4B*Y —0vB*F) + m2B“BW]
+1iZ,8[3,A,(B*»B* — BLB*v)
+9,B, (AMB*Y — B*HAV) + 0, B} (BrAY — BrAY)]
+2%2;1¢2(; (B, B,B*BY — B/ B; BiB")
— (A‘,B*“A”B” —AHAHB;B”)],

B. Vertices

If broken lines represent neutral particles and solid
directed lines represent charged particles, the arrow
indicating the flow direction of positive charge, then

Vw0 Ht

a) Vol O--- M MW‘
V _ex—a— P W, (p)
b) Yo #,p} yulp
P azP-p
c) v, p'—‘—:—<— By P Vpu/*( p,v P)
a,97P'=P,p, k
8) wptk — e ~ Ugpupe
rr,q=p:-p’i,,, k
e) yp+k J7Rgs) Udup,u

FIG. 1. The vertices associated with £,. The arrows on the charged
lines indicate the flow direction of positive charge.
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the vertices derived from £, are those shown in Fig.
1. The symbols appearing there are defined by

M, =i@nt(Z - 1)Z,m2g,,, (4.3)

W, (0) =—i@n*(Z, — Vg, (02 —m2) — p,p,],
4.4)
Vo', 0) = i@m)2Z  g[(p" + b8,

(P —2p),8, + (P —20),8,] @{4.5)

chpyp = i(ZW)‘l Z%Z“?lgz [Zgopgup 85y wp —gopgpu ]’

4.6)
The following symmetry properties of the bare ver-
tex functions are easily proved from their definitions:

Vpup(p,)p) = Vpu“(_ p,’_p): Vppu(p’p,)
= prp (p/,.bl _p)

=V, (0= P,P), (4.7a)
Va0 0) + Vi o0,0) 4V, (07,0 = 0, (4.7D)
U = Unsop = Upouy = Upp (4.7¢)
Upow * Uosp + Uop = 0. (4.7d)

C. Propagators

That the charged and neutral particles have the same
propagator is implied by Eq. (3.4). If their common
free field propagator is denoted by S”#(p), then

i g (prph/m?)

S =~ i T R 1 ie (4.8)
Its inverse S;‘ll(p), defined by

- Sp(p)SH(p) = o,

: S;3(p) = i@n)t[g,,(p% — m2) —p,p,]. (4.9)

Note that the bilinear vertex function W, , Eq. (4.4),
may be written as

W, (p) = — 2y — 1)S;1(p). (4.10)
When amplitudes are computed, the free propagator
will be modified by diagrams involving vertices. The
effect of the bilinear vertices (Figs. 1a and 1b) can
be calculated in closed form, so they need not be ex-
plicitly included on internal lines. To do this it is
only necessary to realize that any two points in a
diagram connected in lowest order by SY¢(p) are con-
nected to all orders by A¥#(p) defined as

A=S8+ SWS + SWSWS + .-,

(The space-time indices have been suppressed for
simplicity; matrix products are implied.) When Eq.
(4.10) is used, this becomes

a) Ve—=—ao [L

D¥(p)

D (p)

FIG. 2. The unrenormalized charged (a)
and neutral (b) particle propagators.
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A=[1—(Z,— D)+ (Z,—1)2—---]S
or

AvH(p) = Z;1Sve(p). 4.11)
Similarly, two points connected by A¥¥ in one diagram
will be effectively joined by D¥# in a complete ampli-
tude, where

D=A+AMA + AMAMA 4 «--,

With the definition of M, , Eq. (4. 3),and of A¥# Eq.
(4.11), it may be shown that

I go1 80— (pUpH/Zm?)

4,12
(2m)4 p2 — Zm2 + ie ( )

DU(p) = —

Clearly, D?k(p) is an unrenormalized propagator
which includes all contributions from the bilinear
vertex counterterms. Its graphical representations
are given in Fig. 2,

The relationship of S¥# to D¢ is most directly ex-
pressible in terms of their inverses. The inverse of
DVt turns out to be

D} = i@ 2,8, (p? — Zm?) —p,p,),  (4.13)
and the desired relation is
DXp) = SH(p)— M, — W, (p). (4.14)

D. Amplitudes

The elements introduced above are to be assembled
into diagrams and associated amplitudes according
to rules following from the standard Dyson-Wick
procedure, with one notable addition. It turns out to
be expedient to compute and include contractions of
two free fields with the same space-time argument,
instead of defining them to be zero. The reason is
not uncovered until later in the development, so the
detailed discussion of this point is postponed until
Sec.10A. For now, it is simply noted that diagrams
resulting from the new rule are understood to be in-
cluded in any calculation described in the remaining
sections.

5. THE BARE WARD RELATIONS

Before going on to the consideration of more general
diagrams, some simple relations involving the unre-
normalized propagator and the bare vertices are pre-
sented here.

From the definition of V,, (p’,p), Eq. (4. 5), and of
D;pl(p), Eq. (4.13), it follows that

(p' = PPV, (b 0) =8Z,Z;1 D H(p") — Dy (p)  (5.1)
or
(0" — D)YDR(p") Vypo (0, 1) D*H(P)
=—gZ,Z;D"(p’) — Dvr(p)]. (5.2a)
Similarly,
DYB(p) Voo (b7, PYDYE(P" — P) p*
= 8Z Z;[Dv(p') — Dvi(p’ — p)]  (5.2b)
and
PEDYY (' — pYV, 5 (0’ P) DEK(P)
= —8Z,Z;1[Ds(p’ — p) — DUr(p)].  (5.2¢)
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These last equations are Ward—Takahashi relations
(WTR). The first, (5.2a), is directly analogous to the
one found in spinor electrodynamics.11 The other
two, Egs. (5.2b) and (5. 2c), exist as a consequence of
the extra symmetry in the Yang-Mills theory.

A WTR for U,,,, follows trivially from the defini-

tions of U, and V,, (g, q),Eqs. (4)~(6). It is

9V, = 82423V, .4, 9).

Using the definition of pr(p’,p), this may be written
in a more complicated, but equivalent, form that will
be needed in Sec. TD2: namely

(0" = D)°Usp,,
=82, Z; 1V, (0" + R, p") = V,, (b + &, p)].

Other WTR's may be inferred from the symmetries
of Uy, Eq. (4.70).

Ward relations are derived from the WIR's above by
allowing p to approach p’. For example,

{5.3)

DY () Vs (b, ) DUR(p) = — gZ, Z51 55); DUi(p)  (5.4)
and

PR
U(Ipup :gZ]_Zzl T I/pup(p7p)- (5- 5)

opo

These equations have the usual physical interpreta-
tion: Differentiation of a diagram with respect to a
momentum has the effect of inserting into that dia-
gram an external neutral line with zero momentum.
Equation (5. 4) shows the new line is added to a pro-
pagator. Equation (5.5) shows the new line is added
at a V vertex, changing it to a U vertex.

It is interesting to note that all the results in this
section which involve D% remain valid if D% is re-
placed by A¥¢. Generally speaking, the bare WTR's
are the same for any nonzero value of the mass
appearing in the propagators.

6. THE GENERALIZED LEE THEOREM

Some facts about certain important sets of diagrams
will now be established. They are applied later to
generalize the WTR's of Sec.5 and to prove a Ward
identity. The theorem and corollaries presented
here are direct extensions of analogous theorems
proved by Lee in connection with another theory of
vector electrodynamics.12

Definition 1: Let G, (c; p) be the algebraic expres-
sion corresponding to an arbitrary diagram of the
general form shown in Fig, 3.13 The main charged
particle line of such diagrams shall, henceforth, be
known as the trunk. ¢ specifies the particular con-
figuration of the diagram; that is, the number of the
various types of vertices attached to the trunk and
the order in which they are arranged. All configura-
tions considered have at least one vertex. p is the
momentum entering the trunk;the momentum leaving

\ N
AV

‘I

1
il NS
!

v L

e, P

FIG. 3. The general form of diagrams associated with the symbols
G, ,{c; p). The momenta and indices of the branches attached to the
trunk are suppressed;this information is formally contained in the
index c.
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the opposite end of the trunk is, of course, p plus the
sum of the net momenta entering through the
“pranches” at each vertex. Whereas the trilinear and
quadrilinear vertices of Figs.lc—e may appear any-
where along the trunk, the bilinear vertices, Figs. la
and 1b can only occur at the trunk ends in diagrams
comprising scattering amplitudes because their
appearance elsewhere has been taken into account by
using D¥i(p) as the unrenormalized propagator (see
Sec.4C).

Definilion 2: G, (¢c;p, q) is defined to be the sum
of all distinct d1agrams derivable by attaching one
additional neutral line, with index ¢ and momentum g,
to the trunk of the configuration c.

To illustrate these definitions and obtain some infor-
mation needed for the Theorem, consider this

Lemma: Denote by G, (1 p) any one of the five
charged line vertices sbown in Fig.1. These are the
simplest configurations. Then

4°G,,,(1;0,9) = 82,2
— G (1,p +q)Det(p +q)DzH(p)],

SUDTL(p) DB (p — 4) Gy (15 )
(6.1)

where p’ is the momentum leaving the trunks of the
summands of Gpuu(l;p,q).

Proof: The five Gw(l)'s together with the asso-
ciated G,,,(1)'s prescribed by Def. 2 are given in Fig.

4. The method of proof is straightforward calculation.

Only the most complicated case, 1c, shall be worked
out here.

When the Feynman rules of Sec.4 are used to trans-

late the diagrams for G, (1c;p, q) into a momentum

space expression, the result is

GPU“(IC'p q) =V, (0,0 +q)D**(p + q)V, Bu(p +4,p)
T V(b0 + R)D(p + BYVy g, (P +R,0)—~ U,

The bare WTR's of Section V then imply

q° G, (1c;h,q) :gzlz2 Voual's 0 + @)DB(p + q)
X [DzL(p + @) — Dl (p)] + 82,251 D 1 (p")
—D;}(p + k)]DaB(p +RYV, (P + B, D)
— 82,231 V,,,a,9),

ouu

which reduces to

q° G,,,(1c;0,9)
=8Z1Z; Dy (p")DoB(p + k) Vg, (p + R, p)
Voua 2P + @) DB(p + q) D3 1H(p)]
or
@G, (1c; p,q) = 82, Z5 D (p" ) DB(p’ — q) Gy (1c;p)
— G ,(le;p +q)DeB(p + q) D3 L(p)]. (6.2)

In the reduction, the relation

‘/v()uo((p +4q + kip + q) - V(]yp(p + kap)— Vouu(q,q):O
was used. It follows directly from the linearity of

V,,.(P’,p) in its two variables [see Eq. (4.5)].
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With the development leading to Eq. (6.2),the Lemma
has been proved for case lc. Similar calculations
establish it for the remaining cases. QED

Theovem (the genevalized Lee lheovem):
configuration ¢,

7 cpu,xc;p 9) = 82,251 [D;1(p") D5 (p’ — q) G (c, b)
Coolcsp + YD (p + Q) D3L(P)], (6.3)

where p’ is the momentum leaving the trunks of the
summands of Gpw(c;p,q).

for any

Proof: Each possible configuration may be classi-
fied according to which of the five types of vertices
(see Fig.1) terminates its trunk. The Theorem must
then be proved for each class. Details are outlined
below for the class terminating with the vertex of
Fig. le; this is a case not included in Lee's work.12

If G, (c;p) is within the class of configurations under
consideration, it may be written as

(€D) = T, o DE(P") Gy ('3 D),

where p” is the momentum leaving the trunk of
Gg,(c’;p), and 01, 0, are the indices of the charged
11ne “branches” which distinguish ¢ from C . Inwords,
¢ is derived from another configuration ¢’ by attach-
ing the appropriate vertex. Definition 2 leads to this
equation
G,u(cs0,4) =V, ("0 — @)D (p" — q)

X Uo po 1Y yo(p”)Gﬁp(C’;p)

+ Uo vo QDaﬁ(p" +4)G (¢ 0,9).

Gupltaip= Myp
pr,u(m;P,q) v] rd n A4

Gulu.(ib; p) = Wy/u

Goyplibip,g)

V«—-)(—L<—/J_, P + Ve, B
e
Guplicip) = "——\crﬂ‘%
VgVIu(P+k,p) 1/__.__}'_4_/_L, o
- ok 1Aq + Pay 1ok
pr,u“C;P,Q) v—e 4, P v—st—p,p
. ok Aa
Vet P _
Gapl(td;p) = o5, Ky 01, K,
-U"z"lV/“ Vi, P
Gpv,u(idip,q) %2 7k\\2/ /:3q N £q f,fzrk;_‘
V—‘—x,_c:{i:;—#’p v (;—Ivkl 4P
va(leiP\ = % ko 9,k
Us,vapm v Mo P
. o K ’ ,q o K,
Govedteipg) A o F VPM /etip
i, ki 92k

F1G. 4. Diagrams considered in the Lemma. For each elementary
configuration G, (1 b} the appropriate contributions to the three

index symbol G ,,u(l b, q) are given. The latter are found in accord-
ance with Def. 2
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If the theorem is assumed valid for G,p,(c’;P,4), then
a little computation, making use of the bare WTR's in
Sec. 5, shows it to be also true for G,,.(c;0,9).

With parallel arguments it may be shown that adding
a vertex of any type to a configuration that satisfies
the Theorem produces another configuration which
also satisfies it. But the previous Lemma, Eq. (6. 1),
established the Theorem for each elementary configu-
ration, Therefore it is true in all cases by induction.
QED

Definition 3: The quantity F,,,(c;p,4) is defined by

F,.c;p,9) =G, (c;p,4)

= Vouol 2, 0" —4) DB (p" — )G, (c; p)

- Gua (Cyp + q)Dotﬁ(p + q)Vpo(P + q)p)y
i.e.,F,,, is formed in the same way as GMI except
that contributions from the two diagrams with the

neutral line attached to an end of the trunk of G, are
omitted.

Corollary 1:

4PF,, (c;p,9) =8Z,Z51(G, (c;p) — G, (c;p + q)].
(6.4)
Proof: This relation follows from Eq. (6. 3), Def. 3,

and the bare WIR's after a straightforward calcula-
tion.

Definition 4: Define G,(c;p,q) by

G,(c;p,q9) = D (p)[F,, (c;,9)
+ Voo (2,0 — ) DE(p — q) Gy (c; p)].

Graphically, Gp(c) is the sum of all distinct diagrams
found by attaching one neutral line to G, (c) after its
trunk has been closed into 2 loop and before the inter-
nal loop momentum p has been integrated over.

Corollary 2:

a* G,(c;0,9) =82, Z;1 D (p — 4) G, (c; )
— D (p)G,,(c;p + 4]
and

q° [dp G,(c;p,4) = 0. (6. 5)

Proof: The first equation may be inferred directly
from Def. 4, Eq. (6. 4) and the bare WTR's of Sec. 5.

The second is found when a displacement of the integ-
ration variable p is made,14

7. GENERAL WARD-TAKAHASHI RELATIONS
A. Total Amplitudes

The corollaries of the preceding section were proved
by singling out the neutral lines for special consider-
ation. It will be shown here that the SU(2) invariance
of the theory of “vector electrodynamics” being in-
vestigated implies additional relations in which
charged lines play the role previously assigned only
to neutrals.

As a prelude, note that scattering amplitudes have
this form:
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€§N(1’N) €}, (£2) ek (py)
@mn¥2z @n)3/2  (27)3/2
X Touoopy(Pys v vsPosb)6(Zpsy — 2p,,,).  (1.1)

Each factor (2m)"3/2 €4 (p) represents an incoming or
outgoing particle, €}, ($),x = 1,2, 3, being its approp-
riate polarization vector.

The T functions are calculated by summing all dia-
grams contributing to the process in question. They
may also be expressed in terms of time ordered
Wightman functions, and the explicit LSZ formulas
are given in Appendix A, The symmetries of the T
functions corresponding to various processes are
derived from the latter formulation by applying rela-
tions of the type given in Sec. 3.

The results of Sec. 3 directly imply the symmetry
properties of total amplitudes only. But certain im-
portant partial sums of diagrams, '.uch as self-ener-
gies and corrected vertices, also have symmetries
that can be used to derive more general WTR's than
are allowed by the corollaries of Sec. 6 alone. Speci-
fic examples are presented in the remainder of this
section.

B. The Total Propagator

As a consequence of Eq, (3. 4), the total propagator
S'vu(p) is common to both kinds of particle. It is
given by

S'"=D + DIID + DIIDIID + --- .

S'=D(1—T11D)1, (7.2)
or, alternatively,
S'"l=p1_11, (7.3)

where Huu(p) is the sum of all proper “self-energy”
diagrams associated with either the charged or neut-
ral particles. Hw(p) includes no explicit bilinear
vertices since the unrenormalized propagator D¥* has
been used throughout, and it already contains the con-
tributions of the counterterms (see Sec.4C).

Interpreted as the neutral particle self-energy, I1,
is the sum of all proper diagrams with two neutral
external lines. The summands may be constructed
as follows: (1) Write down all proper diagrams with
one external line—a neutral line labeled by u, and call
these the primary diagrams; (2) attach one more
neutral line, labeled by v, in all possible ways to the
primaries to find secondary diagrams; (3) sum the
secondary diagrams to obtain I1, . All the charged
lines in the primary diagrams must be closed into
loops to conserve charge, so the second step creates
the quantities G, (c;q,p) of Def. 4 as pieces of the
secondary diagrams. Furthermore, since all internal
loop momenta, here denoted ¢q, are to be integrated
over in accordance with Feynman's rules, the self-
energy contributions are seen to be expressible in
terms of the type of integral appearing in Corollary
2, Eq. (6.5). The three steps outlined above which
lead to this conclusion are illustrated with a particu-
lar example in Appendix C.

i

From the considerations in the previous paragraph,
it follows that Eq. (6. 5) may be applied to all the
terms constituting the function Hu“(,b); consequently
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p¥I,,(p) = 0. (7.4)
It is concluded that [1,, must have the form
M,,(p) = (2,,0% — p,b,)F(p2). (1.5)

C. The Total Trilinear Vertex

With the SU(2) relations (3.5) and (3. 6), space~time
reflection invariance and the LSZ formulas of Appen-
dix A, it may be shown that the T function associated
with the total amplitude for the process in Fig. 515
has the exchange symmetries (4. 7a) previously found
for V,,, (0", ).

Denote the total trilinear vertex by V‘;yu(p’,p). It dif-

fers from the T function by terms involving external
line corrections. But the total external charged line
correction is the same as that of the external neutral
lines, because both depend only upon $’##  [1, and
the bilinear vertices of Figs. la and 1b.16 So it might
be expected that external line corrections do not
affect symmetry properties, and, in fact, it is easily
proved that Vp’u” has the same exchange properties as
the T function and V, . Specifically

Vplup(p,’p) = V;up(— PI,—P) = V;,,“U(P’pl)

= — Vi (P 0 —p) = — V(D — 1", D).
(7.6)

The total vertex is given by
V‘,)uu(p,!p) = pru(p’yp) + vpy“(p,,p)-

where vpuu(p’,p) is the total correction to the bare
vertex. Generally speaking, corrections to the bare
vertex are generated by attaching a neutral line in all
possible ways to the charged particle self-energy
diagrams. The total correction is the sum of all the
ensuing diagrams except those with the form shown
in Fig. 6. The latter are excluded, because they are
external line corrections rather than contributions to
the vertex. Hence the relation of I1,, to v, is just
such that Corollary 1, Eq. (6. 4), leads to

(1.7

pv

(07— pPv,,, (0", p) =8Z,Z;1 11, (p) — 11, (p")].
(1. 8)

And this, together with Eq. (7. 3) and the bare WTR
(5.1), implies

(0" = PPV, (b, p) = 82, Z;3[S;1(p") — Sy 1 (p)]. (1.9)

Two more WTR's may be inferred with the aid of Eqgs.
(7.6).

The conclusions of this subsection may be summa-
rized as follows: In the bare WTR's (5. 2), make the

=
P,a4=p-p .
! FIG.5. The form of the diagrams contributing

, 5 to the three particle T function and V,,, (»’p).
v p /u'r p

() (b)
P q P Qa

; ;
v, o ===, p  pp=——Opu,p

FIG. 6. Diagramg omitted from the corrected vertex V'Puu(p’p).
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replacements

Vpu“—> V‘;uu and Dvt - S,
the resulting equations are correct WITR's for the
total trilinear vertex.

D. The Total Quadrilinear Vertices
1. Four Neulval Exlernal Lines

Let L—lopw(k,p’ — k,p) be the sum of all proper dia-

grams of the type shown in Fig.7. All momenta have
been directed inward, so U, is clearly symmetric
under the interchange of any two external lines.

There is of course no bare contribution to this vertex.

Since all charged lines in the summands of U, vy
must form closed loops, it follows from Corolfary 2,
Eq. (6. 5),by an argument paralleling the one used in
the case of l’lyu (Sec. TB) that

2 Uogu b, 0~ B, p) = (p = )Y Uy (b, " — )

=k U,,,, (00" —k,p) =q° U, (k,p" —k,p) = 0.
(7.10)

These last relations are directly analogous to the
similar result for light-light scattering in spinor
electrodynamics. As in that case, they mean the con-

stant term in a Taylor expansion of U,,,, vanishes.

However, it is not clear in the present instance that
the remaining terms are finite, as they are in spinor
electrodynamics.

2. Two Neulval-Two Charged Exlevnal Lines

Consider the process in Fig. 8. Obviously, the total
amplitude and its associated T function are invariant
under exchange of the two neutral lines. Other ex-
change symmetries are found from SU(2) relations
such as (3.7).

Let ¢/, Uu(k;p' + k,p) be the sum of all diagrams con-
tributing to the process except those involving exter-
nal line corrections. As in the trilinear vertex case
(Sec. 7C), it may be demonstrated that ¢, has the
same symmetries as the T function. However, #;,,,
is not the appropriate quadrilinear vertex, because it
still includes diagrams of the type shown in Fig. 9.

If the sum of these contributions is denoted 6¢;,,,
(&; p* + R, p), then the Feynman rules yield

0tl,,, (B3 D" + k,p)
= Vo, (' + R, p+E)S'P2(p + R)V/ (D + R, p)
+ Va0 + kyp + @) SE(p +a) VL, (b +q,b),
(7.11)

o,q=-(p+p ek

¥, pl-k // \,LL, p

FIG. 7. The form of diagrams contributing to vup”(k,p’ —k,p).
All neutral particles are assumed to be incoming.

o,a=pp; £k
t ]
V1p,+k__._Z_._#, o

FIG. 8. The form of diagrams contributing to £’

and U’Opuu(k;p’ + k, p). apve

&5 p +k,p)
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and the total corrected vertex U(;p"u(k;p’ + k,p)is
defined by

U, (507 + R, b)
= tz:pup(k;p + k’p) Gt;pup(k;p, + kyp)'
The symmetries of V/

suns EQs. (7.6), may be used to
prove 0i/ behaves under exchanges in the same
way as the T function and ¢,;,,, so U;,,, also has the
same properties. These wefl advertised symmetrles

are now finally revealed in terms of U/

(7.12)

apup*
Ule (k p, +k p) appu( p’ p"—'k)
- l]p’OUp( p +k p) u“op(p q, k) (7.13)

The vertex corrections to the bare process may be
constructed from the diagrams for the quantity
v U“(p;p) introduced in Eq. (7. 7) by attaching an extra
neutral line at all possible points, except along the
incoming or outgoing charged lines (the latter contri-
bute to 6¢;,,,). Hence Corollary 1 is again applicable,
and together with the bare WTR (5. 3), yields
q° Uép,,p(k;P' +k,p)
=8Z,Z;V,, (p + k,p) = V), (p" + R, p")].

Additional WTR's are implied by the symmetry equa-
tions (7.13).

(7.14)

3. Four Chavged Exlevnal Lines

tgpup(k p’ + k,p) is defined to be the sum of all dia-
grams with the form shown in Fig. 10, except those
with external line corrections. Since 1t turns out that
symmetry relations between such quantities are the
same as those among the total amplitudes and their
associated T functions, it may be inferred from the

SU(2) equation (3. 8) that

tpuuRs 0" + R, D)
—U ( k)‘b/ +k’p)~t:)puu( k;_p’_k’p)'

apuy
(7.15)
With the help of Eq. (7. 12), this becomes
(50" + Ry p) + 8l Bs— p7 — ke, p)
- Uopl/u( k f) —k P) cpup( k;—p’ _k,p)
(7.16)

But Egs. (7.6) and (7.11) may be utilized to find

B8t 50, ky—p' —Fk,p)
= Vﬁuu(p + 0, P' + k)S'Doc(p_k) ocpp(k p)
— Vg, e b+ R)SBE(D) Vi (B + b,D)

- Gtgpuu(k;p + kyp)a

!

o,q=p-p Py K
b—Loepp

FIG. 9. The form of diagrams omitted from
the corrected vertex U’ (Ryp" + R, p).

v, p'+k

apvp

v,q=p'+p Py K
F1G.10 The form of diagrams contribut-
ing to ¢t” (kyp' + k,p)and U" |, (kyp’
+ &, p).

v,p'+k P

Gpu CpYu
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and 6¢{7,,, is seen upon inspection of the above expres-

sions to be the sum of all the diagrams with the form
of Fig.11, These are precisely the contributions that
must be removed from ¢7 , to arrive at the correc-

cpUU
ted vertex U/ for the process in question. More

opuy
exactly,
Ugpuu(Rs 0" + R, p)
= t2,,, k0" + k,p) — 614, (k3 p’ + kD).

Equation (7.16) then reads
vy, ksp’ + kR p)

apry
= opuu( k,p'+ k,p)— Upuy.(— k;—p' —k,p).

(7.17)

The exchange symmetries of Uopy may be found
from the relation above or 1nferred from the LSZ
formula for the total amplitude (Appendix A). They
are the following:

Uyuuls 0" +k,p) = UG, (R0, 0" + k)
=Uy,, @0+ k,p)=Uj,,(p;q,k).

povp
(7.18)

When the WTR's for Uapw, Eq. (7.10), and U, Eq.

(7.14), are employed in conjunction with Eq. (7 17),

the result is

qOUL, (B3 p" + Ry p) = — qOUL,, (= ks — ' — B, D)
or

qoUp,, (Rsp' + k,p) =82, Z; V), (0 — R, D)

+ V(0" + kp)). (7.19)
Once again, other WTR's may be derived by taking ad-
vantage of the exchange symmetries (7.18).

E. Concluding Remarks

Two of the relations found in this section, (7. 9) and
(7.14), are similar to WTR's appearing in Lee's
work,12 although in the present instance more bare
vertices have been included. Equation (7.19) and the
WTR's obtained by applying the exchange symmetries
(7.6), (7.13), and (7.18) are new, however, and indige-
nous to the massive Yang—Mills theory.

Incidentally, WTR's similar to those presented above
may be derived, in principle, without specializing to
the SU(2) case or identifying the fields with charged
and neufral particles. A generalized Lee theorem
similar to the one in Sec. 6 has been proved by the
author for the SU(n) massive Yang-Mills theory.
However, additional terms appear on the right-hand

FIG.11. The form of diagrams omitted from

the correct vertex U”, , (k5 p" + E,p).
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side of the analog of Eq. (6. 3), and these complicate
the WTR's among the total vertices. Therefore, only
the simple, easily interpreted SU(2) case has been de-
scribed here.

The method employed and the WTR's derived above
constitute the major results of this work. The re-
mainder of the paper consists essentially of an appli-
cation and a discussion of some related problems.

8. FORMAL RENORMALIZATION
A. Introduction

As an application of a general Ward—Takahashi rela-
tion, a Ward identity shall be derived in the next sec-
tion. Here, some preliminaries are presented; it is
necessary to develop the conditions which formally
determine the renormalization constants.

The total propagator and vertices satisfying Ward-
Takahashi relations were discussed in Sec. 7. Theyal-
ready contain renormalization counter terms, and they
become the renormalized propagator and vertices
when specific values are chosen for the constants 2,
Z,,and Z,. The conditions used to evaluate renorma-
lization constants are always partly conventional, and
this is expecially true in the present case, since the
physical system described by the massive Yang—Mills
theory has not been specified. For definiteness, phy-
sical conditions shall be imposed which are analogous
to the ones appearing in spinor electrodynamics.

Once the conditions are postulated, the theory is for-
mally renormalized, although it is not yet known
whether this procedure removes the divergences.

A new expression for the propagator will prove useful
in what follows. Note that if Eq. (4.14) is used in Eq.
(7. 3), the result is

§-1 =81 11, (8.1)
where

1, (p) = 11,,(p) + M, + W, (p). (8.2)
A little manipulation produces this relation:

S"=8 + S'I1'S, (8.3)

B. The Mass Condition

If S'*(p) is to be the appropriate renormalized propa-
gator, it must have a pole at the physical mass squar-
ed, that is at m 2, with residue one.17 More exactly,the
mass condition shall be expressed by

S (p)S;E(p) e (p) e (0); (8.4)
it may presumably be satisfied by a particular choice
of the renormalization constants appearing in S’ (p).

Equation (8. 3) is then seen to imply
Sw(p)L, (p) el () 2z 0

C. The Wavefunction Normalization Condition

When the LSZ formalism is utilized to compute the S
matrix $ for the process in which one particle comes
in with momentum p and polarization A and goes out
with momentum p’ and polarization x’, the result is

(8.5)

1363
$(p', A5 p,0) = 21’05M:5(P' —p)
+ [éf/(P')/(Zﬂ)3/2]5‘1(1>')5"”’(1))55,}(P)
x [€(p)/2m)3/2]6(p’ — p).

But with proper normalization and the conventions of
Appendix A,

(P15, 1) = 2P0, ,,0(p" —p) (8.6)
must hold for physical states. Hence the condition
€4, (D)S,2 (PSP (P)S; 1 (D)€ (p) o 0.

When Eqs. (8. 3) and (8.4) are taken into account, this
becomes

e (P17, (P)e) () ——5>0. (8.7)

D. The Charge Condition

Consider the matrix element

outd? A la (g, "), M4,

P v ’ M
6,\//(‘]) 6)\1 (P ) €>\ (p) 4
= t 6 o —
anvE @nz @nis T, (p', p)B(p — P —a),
where [p,A);, and |p’, "), are single- charged par-

ticle in and out states, respectively, and a; in(g, A"
creates an incoming neutral particle. In Appendix B
it is shown that when the neutral particle operator is
contracted out and the motion equation of the neutral
field is used, this matrix element becomes

—i [dxe el (@), 40 M[jp(x)—(Z~1)
szA O poAd i
o (P , e (p) :
=¢€ /\’/(q) (21T)3/2 pyp(p ap) (2'”)3/2 é(p —p ~q),

(8. 8)

where J  differs from the total “electromagnetic”
current only by an additional divergence. Therefore

fdxjo(x) =Q,

Q being the total “electromagnetic” charge operator.
When the limit ¢ — 0 is taken in Eq. (8. 8), and the
equation

3

2 el 0 =—g"

A-1

(see Appendix A) is used to remove the ¢,,”(0) fac-
tors, the following relation is discovered:

— 2761 (0) . (P, M 1QIP, M) 4,

= —i(Z — 1) [ dx 5 (p', M Ag(2) 1D, )4,

+ [0, (0')/ @M 2] Ty . (p, €N (B)/ @m) /7]
X 81(0)6(p” — p),

in which the one-dimensional delta function has been
denoted by §1(0). The matrix element of A,(x) ap-
pearing above may be expressed in terms of 7,
reversing the contraction procedure; the result is

by
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fdx (b A A (0], )y = (21)4S0P(0)
X [eXr (p)/(2m)3/2] T, (b, p)[ €} (p)/ (27)
x 61(0) 8(p —p)
= (i/m2)[e}(p)/(2m)3/2) Ty, (b, ) €\(p)/ (21)3/2]

x 81(0)6(p’ - p).

3/2

Therefore the matrix element of the charge operator
becomes

— 12m,,0 {P", M 1Q 5,0 = Z[eX(p)/(2m)3/2] Ty, (D, D)
x [eh(p)/ (2m)372]6(p’ — ).

Now by analogy with spinor electrodynamics, Ip,A)in
is assumed to be an eigenstate of @;specifically,

QIp, M) = glp,n). (8.9)
But by the definition of the S matrix and Eq. (8. 6),
out P NP, N5, = 8(PT,X5p,0) = 2000, 6(P" — )

So, finally, the condition

ex(P) Ty, (p,P)EN(D) >— iZ71g (2m) 426

P2 m?
. (8.10)
is reached.

Equations (8.5), (8.7), and (8. 10) are the conditions
from which the three constants Z,Z,,and Z, may in
principle be determined.

9. A WARD IDENTITY
A. Derivation

The function 7 W(p’,p) introduced in the previous sec-
tion is the sum of all diagrams with the general form
shown in Fig.5. However, some of these diagrams do
not contribute to the expression on the left side of
condition (8.10). For example, consider Fig.6b. The
sum of all diagrams of this type is, in accordance with
the Feynman rules,

V,,slb', p)S"Be(p)’  (p), (9.1)

and the mass condition (8.5) implies
ey (p) Vive (p,p)S'® “(P)H'w(‘bk £(p) E;—n‘lg—> 0,

so that Fig. 6b does, in fact, not enter into condition
(8. 10). Similarly, it is seen that all diagrams with
corrections to the external charged lines may be ne-
glected.

The same is not true of corrections tothe external
neutral line, because the neutral momentum is not on
the mass shell. These contributions must be evaluat-
ed and included. They have the form shown in Fig. 12,
and their sum is

—_ Al
paA=p-p
5 FIG. 12, The form of the external

! neutral line correlations to the
@ trilinear vertex V’pw(p’,p).

v, p’ﬂ_é_‘_.lu, p
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M 6(@)S A V', , (0", P).

As a consequence of the above considerations and the
definition of V7, as the complete vertex function, it
is possible to write

€ ()T 0, (0, D), 3(0) = €L (D) V', p, 2)
+ H,OB(())S’BU(O) V’auu(p,P)]G)\“(p)
if p2 = mZ2. But the expression for $'v+, Eq.(8.1}, and

the definition of I’ , Eq.(8.2), together with the form
of I1, ,Eq.(7.5), may be utilized to find!8

)
i (Z22Z,)1

B — A,
S (0)—(211)4 m2 ’

and
N, (0 =i @2m2(ZZ, — 1) n3g,.

Therefore

€4 (DT oy, (b, D)D) = (ZZ,) 1€ T (P)VYy, (b, P)E (D).
(9.2)
At this point, the WTR for V', is applied. In Eq.

(7.9) let p approach p’; the result is
! = -1 2 ’-
VipoulbsP) = 8212:7 55 571 ). (9.3)
From conditions (8.4) and (8.5) and Eq. (8.1}, it is in~
ferred that

S§'1 =51 + O[(p2 — m?2)2],
S0

—“a— /-1 :_a__ -1 2 4,2
apr §'vulP) = 50 S ) + 002 — mi2).

When this is inserted into Eq. (9. 3) and it in turn is
used in (9. 2), the relation

W”(P)TOUH(P:P)EA“(P) = — g(ZTr)4ZAlle2'2 200,75

is found at p2 = m?2, The last step is to use this for-
mula with condition (8. 10) and arrive at the following
Ward identity:

Z,23 = 1. (9.4)

B. General Comments

The standard Ward identity of spinor electrodynamics
states that Z, is the same as Z,; Eq.(9.4) is a dif-
ferent relation. The difference has its origin in the
fact that, unlike the photon, the neutral particle in the
present theory has a finite mass, so the charge con-
dition imposed here, Eq. (8. 10), involves an off mass
shell amplitude. Such is not the case in the analogous
spinor electrodynamics derivation, because a g = 0
photon is still on its mass shell.

The discrepancy between the usual Ward identity and
the result above prompts a discussion of the distinc-
tions between the present development (which is adopt-
ed from Nishijima'!)and the usual textbook presen-
tation of renormalization constants. The two attitudes
may be characterized as follows: (a) In the standard
approach, the constants Z, and Z, are primarily ver-
tex and propagator renormalizers; their values are
chosen by requiring that divergences be removed from
the theory; (b) according to the method utilized in
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this paper, physical quantities, i.e., the coupling con-
stant and field operators, are renormalized, and the
renormalization constants are evaluated with physical
conditions such as equations (8. 4), (8.6) and (8. 9).

Whichever way the Z's are defined, the Ward identity
then follows from the appropriate WTR. Approach
{(b) has been used here because it is not yet known
how, or even whether, divergences may be removed
from the massive Yang—Mills theory by simple ver-
tex and propagator renormalizations, so the Z's can-
not be evaluated in accordance with method (a). Such
considerations do not prevent the formal imposition
of physical conditions, however, which is the essential
step in method (b).

If Z, and Z, had been assumed to be vertex and pro-
pagator renormalization constants, as in (a), the ques-
tion of evaluation having been temporarily ignored,

the standard Ward identity would have been recovered.

In this sense, (a) and (b) lead to different Ward iden-
tities in massive Yang—Mills theory, in contradis-
tinction with the spinor electrodynamics case, where
both methods yield the same result. The difference
is due, of course, to the nonvanishing mass of the
neutral particle.

The new Ward identity has a simple meaning in con-
nection with the relation of @ to the /-spin generator
T ;. The three conserved charges @,, ¢ = 1,2,3

(Q; = ®), corresponding to the currents which act as
sources of the D ¢ fields have commutators that may
be computed from the canonical rules associated
with Lagrangian {(4.1) (recall that the charged and
neutral fields are related to the D * fields as describ-
ed in Sec. 2). These commutators turn out to be

(Qa’ Qb) =1 leéz g Cachc'

Since the generators of I-spin transformations T,
have the commutators

(r,,T,) =iC,,,T

abec’ ¢

it is possible to put
Q, =223 T,

or, because of the Ward Identity, Eq. (9. 4),
Qa =g Ta.

In particular,

Q = g T3, (g. 5)
which is analogous to the usual relation between the
charge and /-spin operators in an SU(2) theory with-
out baryons.19

It follows that assumption (8. 9) is equivalent to
T3“J’ A >m = 1|p; K>m,

i.e., the “positively charged” particle state is the

T3 = 1 member of an /-spin multiplet. Similarly, the
“neutral” and “negatively charged” free particle states
may be shown to be eigenvectors with T, = 0 and

T, = — 1, respectively, so they complete the T =1
multiplet.
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Equation (9. 5) and its consequences are not unexpect-
ed; they merely show that the analogy with spinor
electrodynamics, introduced to motivate the renormal-
ization conditions, is maintained throughout these
formal manipulations.

10. DISCUSSION
A. Field Ordering

Equation (7.4) must, of course, be true in each order
of the perturbation series for Il,. This has an inter-
esting consequence in lowest order. The lowest-order
neutal self-energy contribution must be constructed
from the diagram in Fig. 13 according to Def. 4

in Sec. 6; otherwise, Corollary 2 is inapplicable and
Eq.(7.4) is not satisfied. The resulting diagrams are
shown in Fig. 14. Diagrams of the type in Fig. 14b shall
be called leafs.

Leaf diagrams do not appear in the usual Dyson-Wick
expansion of the S matrix, because contractions of

two fields at the same space—time point are notusually
allowed. But their presence seems desirable, since it
simplifies the self-energy expression. El-Ghabaty

el al.29 have also noticed, in another context, that the
inclusion of leaf diagrams leads to simplifications.

The modification of the traditional procedure necessary
to produce these diagrams is minimal. One must only
allow the time ordering operation in the interaction
representation expansion of the S matrix to order the
fields within each interaction Hamiltonian as well as
the Hamiltonians themselves. The order of products of
fields having the same time argument is then defined
tobe the limit of the time-ordered product of the fields

at different times as the times become equal.

This prescription, in principle, also produces the diagram
in Fig. 13 as part of the amplitudes in addition to the
leaf diagrams; but a simple calculation shows that the
expression for this diagram vanishes. The analogous
diagram appearing in spinor electrodynamics when

the new ordering rule is applied may be similarly
disposed of, so that well tested theory remains un-
altered.

B. Divergences

It is not yet known whether the renormalization con-
ditions of Sec. 8 remove the infinities from the theory.
Although determinations of degrees of divergence by
direct power counts seem to preclude this possibility,
several papers have shown that power counting is
misleading, 8,3, 21 go the subject is far from closed.

In many investigations of renormalizability, propaga-
tors less divergent than D+ (p), Eq. (4. 12), are pro-
duced by introducing scalar fields in the Lagrangian.2—4
However, some of the single loop results thus found?2,3

FIG. 13. Primary diagram from which lowest order con-
tributions to I, u(p) are constructed according to Def. 4.

(a) (b)

FIG, 14. The lowest-order contributions to I'lw(p) (the
charged and the neutral particle self-energy).
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may be reproduced in a less sophisticated way with
Lagrangian (4. 1), by writing D¢ as the sum of a more
convergent propagator, for instance D", where

o PRY (pvpr/p2)
(2m)4 z pZ— Zm2 + ie

and a correction 6DV#, Then, when the external states
are physical, it is found that while there are extra ex-
pressions in the amplitudes due to the 6DV#s, no term
is more divergent (by power count) than the self~
energy in spinor electrodynamics. The only inputs
needed to show this are the bare WTR's in Sec. 5.
Therefore it is a matter of taste whether the extra
terms are interpreted as loop diagrams for scalar
particles or the consequences of an attempt to re-
write things such that the correct degrees of diver-
gence are manifest. In fact, Wong22 has reproduced

a special case of Veltman's single loop Generalized
Ward identity3 without recourse to scalar fields in
the Lagrangian. It is not clear that the agreement is
maintained for multiple loop diagrams; but evidently
spurious scalars might be unnecessary elements in
any proof or disproof of renormalizability.

Due (p) =

More recently, 't Hooft? has developed a massive
gauge theory based on the Yang—Mills Lagrangian,
which appears to be renormalizable. However, the
modifications introduced are sufficiently drastic that
no conclusion can be drawn about the renormaliz-
ability of the simple Yang—Mills theory discussed
here.

The developments in this paper are expected to be
useful in proving the theory much less divergent than
it appears. For example, it may be shown from the
Theorem and Corollary 2 in Sec. 6 that the pvpr/m?2
terms inthe neutral particle propagators can be dropped
when physical amplitudes are computed. Although
this fact does not completely explain the low orders
of divergence found by Veltman3 or by Glashow,21 it
illustrates one way WTR's reduce the number of in-
finities.

That the WTR's found here are valid off the mass
shell could prove important, For instance, Eq.(7.4)
means the pYpr/m?2 terms of any propagator joined to
a self-energy diagram may be omitted. Hence inter-
nal lines with self-energy bubbles do not contribute as
many powers of the momentum as would otherwise be
expected. Furthermore, by an actual calculation of the
second order self-energy, the author has found that
even off the mass shell it is only as divergent as its
spinor electrodynamics analogue. From these obser-
vations, it is inferred that certain double loops, those
which consist of loops on the internal lines of other
loops, are also no more divergent than their spinor
electrodynamics counterparts.

The results mentioned in the last two paragraphs shall
be discussed in more detail in a future paper, along
with other matters related to the divergence question.

ACKNOWLEDGMENTS

The author would like to thank Robert J. Finkelstein
for suggesting this work and for the abundant and
valuable advice offered while it was in progress and
during the preparation of the manuscript. Thanks
are also extended to John O. Mouton and Joel S.
Kvitky for many interesting discussions about the
material presented here and related topics.

J. Math. Phys., Vol. 13, No. 9, September 1872

T. AO BARNEBEY

APPENDIX A: CONVENTIONS-LSZ FORMULAS

The free field expansions corresponding to £, Eq.
(4.2), are

Au(x) = @20)3/2 [ de 6(k,)6(k2 — m2) T, e,# (k)
x [alk, e #x + g+(k, ) er],
Be(x) = (21)3/2 [ dk 6(k,)6(k2 — m2)Z, €, 4 (k)
% [b(k, N)e " + d+(k, N)eitx],
where the three vectors €, #{k), x» = 1,2, 3, satisty
koex (k) =0, whenk2 = m2

EL I () = —[gre — (erer/m2)),

guveil)er ) =—0,,/,

and the creation, annihilation operators have these
nonzero commutators

(@B, M) a (7, 2")) = (bR, 1), b7 (", X))
= (d(k,N),d*(R", 1)) = 2k 5, , .60k — K').

With the standard LSZ procedure, the S matrix ele-
ments, minus contributions from processes that do
not involve true scattering, are found to have the form

Jdx(—dles b))/ @n)3/21e W | (o) -
x [dy(= )€} (p,)/ (2m)3/2])e" "2k, 5(y) - -

X fdz(w i)[E‘;l(Ps)/(ZTT)W2]eip3zxpy(z)' .o
X (0| T(Bx)++-B18(y)-+A"(2)- 910y,
where

d 0

ox i ax". (A1)

k) =g, (0, +m?) —

In and out states correspond to the factors in the above
expression according to Table I.

A reference to Eq.{4.9) and integrations by parts
lead to this alternative form of the S-matrix elements:

651(171) 6;1\2 (pz)

W S}'lla(p]_ .. -W SLlﬁ(I‘)Q)" .(

211)3/2

dx
r(27r)4

ip.2
ets

eiplx. .. f»—qy—eipzy.. . f dz

X (2m)4 (2m)4

x (0| T(Bx)...Bi8(y)...A (2)...)10).

The T functions introduced in Sec.7 are now seen to
be given by

T!J"' Yerspeee (Pl. . .Pz. . -pg- . )5(217111 — Z:pout)

= S, b)) S5 (by) .., (bg).

dx __ip)x “dy  ipyy dz  ip.z
X f————e 1 o= etPeY 2R gt
7 (2m)s j(zn)4 ¢ f(zn)4

x (0| T(BYX)...B*5 (¥)...A(z)...)|0).
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TABLE 1.

out state in state
b particle (charge + g) eir*Bu(x) e-ipxBu(x)
with momentum p
d particle (charge — g) eitxBru(y) e iPxBi(x)
with momentum p
a particle (neutral) with eirxAn(x) e ipxAn(x)

momentum p

For reference in the text, it is noted here that the
momemtum space propagator S'VH(p) is expressed in
terms of time-ordered Wightman functions by

s u(p)o(p’ — p) = fdx /5 dy eir'xeiry
x (0] T(B*(x)B*t(y )|0>
dx o
etp xpipy
f 277) ¢
><<0|T(A v)10).

APPENDIX B: MATRIX ELEMENTS OF THE CUR-
RENT

Suppose just one neutral particle in operator is con-
tracted out of an arbitrary amplitude. According to
Appendix A, the result is

(2lal (p, V1) =—1i [dx[e 8(p)/(2m)3/2]e P k ,x)
x (214",
The remaining in and out operators are contained in
the state vectors |1) and [2) .

Since the definition of ,,(x), Eq. (A1), implies

(WAv(x) = 2¥A,, + ni?A

+iZ,23'g2(B,B, — B}B,),

;lll

the field equations derived from Lagrangian (4. 1) may
be used to find

Kk (x)Av(x) = J, — (Z — l)mzAu

+iZ,Z5'g3v(B;B, — B;BU)
or

K, AYK) =d, —(Z— )m24, (B1)

where J, is the “electromagnetic” current given by
JV=1iZ,25'g(B}B*Y — B B*#rY)
and

=J, +12,Z;1g0%(B;B, — B}B,). (B2)

U
When Eq. (B1) is applied, the matrix element above is
transformed into

(2lai (p, )11y =~ i fdx[e,n(p)/(2m)3/ 2]e-ipx

x (2[Jd,—(Z—-14,]l1). (B3

APPENDIX C: CONSTRUCTION OF NEUTRAL SELF-
ENERGY DIAGRAMS

Consider the primary diagram in Fig. 15. Two of the
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configurations from which it may be constructed are
shown in Fig. 16,

In this appendix, the configurations in Figs. 16a and
16b shall be denoted by

GUZUI:Bu(ql) (= Uozﬁola) (Cla)
and

Gy o uipalda)s (C1b)
respectively, i.e., the all inclusive symbol ¢ introduc-
ed in Sec. 6 shall be replaced here by explicit indices
corresponding to the relevant external line branches.
These additional indices appear on the left of the
semicolons in the expressions (Cla) and {(C1b). For-
the purpose of Appendix C it is not necessary to dis-
play all the external momenta.

The Feynman rules summarized in Sec. 4 may be used
to find a momentum space function associated with
Fig.15. In terms of the expressions defined above, the
result may be written in either of two equivalent ways:
omitting numerical factors, they are the following:

[ dq, [ day Daﬂ(%)Go?o1 5la)D gy + )
X Vuéy(qz + p, q2)D702(q2) (CZa)
and
J day [ gz D17%(a1)G,, , 1 54(02)D " (g5).  (C2D)

When step two of the prescription given in Sec. 7B is
followed, the secondary diagrams obtained from Fig.
15 are seen to be those shown in Fig. 17.

There is only one way to attach a neutral line to the
left hand loop in Fig. 15, and Fig. 17a shows the re-
sulting diagram. According to Def. 4 in Sec. 6 and the
definition of Gozclzaa(ql)above, the appropriate

FIG. 15. The primary diagram from
which self-energy contributions are
q| C|2 constructed in Appendix C.

%2\ /9 VAL
Y Y

- a,q

2,q,

FIG. 16. Two of the configurations comprising the primary diagram
in Fig. 15. In the text they are denoted by (a) G 0,0,% 5 ola1) and (b)

an"lu:ﬁa(qz)'
~-Khp
(@ (b) g
X i O - --p
9 9 q 9, up
OCO=-mp
9 9
Oz
q| q2 \\\
\V,p

FIG.17 The secondary diagrams derived from Fig. 15 in accordance
with the construction procedure illustrated in Appendix C. See ex-
pressions (C3) and (C4) for the relevant momentum space functions.
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symbol for the left-hand loop in Fig. 17a is
G, o, w41, ). Therefore, interpretation (C2a) of Fig.
15 implies that a correct expression for the diagram
in Fig.17a is

1 - ]
Zl(’}l)(p) = quljdqzcczol;u(qup)Dal (QZ + P)

X Vpéy(qz + p, 42)1)702((12). (C3)

Similarly, Def. 4 in Sec. 6, together with the definition
of G g,) above and interpretation (C2b) of

Fig. 15, implies that the three diagrams in Fig. 17b
sum to

242 (0) = [ day Jaa,0%(q1)6,, o 4, 002, D).

0,014 ch(

(C4)

T. AL BARNEBEY

Corollary 3, Eq. (6. 6), may be applied to expressions
(C3) and (C4) separately, with these results:

PP =prER) =0.

Hence, if X, ,(p) denotes the sum of all the self-
energy contributions shown in Fig. 17, then

z,,0) = Z{D (p) + Z(2)(p)
and

pz,,(p) = 0. (C5)
Since all neutral particle self-energy contributions
may be constructed along the lines illustrated here,
Eg.(C5) is also valid if Eyp is replaced by II,,, as in-
dicated in the text.
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The generalized quantum field theory which follows from Lagrangians containing arbitrarily high-order deri-~
vatives is formulated in an indefinite metric space. "Particular attention is given to conservation laws and
canonical commutation relations. The Heisenberg equations of motion are derived.

1. INTRODUCTION

Because of problems encountered by quantum field
theory associated with short distances, several theo-
ries have been proposed which are nonlocal over
small space—time regions. Particularly promising
are those similar to the generalized electrodynamics
of Podolsky! and Bopp? and the generalized meson
field theory of Green,3 in which the nonlocality re-
sults from the presence of higher-order derivatives
in the field equations. In the present work we will
concentrate on the mathematical properties of higher-
derivative nonlocal theories. The formalism we de-
velop can be shown to have a physical interpretation
in terms of the form factors of particles.4

Higher-order field equations of the type we shall dis-

J. Math, Phys., Vol. 13, No. 9, September 1972

cuss were first introduced in order to remove cer~
tain inconsistencies which arose in the traditional
treatments of classical electrodynamics and in the
early attempts to develop a quantum electrodynamics.
When the use of propagator cutoffs and infinite-re-
normalization techniques produced a successful quan-
tum electrodynamics, interest in higher-derivative
field theories temporarily subsided.

However, if the same renormalization procedures are
applied to other problems, such as those involving
strongly interacting particles, they cannot always re-
move the infinities and divergences which beset many
of the theories. For this reason a number of more
recent works® have made essential use of higher-
derivative fields or the resulting regularizationé or
indefinite-metric-space methods. It is therefore use-



1368
symbol for the left-hand loop in Fig. 17a is
G, o, w41, ). Therefore, interpretation (C2a) of Fig.
15 implies that a correct expression for the diagram
in Fig.17a is

1 - ]
Zl(’}l)(p) = quljdqzcczol;u(qup)Dal (QZ + P)

X Vpéy(qz + p, 42)1)702((12). (C3)

Similarly, Def. 4 in Sec. 6, together with the definition
of G g,) above and interpretation (C2b) of

Fig. 15, implies that the three diagrams in Fig. 17b
sum to

242 (0) = [ day Jaa,0%(q1)6,, o 4, 002, D).

0,014 ch(

(C4)

T. AL BARNEBEY

Corollary 3, Eq. (6. 6), may be applied to expressions
(C3) and (C4) separately, with these results:

PP =prER) =0.

Hence, if X, ,(p) denotes the sum of all the self-
energy contributions shown in Fig. 17, then

z,,0) = Z{D (p) + Z(2)(p)
and

pz,,(p) = 0. (C5)
Since all neutral particle self-energy contributions
may be constructed along the lines illustrated here,
Eg.(C5) is also valid if Eyp is replaced by II,,, as in-
dicated in the text.

Supported in part by the National Science Foundation,

T Submitted in partial satisfaction of the requirements for the
Ph.D. degree,Department of Physics, University of California,
Los Angeles,

* Present address: 1711 Purdue Avenue, No. 9, Los Angeles,
California 90025,

1 A.Salam and J.Strathdee, “On Equivalent Formulations of Mas-
sive Vector Field Theories,” Trieste preprint IC/70/8 (1970).

2 D.G. Boulware, Ann. Phys, (N. Y.) 56, 140 (1970).

3 M.Veltman, “Generalized Ward Identities and Yang~Mills Fields”
Cern preprint Ref. TH. 1147-CERN (1970),

4 G.'t.Hooft,“Renormalizable Lagrangians for Massive Yang—
Mills Fields,” Print-71-2144 Utrecht.

5 R.Finkelstein and L.Staunton, Ann. Phys. (N.Y.) 54, 97 (1969).

6 The classical consequences of this interpretation in the massless
case have already been studied by R. Finkelstein, Rev, Mod. Phys.
36,632 (1964).

7 M. Nakamura, Progr. Theoret. Phys. 33,279 (1965).

8 K.H. Tzou, Nuovo Cimento 33,286 (1964).

9 T.D.Lee and C.N, Yang, Phys, Rev. 128, 885 (1962).

10 This result has been extended to the general SU(n) massive
Yang—-Mills theory by R. J. Finkelstein, J. S. Kvitky, and J. 0.
Mouton, UCLA preprint 71/TEP/36 (1971).

11 See, for instance, K. Nighijima, Fields and Particles (Benjamin,
New York, 1969), p. 240.

12 T,D. Lee, Phys. Rev.128, 899 (1962), Appendix A.

13 Notice that in this paper the usual conventions relating diagrams

to S-matrix contributions have been slightly modified. External

lines do not correspond to factors describing in and out states,
but rather to the indices to which these factors are attached.
Hence the expressions associated with the diagrams for a given
process must be multiplied by in and out factors in order to com-
pute scattering amplitudes. Formula (7.1) displays the precise
form.

14 Strictly speaking, this displacement is not always mathematically
permissible, because some G, contain divergent integrals. A
suitable regularization procedure can presumably be found to
rigorize such steps as the displacement in Corollary 3, if the con-
sequences of the present work turn out to justify the effort.

15 The cross-hatched shapes in the figures of this paper are meant
to signify any diagram or sum of diagrams with the appropriate
lines leading in and out.

16 Expression (9. 1), in which definition (8. 2) is used, contains the
exact formula,

17 See, for instance, S.S. Schweber, An Introduction to Relativistic
Quantum Field Theory (Harper and Row, New York, 1962), p.636.

18 Tt has been tacitly assumed here that the function F(g2) in Eq.
(7.5) is not singular as ¢ = 0. Lowest order calculations tend to
corroborate this assumption.

19 See, for example, S. Gasiorowicz, Elementary Particle Physics
(Wiley, New York, 1966), p. 252.

20 g, L. E1-Ghabaty, S. Gupta, W, Weihoffen, Phys, Rev. D 2, 1130
(1971).

21 8, L. Glashow and J. Iliopoulos, Phys. Rev.D 3, 1043 (1971),

22 §_ X, Wong, Phys.Rev.D 3, 945 (1971),

Quantum Dynamics of Higher-Derivative Fields

F.Riewe and A, E. S, Green
Department of Physics and Astronomy, University of Flovida, Gainesville, Florida 32601
(Received 14 February 1971)

The generalized quantum field theory which follows from Lagrangians containing arbitrarily high-order deri-~
vatives is formulated in an indefinite metric space. "Particular attention is given to conservation laws and
canonical commutation relations. The Heisenberg equations of motion are derived.

1. INTRODUCTION

Because of problems encountered by quantum field
theory associated with short distances, several theo-
ries have been proposed which are nonlocal over
small space—time regions. Particularly promising
are those similar to the generalized electrodynamics
of Podolsky! and Bopp? and the generalized meson
field theory of Green,3 in which the nonlocality re-
sults from the presence of higher-order derivatives
in the field equations. In the present work we will
concentrate on the mathematical properties of higher-
derivative nonlocal theories. The formalism we de-
velop can be shown to have a physical interpretation
in terms of the form factors of particles.4

Higher-order field equations of the type we shall dis-

J. Math, Phys., Vol. 13, No. 9, September 1972

cuss were first introduced in order to remove cer~
tain inconsistencies which arose in the traditional
treatments of classical electrodynamics and in the
early attempts to develop a quantum electrodynamics.
When the use of propagator cutoffs and infinite-re-
normalization techniques produced a successful quan-
tum electrodynamics, interest in higher-derivative
field theories temporarily subsided.

However, if the same renormalization procedures are
applied to other problems, such as those involving
strongly interacting particles, they cannot always re-
move the infinities and divergences which beset many
of the theories. For this reason a number of more
recent works® have made essential use of higher-
derivative fields or the resulting regularizationé or
indefinite-metric-space methods. It is therefore use-



QUANTUM DYNAMICS OF HIGHER-DERIVATIVE FIELDS

ful to develop a rigorous mathematical framework
for use in such applications.

The prototype equation for the generalized field the-
ory we shall discuss is the field equation of Podol-
sky's electrodynamicsl:

(1 —0O/m2)04, =0, 1.1)

where we use the notation
2_ (2 )2 7 1
O=28,0 =V —<a—t , F=c=L

This equation was also proposed by Bopp? and ap-
pears in later treatments? of the electrodynamics
suggested by Landé.8 The classical theory of genera-
lized electrodynamics was quantized by Podolsky and
Kikuchi,? while Montgomery© and Greenl?! investi-
gated the consequences of the theory.12

The generalized meson field equation

(1 —0/m3) (0 —m})e, =0 (1.2)
was proposed by Green,2 who later extended it to the
more general form13.14

[ﬁz <1 _ —D—>](D —m2), = 0.

(1.3)
m3

It is the mathematical treatment of equations of this

type which is the major concern of the present inves-

tigation.

The mathematics used to treat these higher-deriva-
tive field equations is based on the generalized clas-
sical mechanics of Ostrogradsky.}® The formalism
was extended to include continuous-field equations by
the above authors and also by Changl6é and de Wet.17

The development of generalized field theory which we
will present in Sec. 3 will be more general than these
early treatments in a number of ways. First,the for-
malism will be valid in indefinite metric spaces (dis-
cussed in Sec. 2), in which the norm of a vector can
be positive, negative, or zero. There will be a detail-
ed treatment of such topics as the derivation of con-
servation laws, the relation between spin and statis-
tics, and the derivation of the generalized Heisenberg
equations of motion. In Sec. 4 the formalism will be
compared with similar discussions, particularly
those by Misral® and by Barut and Mullen.19

2. INDEFINITE METRIC SPACES

When higher-order field equations are quantized, it is
often convenient, and sometimes necessary, to use an
indefinite metric state space. For this reason we
briefly review those mathematical properties of in-
definite metric spaces which we will need later. Ad-
ditional material and further references are given by
Pandit20 and Nagy2l and by several of the authors in
Ref. 5.

The use of an indefinite metric state space in quan-
tum field theory was suggested by Dirac?2 and dis-
cussed in detail by Pauli.23 In such a space the norm
of a function ¢ is given by

il = [ w*nydss,

or, in simpler notation,

@.1)
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Lyl =L@ Inly). (2.2)
The metric operator 5 is chosen to be Hermitian,

(Winl* = (xInlw), (2.3)

where the asterisk (*) denotes complex conjugation,
and the inverse 771 is assumed to exist. Here the
vectors (Y| and |y) have the usual complex scalar
product and thus the basis vectors of the space can
be chosen to be orthonormal:

(ilj):éi]-. (2.4)
The eigenvalues of 1 are not required to be positive,
so that the norm of a vector can be positive, negative,
or zero.

We will find it more convenient to work with the inde-
finite metric basis vectors (¢| and |j), which are
usually chosen to be related to {i| and |j) by

(il5) = (ilnlj. (2.5)
We will make the more specific choice
(it=Cln,  15) =1 (2. 6)

In an indefinite metric space the adjoint (or pseudo-
Hermitian conjugate) A* of an operator A is defined
by

(WAl )* = (x|A*[Y). 2.7

It is generally not the same as the Hermitian conju-
gate AT, defined by

Wlalx* =147y, (2.8)
since the two are related by
A* =qlA%. (2.9)

An operator is said to be self-adjoint, or pseudo-
Hermitian, if it satisfies

H = H*, (2.10)
or

H=n1lHTy. (2.11)
The adjoint has the property that if

Ala) = ala), (2.12)
then

(a|lA* = (@la*. (2. 13)

Thus, if H is a pseudo-Hermitian operator with eigen-
values 2 and %’ corresponding to eigenvectors {%) and
|k'), then we have

(B*—n'Y(h|h') = 0. (2. 14)
In many cases of interest we will find that although
(h1h) can be either positive or negative, it will not be
zero. It then follows that all eigenvalues of H are
real and eigenvectors corresponding to unequal
eigenvalues are orthogonal. Therefore, pseudo-Her-
mitian operators with no zero-norm eigenvectors
have the familiar properties possessed by Hermitian
operators in a positive definite space.
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If the pseudo-Hermitian operator H has eigenvectors
of norm zero, the corresponding eigenvalues can be
complex. However, the expectation value, defined by

(H) = (VIH|Y), (2.15)
is real, since
(HY* = (VIH|Y* = (WIH|Y) =(H). (2. 16)

If |#) is an eigenstate of H with complex eigenvalue,
then we must have (#|%) = 0. Hence the expectation
value of H with respect to a state with a complex eig-
envalue is always zero.

In an indefinite metric space the transformations of
greatest interest are pseudo-unitarity:

r *
Ar=UAU%, 2.17)
lv) = Ul),
where the pseudo-unitary operator U satisfies
Uy =UU*=1 (2.18)
or
UM U = UnlUuty = 1. (2.19)

Probability is conserved under pseudo-unitary trans-
formations since eigenvalues and scalar products
preserve their values.

With this brief review we now proceed to discuss
higher-derivative field equations.

3. QUANTUM DYNAMICS

Quantum field theory involves both the vector-space
formalism of the preceding section and the equations
of motion and commutation relations for specific
dynamical systems. We shall now develop the mathe-
matical formalism of higher~derivative fields based
on the usual quantum dynamics of local fields.

The use of higher-order-derivative Lagrangian densi-
ties provides theories which differ mathematically
from the quantized theory of local fields in two res-
pects. First, the higher derivatives add mathematical
complications for both classical and quantized fields.
Second, such theories sometimes, but not always, re-
quire the use of an indefinite metric state space for
quantization. Because of these differences, we must
redevelop the basic formalism of quantum dynamics.

Perhaps the best discussion of the quantum dynamics
of local fields is found inthe papers of Schwinger.24.25
Prior to the work of Schwinger the usual procedure
was to develop a classical field theory and then quan-
tize it by introducing commutation (or anticommuta-
tion) relations. Schwinger, however, used quantized
fields throughout and derived the commutation rela-
tions, rather than assuming them. This procedure is
especially important in nonlocal field theory since
many of the problems of interpretation center around
the commutation relations. Since we can see precise-
ly what assumptions are being made, we will know to
what extent the theory can be modified, if necessary.

Although there have been a number of discussions of
higher-order-Lagrangian field theories, only a few
have followed Schwinger's approach. In particular,
Misral®8 extended Schwinger's work to include higher

J. Math. Phys., Vol. 13, No. 9, September 1972

F. RIEWE AND A. E. S.

GREEN

derivatives, and Barut and Mullenl® assumed an inde-
finite metric space and also derived the generalized
form of Hamilton's canonical equations. For reasons
discussed in Sec. 4, their treatment differs from ours
except for the initial definitions. However, their
papers will serve as a useful guide since certain
parts, notably those corresponding to our Egs. (3. 10)-
(3. 14), require little or no modification. Wherever
practical, we shall use their notation, which is an ex-
tension of that used by Schwinger. In contrast to the
work of Barut and Mullen, our results will be consis-
tent with those of the authors discussed in Sec. 1, in-
cluding the more recent works.5

Schwinger bases his development on the basic postu-
late that the operator 6W which generates infinitesi-
mal transformations is obtained by variation of the
action integral
01
Wiy = [ d%e, (3.1)
2
where o, and 0, are spacelike space-time surfaces
and £ is the Lagrangian density operator, or La-
grange function. Schwinger assumes that the space
is positive definite and also that £ is a function only
of a field operator ¢(x) and its 4-gradient ¢y =
9, ®(x) = 0¢/3x+, We shall relax both of these re-
strictions by allowing the possibility of an indefinite
metric space and also by allowing £ to depend on de-
rivatives of arbitrarily high order, designated by

¢]1(n): ap(n)¢(x) = aﬂlaﬂg‘.‘aﬂnqb(k)’ (3. 2)

The vectors of the indefinite metric space describing
the states of the system are

(¢fog] and  [Eioy), (3.3)

where £} represents the eigenvalues of a complete
set of commuting operators § on the space-time sur-
face 0,. We are using the notation of the previous
section, so that the rounded brackets indicate an inde-
finite metric.

The variation of a vector is defined by

61£10y) = |E0y) — [£50y), (3. 4)

where |£{0,) differs from |£{0,) by an infinitesimal
pseudo-unitary transformation

|€10,) = Uloy)|£104) = [1 —iF(oy)]lEfoy), (3.5)

in which F(0,) is self-adjoint, or pseudo-Hermitian.
Then

81£10y) = —iF(0y)|¢i0y) (3.6)
and

8(¢1041 = (¢10,|iF(0y), 3.7
so that
5(£50, | £50,) = i(Ef0y |[F(0y) — F(0,)]]£505).  (3.8)

Our fundamental assumption is that F(o;) — F(0,) is
the variation of the operator W, defined in Eq. (3. 1).
Thus the variational principle is

6(810,1£405) = i(§10,|[F(0y) — F(03)]1£505)
=i(£10116W;,1850,)

—i(t30,16 [ dx2lEpoy).

(3.9)
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Since F is self-adjoint, £ must be also. This result
differs from that of Barut and Mullenl® for reasons
we will discuss in Sec. 4.

Next we carry out the variation of the action integral.
We break the variation into two parts:

Wy = fo1 d4x5,8L + <f —f >dop6x“£.
92 9 Og

The first term is the variation 5,W,,, which leaves
the value of £ fixed on the boundary surfaces, while
the second results from a displacement §x# of the
boundary surfaces. By defining

0
Lu® :l' p £ ,
- permutations of u(n) ¢p(n)

(3. 10)

(3.11)

the variation of £(9, L ¢u(N)) may be written

ML
8oL = 0
0 2 a¢“(n) O‘Pu(n)

n=0
N
= Z}O (= 1)78, (p LEMB4 ¢ (3.12)
"o
N-1
+ au< Zz)o 1rul'(n)av(n)60¢>,
where
N-n
TEO) = 75 (— 1)y (y L1 (DAO™), (3.13)
m=0Q

In the expression for 6,£, the order of the operators
cannot be changed. However, we will follow Schwin-
ger24 by assuming that identical contributions are
obtained from terms which differ only in the position
of 6,¢. By substituting Eq. (3. 12) into Eq. (3. 10) and
using Gauss' theorem, we see that if 6W,, vanishes
for variations in which ¢(x) is held fixed on the boun-
dary surfaces, the Euler-Lagrange equations result:

N
EO (= 1)73, (,y Lr™ = 0. (3. 14)
Also the generating function is found to be
N-1
F(o) = fdop <£6x“ + 2 ﬂPT(")BT(”)GOdJ). (3.15)
n=0

The variation 8¢, (,, may be written as the sum of
two terms: 0y¢, (), which is the variation at a fixed
point, and ¢,,.,,0x7, which corresponds to an infinite-
simal Lorentz transformation

Gxi = ar — etvy,, (3. 16)
in which
€M = — gl = Jupxv, (3.17)

If ¢(x) has some additional transformation proper-
ties, such as vector or spinor character, we symbolize
these by the component ¢%(x). The variation then has
an extra term:

0D2(ny = B0PF(my T PLrmdXY + 2€¥8SE5,02 (). (3.18)

For a scalar field ¢(x), we have S2;, = 0. For sim-
plicity we shall suppress the indices a and b on ¢(x)
and S ;.

Using

60(1)1'(;1) = ar(n)60¢’ (3 19)

1371
the generating function may now be written

N-1
F(o) = [ do, (“BM” t 2 w6,

n=0

— Gy mdXY — éeaﬂsaB¢T(n))>. (3.20)
Define the quantity

f(;::;v - é[np‘r(n)sku(l)r(n) + an(n)S}\p(pT(n)
;s ] (3.21)

From
pAv Apv (3 22)
fw =—Tw -
we have
N A Apv (n) oAV
Eflm =260l — Ty ) =21 78 b (e

= 9 (fhsx,) + 0, fthx,.  (3.23)

Since, for a sufficiently large surface,
A
f dopa)\(f‘(ln)yﬁxy) =0, (3 24)

F(0) can be written as

N-1
F(o) = f dou <n§o nuf(")éqbf(n) + Tﬁvﬁxv), (3. 25)
where

Ly pv NE_I p‘r(n)ay 3 uAv 3
T = £g —_ ar (TT ¢T(ﬂ) + )\f(n) ). ( . 26)

The important operator T# is the stress tensor
operator, or energy-momentum tensor operator.
From it we can find the Hamiltonian density operator

N1 .
r=T""= 2 0" P¢ p+afia)—e.  (3.27)

n=0

Conservation laws may be found corresponding to in-
variance principles. If the Lagrangian density opera-
tor £ is symmetric with respect to some transforma-
tion, then for variations which involve only that trans-
formation we have

8W,g = F(0,) — F(0,) = 0. (3.28)
For example, if £ is Lorentz invariant,then variations

involving only Lorentz transformations can be written
in the form

bx, =a, — €,x" (3.29)
and

8¢ (my = O- (3. 30)
For this case the operator F(o) is

F,,(0)=a,Pto) + ée“uJuv(o), (3.31)
where

Pv(0) = [ do,Thv (3.32)
and

JHY = f dO’)\MM‘”/, (3-33)

MMy = TMxp — Thugv, (3. 34)

Since 6W;, = 0, we have
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P¥(0,)— P¥(0,) =0 (3.35)

and
Juv(gy) — JW(o,) = 0, (3.36)

which are the conservation laws for momentum and
angular momentum. The differential forms of these
integral conservation laws are

9,Tw =0 (3.37)
and

BXM)‘“” = 0, (3. 38)
which imply that the stress tensor is symmetric:

T — Tvi = 3, MM =0, (3.39)
Conservation laws also result if £ is symmetric with
respect to some modification of the field. For ex-
ample, the law of conservation of charge is obtained
if £ is symmetric under the phase transformation

¢ — eittrg;ie., 56 = — igdr¢. The generating opera-
tor is then
N1
Fol0) =—iq [ do, 2o m#7g, 561 =Q(0)o,
a0 (3. 40)
where
(0) = [ do,jk (3. 41)
and
N1
jr =—iq 25 TRTG . (3. 42)
n=0

Thus phase invariance of £ implies the conservation
law for the charge operator:

Q(0,) = 0. (3. 43)

Q (01) -

It should be clear from the above that conservation
laws and their derivations are essentially the same
for a higher-order-derivative field theory as for a
local field theory.

It should be noted that if two Lagrangian density
operators differ only by a 4-divergence,

E=8+3,f7, (3. 44)

then the same Euler-Lagrange equations result, since
the action integral operators will differ only by a sur-
face integral:

Tiy=Wyy + (f _ L)doyfv.
1 2
We shall make use of this ambiguity in the choice of

£ later.

Next we derive the commutation relations for the field
quantities. To simplify notation, we define

(3. 45)

do, =n,do, (3. 46)
where n is a unit vector. We shall abbreviate
npml‘f(") as 77(M and write

N-1

wrp, = 2 TG (3. 47)

n=0

Thus for variations 5x, = 0, which hold the coordi-
nates fixed, the generating operator may be written

N-1
Fyu0) = [ do, EO THTDEG

(3. 48)
f don"dd,,.

il
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Another form for the generating operator is obtained
if £ is altered by adding the 4-divergence

fu J— ﬂ””¢n.
We then have

(3. 49)

6 [do,fv =—5 [donng, =— [do(nnse, + sung ),
(3. 50)
so that

F(o)= =— [ do¢nno,. (3.51)
In certain cases, it is possible that some of the 7 7(®

will be identically zero. These are called “variables
of constraint,” since their Euler~Lagrange equations

have the form of equations of constraint.

F&ﬂ (0)

To obtain the commutation relation for the uncon-~
strained variables, we consider the operator G(¢, 7)
and its variation 6 ,G:

(5’015¢G|£”0) =8(t'0|G|E"0). (3.52)
Since the variation & acts only on the commuting
operator set £ on o, we have

6(¢'0]Gl£70) = [8(£'0|]G|£%0) + (¢'01G[6]£"0)]

. (3. 53)
=—1i(&'0] [G,FM]I £"g),
so that
[G,FM] =15,G. (3.54)
Similarly we find
(G, Fy,]=18,G. (3. 55)

The special cases G = ¢,y and G = 7#(#) yield
[d)”(k)) f dOW"5¢n] =i6¢)p(k)s
[ml(k), f dow"é(bn] =
[ [ dodang,, v ] = ismre,

(S dosnne,, 6, m] = 0.

In order to make the correct choice of commutation
versus anticommutation relations, we must examine
the connection between spin and statistics. Following
Schwinger,24 we note that for integral spin £ is in-
variant under time reversal, while the sign of £ is
reversed under time reversal for half-odd-integral
spin. Recall that in the derivation of the Euler-La-
grange equations it was postulated that terms which
differed only in the position of 5,¢ would give identi-
cal contributions. Such terms occur with the same
sign for integral spin and with opposite signs for
half-odd-integral spin. Thus for the first case 54¢
must commute with its neighbors while in the second
case it must anticommute. Thus we have

[ a0 [,y (®), 17 (2)], 80, (%) = 06, (4y(x),
[ do’ [mi () (x),17(x)], 86, (x") = 0,
[
[

(3. 56)

(3.57)
[ do’ [on7(x1)][¢, (x7), mE () (x) ], = 6w (B x0),

fdo onn(x)] [, (x"), pr()(x)], =0,

where
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[A,B], = AB + BA. (3.58)
We make the additional assumption that ¢, ;) and

77 () commute (anticommute) unless » = #n. Then,
for x and x’ on the same spacelike surface o, we have
the fundamental commutation relations

nV[¢H(k)(x)’ ' (n)(x’)]i = inu6:€l§?)63(x —x'),

[0, (), Br (2], = o, [1 ), 7T (), = 0,

(3. 59)
Here
1 if 7(n) is a permutation of u (%)
57 = . (3. 60)
# 0 otherwise

and 63 (x — x’) is the three-dimensional delta function.
From the above we see that ¢, ) and n,m?7(#) are
canonical conjugates and also that the usual relation-
ship between spin and statistics holds. The commuta-
tion relations for the variables of constraint can be
found by writing them as explicit functions of the
canonical variables.

Finally we shall find Heisenberg's equation of motion.
Noting that the last term in the expression for T+ is
a 4-divergence, whose integral vanishes, we see that
PV is given by

PV =— f dom»ove, + f dovL. (3.61)

The variation, either 6, or 6., of the second term
gives

N1
5 [ dovg = | dova“(go nFT(")aT(n)M))

(3.62)
= [ dodvn7sg,,
where we have used the expression for §,£, Eq.
(3.12). Thus
oPY = [ do(dvnnb¢, — b1 ). (3.63)

By substituting P? for G and using the above expres-
sion in Egs. (3. 59) and (3. 60), we find the Heisenberg
canonical equations of motion:

Py = i[%(n),P”]) (3. 64)
n“avﬂp'r(n) — in“[nPT(”),P”].

For most practical applications it will be convenient
to choose 7, to point in the 4-direction so that
dvgar(m = f[p41(m, pv], (3.65)

and similarly for previous equations. The only one of
the Heisenberg equations which is usually needed is
the simplest one:

l¢ = [d’:H]’
where Il = P4,

4. DISCUSSION

We have presented a treatment of higher-derivative
fields which follows the quantum dynamics of Schwin-

(3. 66)
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ger.24 Application of the formalism and its physical
interpretation will be given in another paper.4 As
noted previously, our results are consistent with the
work of most authors, but differ from those of Misral8
and of Barut and Mullen.19 In this section we discuss
what we feel are the advantages of our approach.

The present investigation extends the work of Schwin-
ger to include indefinite metric spaces and higher-
derivative Lagrangians., In both cases the method of
extension is different from that of Barut and Mullen.
In our notation, the indefinite-metric-space equation
Ala) = |8) and its dual, (a|A* = (8|, can also be
written as A|a) = |8) and {a|n A* = (8|7 by using
Egq. (2. 6). In place of this last expression, Barut and
Mullen choose to write (a|A*n = (B|n (our notation)
which is apparently inconsistent. (Note that in their
notation the adjoint of A is A¥, while we follow the
more common convention of designating it as A*.)

As a result their variational principle takes the form

Wi, = N 1F(01)n — F(0y,). 4.1)
In order to obtain the expression in our Eq. (3. 9), they
assume that £ and F are “metrically invariant,” i.e.,
they commute with the metric. However, from Eq.

(2. 11) we see that metrical invariance of a self-
adjoint operator requires the operator to be Hermi-
tian. Since Lagrangians which require an indefinite
metric are not generally Hermitian,4 the concept of
metrical invariance appears to be of limited useful-
ness. In any case,the problems of misplaced metrics
appear to be avoided in the present work.

Barut and Mullenl? also treat the higher-derivative
fields differently. As a result they obtain different
expressions for the fundamental operators T+ and
F(o) and for any result involving T#, F (o), or m#(n),
Their procedure follows that of Misral8 and is based
on the assumption that a derivative of ¢ can be varied
independent of ¢ itself, but that since ¢ is fixed on
the boundary surface, derivatives of ¢ tangent to the
surface are not independent of ¢. Because of this
they rewrite all 4-gradients in terms of tangential
derivatives, making their formalism more cumber-
some with no apparent advantages. Their basic for-
mulas therefore differ from those of the other
authors discussed in Sec. 1.

We conclude that our treatment has the advantage of
being a direct extension of the work of Schwinger,
while avoiding the problems encountered by Barut
and Mullen involving metrical invariance and tangen-
tial derivatives. We now have all the mathematical
detail necessary for most applications. Specific ex-
amples and their physical interpretation will be given
in another paper.4
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Physical Interpretation of Higher-Derivative Field Theories
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Polynomial-type field equations are shown to have a realistic physical interpretation in terms of particle form
factors, both for classical fields and for “dipole-regularized” quantized fields. Form factors arising from such
field equations are found to give a reasonable description of the electromagnetic structure of the proton.

1. INTRODUCTION

The basic mathematical formalism required by high-
er-derivative, or “generalized,” quantum field the-
ories appears to be straightforward and free from in-
consistencies.! However, when particular higher-
derivative field equations are treated in detail, non-
physical results often appear.2—4 Usually the dif-
ficulties relate to negative-energy states and the cor-
responding lack of conservation of probability. It is
our purpose to show that a generalized field theory
can be constructed which is mathematically consis-
tent and which has a realistic physical interpretation
in terms of the form factors of interacting particles.

Qur discussion will center around the Nth-order poly-
nomial meson-field equation introduced by Green.56
We begin by reviewing the procedure for the quanti-
zation of generalized free-field equations for the
cases in which the roots of the polynomial are real
and unequal, real and equal, or complex-conjugate
pairs. We then present a physical interpretation in-
volving particle form factors which eliminates cer-
tain difficulties from classical generalized electro-
dynamics. It is shown that the higher-derivative field
equation for the interaction of point particles is ma-
thematically equivalent to the usual equations des-
cribing particle interactions characterized by form
factors., This correspondence is shownto hold for
scalar source particles,in agreement with Ueda and
Green,? and is extended to the case of spin-3 par-
ticles.

The only quantized higher-derivative theories which
are generally believed to avoid nonphysical results
are those involving “ghost particles.”® We will de-
monstrate that the ghost particles can be considered
to be the intermediate particles characterizing the
form factors of particle interactions, in contrast to
the usual assumption that they are physically unob-
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servable. We then test the validity of this interpreta-
tion by comparing the form factors derived from phy-
sically admissible generalized field theories with ex-
periment. We showthat the simplest charged-particle
form factors consistent with generalized field theory
give a realistic description of the electromagnetic
structure of the proton. Hence the form-factor inter-
pretation of generalized field theory is both mathe-
matically consistent and physically reasonable.

2. FREE-FIELD EQUATIONS
A. General Formalism
The polynomial free-field equation

v

(2.1)

introduced by Green,5.6 has been frequently discus-
sed for the case in which the polynomial roots m,
(often called “regulator masses” when v > 1) are
real and unequal.? Hereweareusing U = v2 — 32/312
with%Z = ¢ = 1. Certain more recent “regularized”
models, such as those of Leel0 and Heisenberg,11
involve m's which are complex conjugates or are
equal in pairs. Quantization often requires the use of
an indefinite metric space, as discussed by Nagy.3.4

We will now give a brief discussion in which the for-
malism used by Green is extended to include equal
or complex regulator masses. Our basic purpose in
this section is to present the mathematical treatment
of polynomial free-field equations and to show the
negative-energy difficulties encountered by the phy-
sical interpretation in terms of auxiliary fields. For
general applications our treatment should be more
convenient than other discussions3-4 involving speci-
fic models,

The Fourier solution of Eq. (2. 1) for unequal roots
can be expressed as a sum of auxiliary fields,
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Polynomial-type field equations are shown to have a realistic physical interpretation in terms of particle form
factors, both for classical fields and for “dipole-regularized” quantized fields. Form factors arising from such
field equations are found to give a reasonable description of the electromagnetic structure of the proton.

1. INTRODUCTION

The basic mathematical formalism required by high-
er-derivative, or “generalized,” quantum field the-
ories appears to be straightforward and free from in-
consistencies.! However, when particular higher-
derivative field equations are treated in detail, non-
physical results often appear.2—4 Usually the dif-
ficulties relate to negative-energy states and the cor-
responding lack of conservation of probability. It is
our purpose to show that a generalized field theory
can be constructed which is mathematically consis-
tent and which has a realistic physical interpretation
in terms of the form factors of interacting particles.

Qur discussion will center around the Nth-order poly-
nomial meson-field equation introduced by Green.56
We begin by reviewing the procedure for the quanti-
zation of generalized free-field equations for the
cases in which the roots of the polynomial are real
and unequal, real and equal, or complex-conjugate
pairs. We then present a physical interpretation in-
volving particle form factors which eliminates cer-
tain difficulties from classical generalized electro-
dynamics. It is shown that the higher-derivative field
equation for the interaction of point particles is ma-
thematically equivalent to the usual equations des-
cribing particle interactions characterized by form
factors., This correspondence is shownto hold for
scalar source particles,in agreement with Ueda and
Green,? and is extended to the case of spin-3 par-
ticles.

The only quantized higher-derivative theories which
are generally believed to avoid nonphysical results
are those involving “ghost particles.”® We will de-
monstrate that the ghost particles can be considered
to be the intermediate particles characterizing the
form factors of particle interactions, in contrast to
the usual assumption that they are physically unob-
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servable. We then test the validity of this interpreta-
tion by comparing the form factors derived from phy-
sically admissible generalized field theories with ex-
periment. We showthat the simplest charged-particle
form factors consistent with generalized field theory
give a realistic description of the electromagnetic
structure of the proton. Hence the form-factor inter-
pretation of generalized field theory is both mathe-
matically consistent and physically reasonable.

2. FREE-FIELD EQUATIONS
A. General Formalism
The polynomial free-field equation

v

(2.1)

introduced by Green,5.6 has been frequently discus-
sed for the case in which the polynomial roots m,
(often called “regulator masses” when v > 1) are
real and unequal.? Hereweareusing U = v2 — 32/312
with%Z = ¢ = 1. Certain more recent “regularized”
models, such as those of Leel0 and Heisenberg,11
involve m's which are complex conjugates or are
equal in pairs. Quantization often requires the use of
an indefinite metric space, as discussed by Nagy.3.4

We will now give a brief discussion in which the for-
malism used by Green is extended to include equal
or complex regulator masses. Our basic purpose in
this section is to present the mathematical treatment
of polynomial free-field equations and to show the
negative-energy difficulties encountered by the phy-
sical interpretation in terms of auxiliary fields. For
general applications our treatment should be more
convenient than other discussions3-4 involving speci-
fic models,

The Fourier solution of Eq. (2. 1) for unequal roots
can be expressed as a sum of auxiliary fields,
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N
¢(x) = Z_)l ¢,(x), (2.2)
where
¢, (x) = L [ask[e (We™* + ¢ (e ),
(2m)3
k,=(k,w,), w,=(k +m2)l/2 (2.3)

Here %, and x are 4-vectors with the scalar product
k,x =kr —w,[. This solution is identical to that
given by Green® except that we have not specified the
relationship between the field components ¢, (k) and
¢, (k). We will see that the relationship depends on
whether the regulator mass # , is real or complex
and on whether quantization is carried out in an in-
definite metric space or in the usual positive definite
Hilbert space.

The field equation can be derived from the Lagran-
gian density

2 =100 |1, (1-5) o -npew

e (2.4)

(or from any £ differing from this by a 4-divergence).

Paralleling the procedure used by Green to find the
Hamiltonian H,the expression for the Hamiltonian
density can be obtained from £, integrated, and the
Fourier solution for ¢{(x) inserted to obtain

N
H=), H, (2.5)
r=1
where
1 — —
H, =——v, [d3%k2($,¢, + ¢,8,) (2.6)
(2m3
and
m2 HN, m?2
v =z dh (1_ﬁ) 2.7

The prime (') on the product symbolindicates that the
factor with » =s is omitted. The Heisenberg equation
of motionl leads to the commutation relations
[¢,(K), ¢,&")] = (2y,0,)" 16, 8k — k). (2.8)
The operators cp,,(x) are often interpreted as repre-
senting individual free fields having energies deter-
mined by H,. In this “auxiliary-field” interpretation
the fields ¢, (x) are given the alternative definition

N, O—m?2

¢, (x) = [ I

J W}W)’ (2.9)

which satisfies Eq. (2.2). The fields then obey the
equations
@ —-m2)¢,(x) =0, (2.10)

which have Fourier solutions given by Eq. (2. 3). Thus
the two definitions are equivalent.

Because the fields ¢,(x) obey the set of apparently in-
dependent equations (2. 10), they are often viewed as
actually being a set of independent fields.2 Unfor-
tunately, when calculations are based on this assump-
tion, they yield unphysical results, such as negative-
energy states. In Sec.3 we will show that for classi-
cal fields the equations are not independent, so that
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the difficulties do not occur. Similarly, quantized
fields discussed in Sec, 2C have relationships among
the ¢, when the m , are complex conjugates or are
equal in pairs. In Sec.4 we show that these quantized
fields have a realistic physical interpretation.

B. Real-Root Polynomial Equations

For the special case in which all of the m's in Eq.
(2.1) are real and unequal, ¢, (k) must be the adjoint
¢y (k) of ¢, (k) in order that ¢ (x) be self-adjoint. [Note
that if the space used for quantization has an indefi-
nite metric, the Hermitian conjugate ¢7 (k) will not be
the same as the adjoint ¢, (k).] In particular, if the
masses are numbered such thatm ., > ,then the
y's alternate in sign: y, = (—1)7*1iy, |. Thus for
even 7, the component ¢, (k) obeys “wrong-sign” com-
mutation relations:

[0,®), 5k = —12y,0, | 10k — k). (2.11)
For odd » the normal commutation relations (with-
out the minus sign) obtain.

There are two fundamentally different methods which
attempt to overcome the problem of the wrong-sign
relations: the formalism originally used by Green®
and the use of an indefinite metric space suggested by
Matthews.12 We will discuss each in turn. In the first
method one defines the annihilation operators

g’ 12y, @, 17/2¢ _(k), odd7,
a,(k) = ? (2.12)

12y, w, |12 ¢](K),

In this case ¢(x) can be taken to be Hermitian in a
positive metric space so that ¢, (k) = ¢} (k).

even 7,

If we make the usual simplifying choice to work with
a single value of k in a space with a countable number
of degrees of freedom,the commutation relations
take the form

la,,al] =5, (2.13)
with all other commutators equal to zero. The Hil-
bert-space states are defined by

arrlo> =0: <0|0>=13
n,) = (0,2 (a1) |0),
Inngeeon) = |nlng - 1,0 (2.14)

The quantity #, is the number of “actual” particles,
while n,, v > 1, gives the number of “auxiliary,” or
“regulator,” particles. The Hamiltonian is

4

(171w, (a,al + ala,). (2.15)

We now see why there are difficulties of interpreta-
tion for even the free-particle field equations. Be-
cause the w's are positive, the expectation value of
the Hamiltonian is not positive definite. Thus the
field can exist in states of negative energy. For this

reason the theory is often considered to be unaccept-
able.

Just as the quantization of the electromagnetic field
proposed by Guptal3 and Bleulerl4 introduces an in-
definite metric space to overcome negative-energy
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difficulties, it has been suggestedl2 that an indefinite
metric space be used in the quantization of higher-
derivative field equations. In such a space, the anni-
hilation and creation operators are

d, (k) = (2y,w,)1/2¢, (k),

2300 = @y, 0,) 124300, &19
which satisfy

[d,,d1] = b,,. (2.17)
Since the Hamiltonian

H = %Z,; w,did, +dd}) (2.18)

appears to have a positive definite form, it might
seem that there are no difficulties associated with it.

However, from Eq. (2. 16) we see that the operation
denoted by an asterisk (*) cannot be the same as Her-
mitian conjugation since (2y,w,)1/2is imaginary for
even 7, so that the field operator ¢(x) is not Hermi-
tian, and neither is the Langrangian from which the
field equation is derived. Nevertheless, an indefinite
metric vector space can be constructed in which g(x)
is self-adjoint.

The space in which ¢(x) is self-adjoint is defined by
d,10)=0, (0l0)=1,
In,) = (n,)72(d}Y |0),

ln,mgeeon) = In,)ng) -+ |n,).

(2.19)

In such a space the expectation value of the Hamilto-
nian with respect to the state |n;) is

(H) = (-1)"%nw,, (2. 20)
where
0, odd ¢,
6;= (2.21)

1, eveni.

Unfortunately, the energy {H) is still indefinite. In

fact, the factor (— 1)""6", which alternates in sign as
more particles are added to the state, makes the re-
sult appear even less physical than before. The use
of an indefinite metric does not lead to a physically
reasonable expression for (H) in this case.

To date, there does not appear to be a quantization of
higher-derivative field equations with real, unequal
masses which completely eliminates the problems of
negative-energy states as long as the fields ¢, (x) are
considered to be independent of one another. How-
ever, work with the Lee modell0 and the Heisenberg
unified field theoryl! has shown that quantization is
more successful if there is a relationship between
the masses, such as equality or complex conjugation.
We next discuss the free-field equations for such
cases.

C. Complex- and Dipole-Root Polynomial Equations

If some of the m 's in Eq. (2. 1) are complex, then the
self-adjoint Fourier solution ¢(x) is of the form
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N
o (x) = @1 ¢, (x),

_ 1 3 ik, x ik, x]*}
¢, (x) = am3 Jasrip,®e™ " + [¢,&e™*1*}
R, = (k,w,), w,=(Kk2+ m2)1/z, (2.22)

For complex m, the sign of w, must be chosen by
convention.

When one of the polynomial roots is complex, its com-
plex conjugate must also be a root for the energy to
be real. If the two complex-conjugate roots are de-
noted by m; and m ,,the Hamiltonian is then

1

= Gy3 J LT (105 + 030,)

N
+ w3 (6207 + ¢1¢,)] + Z:)S H, (2.23)

H

The commutation relations for ¢,(k), ¢,(k) are

(¢, 9;(k)] = 2y w) (1 —5,)8(k — k), (2.24)

where ¢ and j take on only the values 1 and 2.

Creation and annihilation operators are defined as
before by Eq. (2. 16) in an indefinite metric space
characterized by Eq. (2. 19). The energy eigenvalues
corresponding to the state lnlnz) are complex, so
that! (n,n,|H|nn,) = 0. Hence the fields ¢,(x) and
¢,(x) do not contribute to the energy and the problem
of negative energies does not arise,

The “dipole” field equation, which is the limiting case
with m ; = m,.requires special attention since the
Fourier solution has the unusual form

d(x) = 1 fd3k[¢1 + widy)etr + (¢] + wipy)e ikx]
(2m)3

N
+ 2 ¢,,
r=3

k= (k w), (2.25)

w=k2+mPV2= (k2 +m3}).
However, the Hamiltonian and commutation relations
are similar to the complex-conjugate case. Although
the state space has vectors of zero norm,34 a con-
sistent treatment is possible and the expectation va-
lue of H with respect to the state |”1n2) remains
Zero,

Both the complex-conjugate and the dipole free-field
equations avoid the nonphysical results associated
with negative energies. However, it can be shown that
when certain higher-order interactions are consider-
ed, the complex-conjugate case allows transitions to
negative-energy states and is therefore unsatisfac-
tory.l5 Nevertheless, “dipole-regularized” equations,
or “dipole-ghost” equations, of the type

[ fl (1 —%)2 ](m —m)e(x) =0

i=2 ’le

(2. 26)

appear to give meaningful results,1é particularly
when applied to the models of Leel? and Heisen-
berg.11 We now turn to the question of the physical
interpretation of such equations.
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3. PHYSICAL INTERPRETATION OF CLASSICAL
FIELDS

A. Nonrelativistic Spinless Source Fields

Since the existence of auxiliary fields and ghost par-
ticles is required by many field-theoretical models,
it is important to understand their physical signifi-
cance. In this section we will consider the case of
the generalized classical electromagnetic field and
present a physically consistent interpretation in
terms of particle form factors. In Sec. 4 the feasi-
bility of extending the interpretation to quantized
fields is investigated. We will find that the problems
of interpretation encountered with classical free
fields will not occur if the source of the field is taken
into consideration,

First consider the case of a classical source particle
characterized by a charge density p(r). It is assu-~
med that the particle is radially symmetric and non-
rotating and also that it can be treated nonrelativisti-
cally. Spin and relativistic effects will be discussed
later.

As usual, the form factor of the particle is defined
to be the Fourier transform of the charge density:
2y 1 [d3y e
F(k)~-q— d3y e®Tp(y), (3.1)
where g is the total charge of the particle. Since the

particle is radially symmetric, the form factor is a
function only of k2,

For our purposes, form factors will be useful because
of their connection with generalized field theory. We
will show that applying generalized electrodynamics
to classical point particles yields results identical to
those obtained by applying the usual electrodynamics
to particles having form factors. The present work
is based on that of Ueda and Green,? and extends it

to apply to particles with spin 3.

We will consider a generalization of electrodynamics
in which the 4-vector potential A = (A, ¢) obeys the
classical field equation
f(OBA, =—4mj,, (3.2)
where j, is the 4-vector current density j = (j, p)
which is the source of the field. For the special case
(@) = (1— 0O/A2) the theory is the same as that of
Podolskyl7 and Bopp.18 Our physical interpretation

will, however, be different from that of the above
authors.

To determine the relationship between generalized
electrodynamics and form factors, consider a gener-
alized field with a point-charge source. We will work
in the rest frame of the particle, so that ¢ = 0. The
generalization of Poisson's equation for a point charge
q located at the origin is then

F(v2)Vv2¢(r) = —4nqd(r). (3.3)
Defining ¢ (k) by
1 i
o) =5 s Jd3kp @eixer, (3.4)

we find that the Fourier transform of Poisson's equa-
tion is
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F(—k2)(—k2)p(k) = —4ng (3.5)
or

(—k2)¢ (k) = —4ngF(k?), (3.6)
where

F(k2) = 1/f(—k2). (3.7
Taking the reverse Fourier transform yields

v2¢(r) = —4np(r), (3.8)
where

p(r) = [d3kqF(k2)etk r; (3.9)

i.e., F(k2) is the form factor corresponding to the
density p(r). Thus the static potential of a point
charge as calculated from generalized electrodyna-
mics is the same as the potential which satisfies the
usual Poisson equation for Maxwell's theory of elec~
tromagnetism, provided that the Maxwell particle has
the form factor f~1(—k?2),

In the generalized classical electrodynamics we have
thus far considered, there are no nonphysical results
since the generalized Poisson equation,

F(v23)v2¢(r) = —4ugd (r), (3. 10)

is mathematically equivalent to the usual equation,

v2¢(r) = —4np(r). (3.11)
Given either of the equations, the other can be calcu-
lated from it. Since ¢(r) can be calculated from the
second of these equations, there can be nothing un-
physical about it, even though it is also a solution of
the first. However, for free fields, the situation
changes,

A free field is a solution to the field equation in a re-
gion where j, = 0. The two free-field wave equations
corresponding to the pair of equivalent Poisson equa-
tions are

F(OOA, =0 (3.12)
and

b4, =0. (3.13)
Unfortunately, these two are not equivalent. The first
has more solutions; given only the second, it is im-
possible to reconstruct the first. While Eq, (3. 13) is
the usual form of the wave equation, some authors
feel that the classical auxiliary-particle interpreta-
tion of Eq. (3. 12) is not physically reasonable.2 If
S (@) is an Nth-order polynomial in (0 with nonzero
roots, then according to Eq. (2. 10) the generalized
free-field equation (3. 12) is equivalent to

DA(‘P =0 (3.14)
plus the set of N equations
(- m%)A(Z) = 0. (3.15)

If these equations are thought to be independent, their
pbhysical interpretation appears obvious. The first is
the usual wave equation for the electromagnetic po-

tential, or, equivalently, the equation for a zero-mass
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particle, while the others are the wave equations of
particles of mass m,. Both A(U and A(;) are solutions
to the generalized wave equation so that the general
solution for A, is a linear combination of A(V and
Al As pointed out by Feynman,19 this violates phy-
sical experience since one particle will travel at the
speed of light while the others must move more slow-
ly. A burst of light obeying a generalized wave equa-
tion would gradually separate into wavefronts mov-
ing at different velocities. Thus it would seem that
generalized electrodynamics does not offer a reason-
able description of free fields, even classically.

For classical fields a solution to the dilemma is to
reexamine the concept of “free fields.” If the usual
Maxwell's equations are solved for the case that the
source j, is a moving point particle, the results are
the well-known Liénard-Wiechert fields. The ex-
pressions for the fields contain two types of terms:
the “near field” terms,which fall off like R~2 where
R is the distance at the retarded time, and the “radi-
ation” terms, which fall off like R~ and vanish when
the particle is not accelerated. Although the near
field can be thought of as moving with the particle,
the radiation field propagates outward at the speed of
light and does not depend on the future position of the
particle. After its emission it is free of the particle
and hence is often called a “free field.”

If the source is an extended particle with a charge
density other than a & function, then at any point in
space and time all of the components of ju will not
generally be zero, so that the radiation field is part
of the solution of A, = —4mj . while the homoge-
neous equation A, = 0 is not a valid field equation.
For the same reason, we will take
f(D)DA“ = —4mj,, (3.186)
where jp is nonzero, as the equation from which to

determine the generalized radiation field, or free
field.

In analogy to the equivalence of Eqs. (3. 10) and (3.11)
there is a function j|, such that
OA, = —4mj), (3.17)
has the same solution as Eq. (3.16), Thus the Lién-
ard-Wiechert radiation-field solution of Eq. (3. 17),
which, of course,is physically reasonable,is also
the “free-field” solution of the generalized equation
(3.16). Hence by treating free fields as radiation
fields the paradoxes associated with classical auxi-
liary fields can be avoided.

B. Relativistic Spin-3 Source Particles

We next show that the same relationship between gen-
eralized fields and form factors is valid for relativis-
tic source particles with spin 5. For the present we
will consider the Dirac equation as a “classical”
wave equation in the sense that there will be no at-
tempt to quantize it by introducing commutation re-
lations. The discussion will be illuminating, not only
because the form factor interpretation is being ex-
tended to the case of spin 3, but also because we will
employ an entirely different formalism from that of
the preceding discussion.
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For spin-3 particles like the proton, which are known
to have form factors and anomalous magnetic mo-
ments, Foldy20 has suggested the following equation:

(a +m o~ f}o (e,0"°4 + unDno“"FP,,)>z}/= 0. (3.18)

The constants ¢, and 1, characterize the charge and
magnetic-moment distributions of the particle. In
particular, €, is the particle's charge and Ko is its
anomalous magnetic moment. F,, is the field tensor

F,, =04, -9,4A, (3.19)
and

orY = Z(ybyy — pryh). (3. 20)
The equation was chosen to be the most general ex-
tension of the Dirac equation to describe a particle
whose structure can be characterized by electric and
magnetic moments, provided the additional terms are
Lorentz covariant, gauge invariant, linear in the po-
tentials, and do not vanish for zero particle momen-
tum. It can be shown?1 that €, and y, completely
characterize the form factors of spin-3 particles.

We will now show that the Foldy~Dirac equation
(3.18), combined with the usual electromagnetic field
equations, is mathematically equivalent to the inter-
action of a Dirac particle with a generalized electro-
magnetic field. The magnetic moment terms can be
rewritten in a more convenient form: o!VF = 204A,
—2¢A. We will work in the Lorentz gauge, so that

olvF,, = — 294. (3.21)

The Foldy-Dirac equation can now be rewritten:
é +m —i Z; [e, 7274 + unJZ"(—ZﬁA)Dxp =0, (3.22)
n=

or, by regrouping terms and choosing new constants
a )
m

<¢+m - imé) a,,ﬁ’”A)xp =0. (3.23)

Let Zu (x) be a potential for which the spin-3 particle
obeys the point-particle equation

(7 — ied + m)y = 0. (3.24)
It follows that

€04 =§;o a, dmA. (3.25)
We then find

EODZ=~4nm§}O ™. (3. 26)
The Fourier transform is

€0 (—RRVA(R) = —4a wf)o o & Bmi(R). (3.27)

Since the matrix # has the inverse (§)-1 = B/k2,it is
possible to determine the series expansion of the in-
verse of an arbitrary function of §,so that A(k) obeys
the equation

FU k) (—E2)A (k) = —4nf(R), (3. 28)
where
o0 -1
k)= eo< 53 ozm(iié)”’> ) (3. 29)
m=0
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The inverse Fourier transform gives

F@AOAR) = —4nj(x).

We have thus shown that the Foldy-Dirac equation
combined with the usual equations of electrodynamics
is mathematically equivalent to the Dirac equation
(3.24) if the electromagnetic potential is taken to
obey the generalized wave equation (3.30). Hence the
form-factor interpretation can equally well be applied
to source particles with spin 3. No problems appear
classically as long as the electromagnetic field is
always considered to have an extended source. We
next consider the effects of quantization.

(3. 30)

4. PHYSICAL INTERPRETATION OF QUANTIZED
FIELDS

The classical form-factor interpretation of the pre-
vious section carries over directly into quantum
theory. In quantum field theory the form factor F(k2)
is a vertex operator, which describes the coupling
between fields. For example, the vertex diagram for
interacting scalar fields given in Fig. 1(a) represents
a process with amplitude (k2 —m 2)"1F(k2). In the-
oretical calculations of actual form factors?2 the
lowest-order contributions come from intermediate
states which are particle resonances. Figure 1(b)
gives such a form factor, characterized by a single
intermediate particle with mass A. The amplitude
for this diagram is the same as for Fig. 1(a), so that
the two processes can be considered to be equivalent.

A third process having the same amplitude is illus-
trated in Fig. 1(c). In this case there is a point ver-
tex and a generalized field which obeys

(1 —L/A2)(0 —m?2) =0. (4. 1)

We see that just as in the classical case the usual
interaction of a field with a particle having a form

FIG. 1. Three vertex diagrams, each representing a process with
amplitude (1 + 22/x2)72 (k2 + m2)1, (a) Vertex with monopole form
factor. (b) Vertex characterized by an intermediate particle of
mass A. (c) Point vertex with a generalized field having a “ghost
particle” of mass A.
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factor is equivalent to a generalized field inter-
acting with a point particle. The auxiliary particles,
or ghost particles, of mass A in Fig. 1{c) correspond
to the intermediate particles in Fig. 1{(b). For the
general case of a polynomial field the same corres-
pondence applies. For example,a field with two re-
gulator masses A and A, corresponds to a form
factor F(k2) = (1 + k2/x2)"1(1 + k2/x3)"1. In this
case the intermediate particle A, is itself coupled
to the source field via a second intermediate par-
ticle A .

For higher-order diagrams the interpretation can
still be applied. However, as discussed in Sec. 2
certain calculations involving such diagrams lead
to nonphysical results unless the generalized field
obeys the dipole-regularized field equation (2. 26).
Thus from Eq. (3.7) the only admissible form fac-
tors must be of the type

P2 Ij’\l’ k2\2 (-1 4.9
= + — . .
re =[] (1 2 “.2)
J
ST TTTT T T T T T —
14 - .
r — — — SINGLE DIPOLE
1.3 n
DOUBLE DIPOLE

: N
T
]

FORM FACTOR RATIO SQUARED

Illll i 1

05 | 2 5 10 20 50
KGev/cy

OS—Lllll " L

FIG. 2. Form factors consistent with generalized field theory.
Dashed line: single dipole with A = 0. 702 (GeV/c)2. Solid line:
double dipole with A; = 0.744 (GeV/c)2 and A, = 107.7 (GeV/c)2.

20 —TTTTT L T T T T g 7 S
o 18F | .
o I —— ——SINGLE MONOPOLE /
g ier ]
3 DOUBLE MONOPOLE /
© 14 / R
o L
E 12 / ]
EI: i i ¥ g 3 1/
10 - = £ - -
?O—: I te i /I ]
o8 .
(5}
S AT ]
O6 / .
= - ]
% o4t // 4
[V L Ve 4
o2t P :
O_OF ottt — T T 4 1] P L1
05 [ 2 5 le] 20 50
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FIG.3. Form factors not consistent with generalized field theory.

Dashed line: single monopole with A2 = 0.033 (GeV/c)2. Solid line:
double monopole with A? = 0.701 (GeV/c)2 and A, = 0.705
(Gev/c)2.
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The result that a form factor consistent with genera-
lized field theory must be a product of dipoles pro-
vides a test of the theory. Since the only charged
particle with an experimentally well-known form fac-
tor is the proton, it will be used as the basis of our
test.

Following the procedure of Green and Ueda,23 we
will compare the square of the theoretical form fac-
tor with the experimental scattering cross sections,
using SLACZ24 electron—proton scattering data.

The simplest dipole form factor is the single dipole

F (R2) = (1 + k2/A2)°2, (4.3)
which has one adjustable parameter. F; was first
discovered empirically and is known as the Hofstad-
ter-Wilson dipole form factor. Hofstadter25 and
Wilson26é choose A2 = 0.71(GeV/c)2.

The dipole form factor is often used as the standard
against which others can be compared. Thus, in
Fig. 2, we plot the ratios of the data and theoretical
calculations to the dipole form factor. This method
clearly shows any discrepancies between theory and
experiment. In the figure we show the dipole form
factor both for A2 = 0,710(GeV/c)2 and also for A2 =
0.702(GeV/c)2, which gives a best fit to the more re-
cent data. As a measure of the accuracy of the ag-
reement with experiment we use the usual quantity
x2. The readjusted dipole gives x2 = 6.96. The doub-
le dipole form factor,

Fy(k2) = (1 + k2/A2)2(1 + k2/A3)2, (4.4)
gives a much better fit, shown in Fig. 2. The value of
x 2 in this case is 1. 28.

F. RIEWE AND A. E. S. GREEN

We thus find that a satisfactory fit to the data can be
obtained with only two adjustable parameters, if the
form factor is derived from generalized field theory.
In contrast, the form factor which is a product of mo-
nopole terms,

(4.5)

was found by Green and UedaZ23 to require three
parameters in order to obtain significant improve-
ment over the one-parameter dipole form factor.
For purposes of comparison with the dipole case, the
best fits to the data for monopole-type form factors
for N=1and N = 2 are given in Fig.3. The N=1
case gives a very poor fit, with x2 = 346.8. For N =
2, the best fit essentially duplicates the (one-para-
meter) Hofstadter—Wilson dipole form factor, again
with x2 = 6.96.

A similar situation occurs if A; and A, are chosen to
be a pair of complex conjugates, in which case the
best fit requires A, and A, to be approximately equal.
It therefore appears that the requirement that the
proton electromagnetic form factor be consistent
with generalized field theory results in a very re-
alistic functional form.

We conclude that higher-derivative quantum field
theories have a realistic physical interpretation in
terms of form factors, in which the “ghost particles”
associated with generalized fields represent inter-
mediate states contributing to the form factor.
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Scattering by Two Charged Centers*
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The scattering of a charged particle by two fixed charged centers is discussed. The scattering potential is
long-range and spheroidal. It is pointed out that the general method for handling the short-range spheroidal
potential is not directly applicable here. The integral differential equation for the Coulomb spheroidal phase
shift is given in the text. The behavior of the phase shift is discussed in Born's approximation, A method for
solving for the radial spheroidal Coulomb wavefunction is also given.

1. INTRODUCTION

Nonspherical, particularly spheroidal, scattering
gives rise to interesting problems. It was introduced
quite early in the classical scattering theory of sound
and electromagnetic waves. The study of acoustic
scattering! by circular disks and apertures, which
are spheroidal in form, was of importance for the so-
called Rayleigh-disk method of measuring sound in-
tensity., Furthermore, a great deal of work has been
done on electromagnetic scattering by spheroids,
disks, and apertures. For example, Meixner and An-
drajewski and Flammer? treated the problem of the
scattering of plane electromagnetic waves by a per-
fectly conducting circular disk. The effect of circu-
lar disks and apertures on the radiation from electric
and magnetic dipoles was investigated by Meixner and
Flammer.3 In addition, the problem of the scattering
of plane electromagnetic waves incident on a perfect-
ly conducting prolate spheroid has been studied by
Schultz, Siegel, and collaborators.4

Spheroidal scattering is interesting not only from the
point of view of classical physics, but also from that
of quantum mechanics. It was shown in the early
years of quantum mechanics by Burrau5 that the Cou-
lomb potential produced by a pair of fixed charges (of
whatever relative sign) is spheroidally symmetric.
Hence the scattering of an electron by the fixed
charge pair is spheroidal. The scattering of slow
electrons by diatomic molecules has been considered
to be spheroidal by Stier and by Fisk.® (See Naghara,
Takayanagi and Hara’ for extensions of Stier and
Fisk.)

The importance of spheroidal potentials can also be
traced to the physics of elementary particles. At pre-
sent, elementary particles are not always treated as
mathematical particles. In fact the elementary par-
ticles are neither elementary, nor particles if one
employs a classical description. Rather, they are
treated as a composite system with some structure.
This view has been incorporated in the quark,8 par-
ton,? and droplet models.1® Among them, the one
most directly related to the spheroidal scattering is
the droplet model, in which the high energy scattering
process is treated as a wave passing through a Lor-
entz-contracted optical medium. The medium has
either a disc or a pancake shape, both of which are
spheroidal. In other words, even in high energy phy-
sics spheroidal scattering plays a significant role.

Despite its importance, spheroidal scattering is not
as well studied as is spherical scattering. Investiga-
tions to date have been mostly on the scattering from
discontinuous spheroidal boundaries and on the nume-
rical calculation for comparison with observed ex-
perimental phenomena. Thus, any further study on
spheroidal scattering should be of considerable inter-
est in physics.

Scattering by a short-range spheroidal potential has
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been our main concern in an earlier paper.1l The
present work can be considered as a continuation of
the above-mentioned, and is devoted to the long-range
Coulomb potential. In Sec.2 we point out that the Cou-
lomb potential produced by a pair of two equal
charged centers is spheroidal. A general spheroidal
phase shift expression for short range potential is
given; it is a straightforward generalization of the

one in the previous paper, in which the incident wave
is limited to the z-direction of the coordinate system.
This expression is shown to be unsuitable for the Cou-
lomb case. In Sec. 3 the spheroidal Coulomb phase
shift is discussed and is expressed in term of an in-
tegro-differential equation. In Sec.4 we deal with a
Born approximation for the spheroidal Coulomb phase
shift. It is shown that spheroidal and spherical high
order Coulomb phase shifts are the same. In Sec.5
we present a method solving the integro-differential
equation for the radial wavefunction and the validity
of the solution is verified.

2. POTENTIAL

A pair of equal fixed point charges are located on z
axis with coordinates r, = (0,0,d/2) and r, = (0, 0,
— d/2,where d is the separation between the two

charges. The potential V at distance r has the form

V=@/lr—r,| +Q/Ir—r,|. 2.1)

@ is the charge on each point. The above potential,
although not spherically symmetric, does possess
ancther type of symmetry. This can be seen through
the introduction of the prolate spheroidal coordinate
system,12 in which the distance r = (x,y,2) is ex-
pressed as

x = d/2)[(1 —n2)(2 — 1)]1/2 cosg,
y = @/2)[(1 —n2)(t2 — 1)]V/2 sing,
z = (d/2)ng,
withls<s £§<©, —1<n<1, 0< ¢ < 27, The sepa-
ration d between the two fixed charges is now called
the interfocal distance for such a spheroidal coordi-

nate system. Parameters &,7, ¢ are referred to as
the prolate spheroidal coordinates. Under the limit,

(2.2)

d—0, 3di—-r, and 71— cosé, (2.3)
the spheroidal coordinate system is reduced to a
spherical one, where ¥ and 6 are the spherical coordi~
nates. Potential V in Eq. (2. 1) in terms of prolate

spheroidal coordinates can be expressed as
V= (4Q/d)[£/(£2 — 12)].

This is a potential with prolate spheroidal symmetry.

(2.4)

The Schrddinger equation for describing a charged
particle scattered by the potential in Eq. (2. 4) has the
form

J.Math. Phys.,Vol. 13,No. 9, September 1972
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— B2/20) V2 +qVy = (2k2/2u) Y, (2.5)
where u is the mass,q the charge, and ¥ the momen-
tum of the incident particle. Equation (2. 5) may be
expressed simply in the prolate spheroidal coordi-

nates as

a [/} 7} 2
da_n2y 4+ 9 p2_1) %
[an< " ) L
1 1 22
_ Bd)2(£2 — 12
+(1_n2 g2_1)8(1)2 & kd)2(E2 —n2)
2udQq _
- ey g]lp_o. (2.6)

The above equation is separable, and can be solved
through the spheroidal phase shift analysis method.
This method has been extensively discussed in the
classical scattering theories of sound and electro-
magnetic waves, and was used in the scattering of
electrons by diatomic molecules.6,7 The general
method for describing scattering by a short-range
oblate spheroidal potential can be found in a more
recent paper.l1 In terms of the spheroidal phase
shift analysis, the scattering amplitude may be ex-
pressed as

22 @2 —0om) S )

x Sm,,(C,TI)(ezm”"‘ — 1) cosm(p — ¢’), (2.7)
where
c=73 kd, 0 =cosln. (2.8)

During scattering, the incident particle is in the direc-
tion specified by polar angle 6’ = cos 17’ and azimu-
thal angle ¢’. N, (c) are the normalization constants
of the prolate spheroidal angle functions S,,,(c,7):

forn # n’

1 ’ ’

S c,M)S,,. (€, N dn =

-1 Smn (6 S (€,7) N, ), forn=n.
(2.9)

The problem now is the determination of spheroidal
phase shifts §,,,. It is the same problem as that en-
countered in the spherical phase shift analysis, which
can be considered as a special case of the present
analysis under the limit 4 — 0., In the spherical ana-
lysis, the Coulomb potential is a particular one, and
is considered separately as in contrast with short-
range potentials.13 This is also true for the spheroi-
dal Coulomb potential; its peculiarity will be briefly
explained as follows.

For a general short range spheroidal potential, one

can obtain an integral equationll for the spheroidal
phase shift §,,,

e'*mn sing,, =—c [1 dt R, (c, )TE®)T,,, (¢, &),

(2.10)
where R (c, £) is the spheroidal radial function, the
spher01da1 short-range potential V(£,7, ¢) is ex-
pressed as

(ud2/2h2) (2 —n2)V (£,n, @) = U), (2.11)

., £) is defined through the expansion of the
scattered wave wk) (r)

J.Math. Phys., Vol. 13, No. 9, September 1972

MING CHIANG LI

. — 9
W =220 22~ Oon) Sun(€,1")
Nmn C)

X 8,,(c,n) cosm($ — ¢) T, (c,t)  (2.12)
and has the asymptotic expression
~ 1
T, 8) 1=z gp €' cos[eg — 3 (n + )7 +5,,,].

(2.13)

The Coulomb potential in Eq. (2. 4) is long range in
nature, and causes the integral in Eq. (2. 10) to be
logarithmically divergent. On account of this, new
formulations should be sought to describe the long-
range spheroidal Coulomb phase shift.

3. COULOMB PHASE SHIFTS

In this section we would like to derive an explicit ex-
pression for the spheroidal phase shifts from poten-
tial ¥ in Eq. (2.4). We shall begin with Schrédinger's
equation (2.6). By the usual separation procedure,
its solutions can be obtained in the form of the Lamé
products:

lprﬂn = Tmn(c’ g)smn(cﬁn)eim‘bﬁ (3' 1)
where S,,, (c,n) is the prolate spheroidal angle func-
tion as used in Eq. (2.7). Function T,,,(c, £) satisfies
the ordinary differential equation

= ((gz - 1)— Tole, g))

- ()\mn(c) — ¢2£2 + AdE + 52”‘2 1) T, (c, £) =0,

3.2)
where
A =2pQq/n2,

Constant m is an integer, which comes from the
single value requirement of the wavefunction. Con-
stant A, (c) is the eigenvalue of function S, ,(c,n)and
can be expressed as

(3.3)

2,,.(C) :Zk) 15y c2k, (3.4)
The first two coefficients are found to be
gt =n(n + 1), (3.5)
e =} (1 _ (@m—1)@m + 1)>. (3. 6)
(2n— 1)2n + 3)

By substituting c£ =yand T,,,(c, &) = [(y2— ¢2) /y2]™/2
X Y,., (¥), Eq. (3,2) becomes as

d

2_c2) Py oy +2m N2y ()
(¥ —C)-——‘E e (V) Yy + m‘y—@ Y

ay
2
2A m(m + 1)c )Y,,m(y)z
y2

— <)\mn(c) —y2 + _k——y +
3.7)

Under the limit d = 0, for which two fixed point
charges coincide with each other, Eq. (3. 7) is reduced
to the form

d2 d

2 2 _H +2y —H

e s L (¥) + 2y o 2 ()

—[nr +1)—y2 + 2ny] H (y) =0, (3.8)

where we have used
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lim Y, (y)=H,() (3.9)
d—0

and

T=Ask. (3.10)
Equation (3. 8) is a radial Coulomb wave equation.
Its general solutions are well knownl4:

H,(y) = ¢y LF,(1,y) + 971G, (71,), (3.11)
where ¢, and ¢, are arbitrary constants. F (7,) is
the regular Coulomb wavefunction and G,{(7,) is the
irregular (logarithmic) Coulomb wavefunction. From
recurrence relations of Coulomb wavefunctions one
obtains the following relations:

dH (y) 1 -
»(Y) /
dy  m+1 {n2 + w2 V2H, 4 (9)
—[(n + 1)2 + 02]V/2H,,.(y)}, (3.12)
y 1H, (v)
1

- 7211/
nin + 1)@2n + 1) {nltn + 12 + 722728, (3)

+(n+1)(n2 +72)V2 H,_ (y)— @n+ DnH ()} .
(3.13)

The radiation Green's function én(y,y') of the Cou-
lomb wave equation (3. 8) satisfies the inhomogene-
ous equation

vz 22 G (y,91) + 29 L Gy, )
dy2 n ’ dy n )

—[n(n +1)—y2 +279]G,(y,¥") = 6(y — '),
(3.14)

the regularity requirement at y = 0,and the radiation
condition

lim én(y,y’) = const X (1/¥) exp[i(y — 7 In2y)].
T (3.15)

Following the routine construction procedure for
Green's function, we find

Gy, _ ) )
_—i (FE ()~ G, 3],y <y,
S LE, (0,9)F,(T,9) —iG,(7,9)], ¥ <».
(3.16)

Because of the long-range nature of the Coulomb
force, the radial function T,,,(c, £) has the asymptotic
form

Tonn(€, §) =3 (1/c§)e**mn coslct —7In2ct)

—3(m+ 1w +5,,], (3.17)

where §,,, is the spheroidal Coulomb phase shift.
The asymptotic form for function Y, ,(y) follows
directly:

Ymn(y)y_)—“? (1/y)e'*mn cog[y — 7 In(2y)

—s(n+ 171 +5,,]. (3.18)

By using the Green's function G,(y,y’) in Eq. (3.16),
the solution for Eq. (3. 7), which is regular aty = ¢
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and satisfies asymptotic condition (3. 18), has the
form

1 i _
Y, (¥) =5 e'’nF,(1,y)

+ 7 yG, (3,9, (3) Y (97), (3.19)

where

UV, 0) = €2 20, (3= 2552 200, ()
+ (Amn(c) —n(n +1) +.’“i(ﬁi;iz_L)c.2_> Y,s (),
o,=argl (n + 1+1n). (3.20)

o, is the spherical Coulomb phase shift. The factor

¢*°7 in Eq. (3.19) is used to guarantee the proper
asymptotic behavior of function Y,,,(y) in the limit

¢ — 0. By utilizing the asymptotic forms of Coulomb
wavefunctions14

F,0,9) s cos[y —nIn@2y) —z (n + V7 +0,],

G,m,y) = sin[y —nIn(2y) — z(n + 7 + 0],
(3.21)
the following equation can be obtained from Eq.(3.19)

in the limit y — %:
e*®mn cos[y —NIn(2y) — 3 (n + )7 + 0,0)
=e'% cos[y —NIn@y) — 3 (n + 1)1 + 0]
— 1 expi[y —NIn@y) —3(n + 1)7 + 0]

o0 F (ﬁ;y,) ,
X [0 dy 2 U, (0, (7).

’

(3.22)

By equating the coefficients in front of the exponential
expi[y — 7 In(2y) — 2 (»n + 1)7] at Eq. (3. 22), we arrive
at a simple formula

. F (
e"amn sin(émn _ O_n) :_fcoo dy n(ﬁ,y)

Ui (D) Y, (9).

(3.23)

It is easy to see from Eq. (3. 23) that in the limit
¢ — 0 the spheroidal Coulomb phase shifts §,,, re-
duces to the spherical Coulomb phase shifts o, .

4. BORN APPROXIMATION

The Born approximation for spheroidal Coulomb
phase shifts is discussed here. In the approximation,
we make the following substitution:

Y,,(9) = 1/v)e*° F,@,v).

Namely, only the zero-order approximation is made
to the radial function Y, (¥) in the integro-differen-
tial equation (3.19). From Eq. (3. 23), one arrives at
an equation for the Born phase shift 6,2, :

oody(Fn(ﬁ,;v)

4.1)

et(é

2
) Upn(9).
4.2)

By using Egs. (3. 8), (3. 12), and (3. 13), one obtains the
expression

B _
o) sin(08, —0,) = —

¢*Grmnmon) sin(62, —0,)
o d — -
=—c2 fc y—z F,0,9)[1(y)F,.,(,%)
+1,(¥)F,m,)], (4.3)
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where
1,9 = 2(m + 1)[(n + 1)2 + n2]1/2 ’
(n +1)y
L) =@z 8 2D
¢
_211(n-m)+(n—m)(n-m—1). (4.4)

y (1 +1) y2

The Coulomb wavefunction F,(1,») is bounded. This
boundness makes the improper integral (4. 3) defined.
If, instead, one uses the short-range integral equation
(2.10) to evaluate spheroidal Coulomb phase shift,
then, under the Born approximation of Eq. (2.12) with
Coulomb potential Eq. (2. 4), one would have to deal
with an integral

17 dg £[RY) (e, £))2.

The asymptotic form of the radial functionl?

4.5)

Ry (e, 8) o (1/ck) sinfei —3(n + 1)7]  (4.6)

makes integral (4. 5) logarithmic divergent. The rea-
son for such a difference between Eqgs. (2.10) and
(3.23) is not difficult to understand. The divergence
in Eq. (2. 10), in case of the Coulomb potential, is due
to an improper handling of the asymptotic form of
radial function T, (c, £} as expressed in Eq. {2.13).
In the expression of the long-range contribution

7] In(2¢) is neglected, and which is infinite at £ = <,
In deriving Eq. (3.23), such a long-range contribution
is first taken into consideration, and all short-range
dependence, although involving differentiation, is
treated as an effective perturbed “potential” U, ().
In this way the logarithmic divergence is avoided.
The latter method is quite similar to the one for
treating a modified Coulomb potential in the spheri-
cal phase shift analysis.

Some estimates on the behavior of Coulomb spheroi-
dal phase shifts §,,, can be made through Eq. (4. 3).
It is difficult to obtain an analytic expression for the
integral in Eq. (4. 3), instead an approximation will be
used in the discussion. The integral involved is ex-
pressed in terms of the regular Coulomb wavefunc-
tion F,{n,y) and the inverse powers of the integration
variable y. For large order #, in different geometric
regions, F, (1, y) has respective approximated forms.
We shall divide such regions as y <, y ~n,and

y > n. These forms in the lowest-order approxima-
tion are as follows

F @,y)~ (/2 /Y2 e)ey/2n)*t, fory < n,
4.7)
Fn('ﬁ’y)'\' % v277y e-ni/2 Jn*lfz(y)’ foryNn, (4.8)
F, @,y)~ sin{y —7In(@2y) — un/2 + 0,], fory > n.
4.9

The function F,(7,y) in region y < n decreases quite
rapidly according to the power of #. In regiony > n,
the function F,(7,y) oscillates according to its asymp-
totic form Eq. (3. 21). From the behavior of the Bes-
sel function Jn+1/2(y), we can obtain a detailed des-
criptionl4 of the function F, (1,y) in the transition

regiony ~#un:
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1/2 _
Fn(ﬁ,y) ~ (?) e-m/2 (}_) 1/3(3 1?;3 + 213 §_0> s
2 3n rE e

for y nearn, (4.10)

R~ ‘1 )“2 expl 277 — (n + 1)e,)

YT

fory <m,orn <y, (4.11)
where
£o= 2y — 2n — 1)/2n1/3,
£, =2y/2n + 1), (4.12)

1 (1 — ¢2)1/2
= 1 dt,
b2 fgz t

For y near ton, F,(1,¥) is smooth and does not vary
too much. Fory < n, £, is positive real and mono-
tonically _increases with the decrease of variable y.
Then F,{1,y) decreases with ¥ to the region y < n,
Fory >n, £, is purely imaginary and its magnitude
increases with y. This means that F, (7,y) starts to
oscillate toward its asymptotic form in region y > #.

Based on these properties of the Coulomb wavefunc-
tion F,(7,}, one can estimate the integration in Eq.
(4. 3) for the large order of #. Due to the smallness
of F,(m,y) in region y < #,the contribution from this
region is not important to the integration, Then the
contribution mainly comes from regions ¥y ~ % and

¥y 2> n for which the approximations (4. 8) and (4.9)
are applicable. Now the estimation for integration in
Eq. (4. 3) may be expressed as

S (s B
et Cmnon) sin(es g )
- |2 s d
ey e fcw ‘yl Jor1y2 (9)
x (0,059 (9) + 150 01,5 (9]
+ ¢2 f:j%{]z(v)[sinz(v — nn/2)
vy

— sin2(y — nln(2y) — mn/2 + 0,)]

— 31, (v)[sin(2y — nm)

— sin(2y — 27In(2y) — ur + 20,)]} 4.13)
where n, is the boundary between the regions y ~ »
and ¥ > #. In arriving at Eq. (4.13) we have used the
smallness of Bessel function in regiony < # and its

asymptotic form. Estimation of the various integra-
tions is not too difficult and yields

1600 gin(sB -1
e 7 sin(68, —o0,)~ 0(n"1), for largen;

4.14)

however, the spherical Coulomb phase shift o, in Eq.
(3.20) has the asymptotic form

o,~Nln(n + 1). (4.15)
Equations (3. 14) and (3. 15) reveal that the spheroidal
Coulomb phase shift only deviates from the spherical
one at small orders, and at large orders they are the
same.

5. RADIAL FUNCTION

A further investigation of the spheroidal Coulomb
phase shift §,, as expressed in Eq.{3.23) leads to a
study of the radial function Ymn(y). A formal express-
ion for ¥, (¥) can be obtained through Eq.(3.19) by
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a direct iteration procedure. The resulting form is
often called the Born expansion

v, () =yeon Y, (v)

= F,@,9) + 2 L7 &'KL,(0,50F, 0,9, 6.1
where
KL, (3,9)F,@,5") =yG(3,9)U,, (¥ )y 1F,0,y),

(5.2)
KL y,9")F,0,9')
= [.7 dy"KL, (3,9") K}, (37,9 )F,0,9")
= [Tdyy - [T dy KL (9,9))
K, (31,99) <+ KL, (3,9 )F,(,5")
:fcw dy - fc"" dy;9G,(,9,)
X U, ()G ,(31,93) «* Upu(3)G,(3;,3")
X U, (¥)y1F,@,"). (5.3)

By using Egs. (3. 8), (3.12),and (3. 13), we can express
the factors in Egs. (5. 2) and (5. 3) in the following
forms:

U,.(9)y1F,(m,v)

=2y 1[I, (y)F,, @,y) + I,(y)F,(m,y)], (5.4)
U, (9)G,(3,9") = c2y28(y —y')
—ic2y I (V) Fpuy(,3) + 1,(9)F,(1,9)]
xy"1F,@,y’)
Yy I (9)F,y @,5) + 1,(9) F,(,9)]
o xy'71G,(m,y), ¥y <y, (5.5)

‘1[Il(y)Gn+1(T_],y) +Iz(y)Gn(ﬁ;y)]
Xy'"an(ﬁ,y'), yl< y’

where I,(y) and I,(y) are the functions given in Eq.
(4.4). The above procedure eliminates the differen-
tiation which appears in Egs. (5. 2) and (5. 3). In Eq.
(5. 5) there is a & function, which comes from the se-
cond derivative term of the “potential” U, (y) with
respect to the Green's function G,(»,y’). The pre-
sence of such a term prevents the convergence of the
formal Born expansion in Eq. (5.1). The reason is
simple. The 6 function contributes a set of terms in
Eq. (5.1) of the form

. o0 . —_
22 [Tdy v (v,9,)v87 DU, (y) ¥ F,{@,5,).

(5.86)

The series formed by such terms does not converge
for any constant ¢. This obscures the formal Born
expansion in Eq. (5. 1) for the radial function Y,,, ().

The obstacle is easy to circumvent through a slightly
different approach. Let us return to the original
radial integral equation (3.19). We observe that it is
the second-order derivative of the “potential” Umn(y)
which causes the Born expansion to diverge. To avoid
this, we will consider a related integral equation, with
the removal of the second order derivative, which

arises from Eq. (3. 19) by multiplying potential U,,,(¥):
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Y* (y) =F*@m,y) + (c2/y2) Y2 ()
+ [ ay' Gy, y) ¥E (v, (B.7)
where
Y4 (y)=1U,,(»)7Y,,(¥),

Fu@,y) = U, (3)y e "F @,y),
G (3,9)=U, (3G, (3,9)— (c2/y2)8(y — ¥'). (5.8)

The regularity of the radial function Y,
yields

(v) at point ¢

Fr@,c) + [ dy'GE, (c,9") Y2, (3)=0.  (5.9)
From Egs. (5. 7) and (5. 9) we obtain
Y4, (9) = fu@,y) + [0 dy'K,,, (9,5) Y5, ("), (5.10)
where
fim,p) =[92/(32 = )] [F¥@,y)—Fr@,c)l,
K, (3,9 =[92/(2 — c2)][G¥ (v,3") — G, . (c,5")].
(5.10"

Equation (5. 10) is a proper Fredholm's integral equa-
tion. Its kernel is regular and contains neither &
function nor derivative. By the iteration procedure a
Born expansion can be obtained to yield the solution

Y:;;n(y) :fz@;y) + 21 f:o dyl A f:o dyz
i=

m(V YK, (¥1,55) -

X Ky (Yie1,9) % (0,9;). (5.11)
Now let us study the validity of the above equation.
The regular Coulomb wavefunction is bounded, and
goes to zero as y#*1 as y = 0, These properties have
been manifested in approximated forms of Eqgs. (4.7),
(4.8),and (4.9). The factor U, (y)y 1F,@,y) goes to
zero at least like y'1 aty — o and cannot be more
singular than y~2 at y = 0. Then, along with Eq. (5. 10),
we can find that the function f%(,y) is bounded by

Lfe@, )= M/y, (5.12)
where M is a constant, The irregular Coulomb wave-
function G,(,y) is unbounded only at the origin y = 0,
and has the singular behavior

G,m,y)~y", aty—0. (5.13)
Such an unboundedness does not yield any difficulty in
estimating each of the terms in the Born expansion
(5.11), The function G,{n,») appears in the expansion
through the Green's functmn G,(y,y') and is accom-
panied by the function F,(n,), "which has (n + 1) zero
as shown in Eq. (4. 7). In the combination the argu-
ment of the function F, (n y) is always smaller than
the argument for the funct1on G,@,»). In other words
the singular behavior of the functlon G, (n y) is sup-
pressed. Then the factor U, (y)G} (y 9') has the
same type of singularity and asymptotic behavior as
the factor U, (¥)y™1F,(n,y). Now it is easy to show
that kernel K,,,,(y,¥’) in Eq. (5. 10) has the bound

K, (v,9)] = c2N/yy’, (5.14)

J. Math. Phys., Vol. 13, No. 9, September 1972



1386

where N is a constant. From Eqgs. (5. 12) and (5. 14)
one can conclude without any difficulty that the Born
expansion is uniformly convergent for

¢N < 1. (5.15)

The convergence verifies the validity of the Born ex~
pansion in Eq. (5. 11).

From Eqgs. (3.19), (5. 8), and (5. 11) the final form for
the radial function Y, (¥) can be expressed as

Y, (¥) = (1/v)e*°» F (i, )

MING CHIANG LI

o ~ -
+ ). ay' G v,y S,y
. o0 S
+ Z]% j(:- dyl"'fc dyiKnm(y,yyl)
g

x Knm(ylyyz) s Kﬂm(yi—lyyi)fZ(ﬁ,yi)].
(5.16)

Since the series is uniformly convergent, Eq. (5. 16)
is a valid expression. As ¢ - 0, the integral part re-
duces to zero and the function y"le”ﬂFn (n,y) is the
zeroth-order approximation for the radial function
Yin(9).
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A lemma concerning irreducible representations contained in the decomposition of a direct product of irredu-
cible representations of simply reducible groups is generalized to arbitrary decomposable unitary and non-

unitary groups.
I. INTRODUCTION

In the application of group theory in physics the prob-
lem very often arises of decomposing a direct pro-
duct of two irreducible representation into a sum of
irreducible parts. In the theory of solid state physics
such a decomposition is required in defining selec-
tion rules in scattering processes in magnetic and
nonmagnetic crystals. 1.2 A classical example of

this is the addition of angular momentum in quan-
tum mechanics. Wigner,3 using a classification of
irreducible representations given by Frobenius and
Schur, proved a lemma concerning irreducible re-
presentations contained in the decomposition of a
direct product of irreducible representations of
simply reducible groups. The three-dimensional
rotation group is a simply reducible group, and, for
example, the fact that the addition of integer angular
momenta does not contain half-integer momenta can
be deduced directly from Wigner's lemma.

The purpose of this work is to generalize Wigner's
lemma. We first review the Frobenius and Schur
classification of irreducible representations and
Wigner's lemma for simply reducible groups. This
lemma is then generalized to arbitrary decompos-
able unitary and nonunitary groups.
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II. SIMPLY REDUCIBLE GROUPS

Let A* denote the kth irreducible representation, and
u the elements of a unitary group G. Frobenius and
Schur have shown that the irreducible representa-
tions of the group G can be classified into three
cases?:

Case A: A*() is equivalent to A*()* and poten-
tially real,i.e., can be brought into real form.

Case B: Af(u) is equivalent to A*@)* and pseudo-
real, i.e., can not be brought into real form.
Case C: A*(u) is not equivalent to A*(u)*.
For Cases A and B, A*(u) is equivalent to A*(u)*:
AR@)* =B, u)B,

and
BkBk* = C,E,

where C, = + 1 or — 1 for Cases A and B, respec-
tively.

A group is called simply reducible if3:

(1) Every element is equivalent to its reciprocal.
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where N is a constant. From Eqgs. (5. 12) and (5. 14)
one can conclude without any difficulty that the Born
expansion is uniformly convergent for

¢N < 1. (5.15)

The convergence verifies the validity of the Born ex~
pansion in Eq. (5. 11).

From Eqgs. (3.19), (5. 8), and (5. 11) the final form for
the radial function Y, (¥) can be expressed as
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irreducible parts. In the theory of solid state physics
such a decomposition is required in defining selec-
tion rules in scattering processes in magnetic and
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tum mechanics. Wigner,3 using a classification of
irreducible representations given by Frobenius and
Schur, proved a lemma concerning irreducible re-
presentations contained in the decomposition of a
direct product of irreducible representations of
simply reducible groups. The three-dimensional
rotation group is a simply reducible group, and, for
example, the fact that the addition of integer angular
momenta does not contain half-integer momenta can
be deduced directly from Wigner's lemma.

The purpose of this work is to generalize Wigner's
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classification of irreducible representations and
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lemma is then generalized to arbitrary decompos-
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Let A* denote the kth irreducible representation, and
u the elements of a unitary group G. Frobenius and
Schur have shown that the irreducible representa-
tions of the group G can be classified into three
cases?:

Case A: A*() is equivalent to A*()* and poten-
tially real,i.e., can be brought into real form.

Case B: Af(u) is equivalent to A*@)* and pseudo-
real, i.e., can not be brought into real form.
Case C: A*(u) is not equivalent to A*(u)*.
For Cases A and B, A*(u) is equivalent to A*(u)*:
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(1) Every element is equivalent to its reciprocal.
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(2) The direct product of any two irreducible
representations contains no representation
more than once.

The first condition means that all irreducible re-
presentations of a simply reducible group are either
Case A or Case B.

The following lemma for simply reducible groups has
been proven by Wigner3:

Lemwma 1: The direct product of two Case A or
two Case B irreducible representations of a simply
reducible group contains only Case A irreducible
representations; the direct product of a Case A and
Case B irreducible representation contains only Case
B irreducible representations.

III. UNITARY GROUPS

For an arbitrary decomposable unitary group G we
prove the following lemma:

Lemsa 2: The direct product of two Case A or
two Case B irreducible representations of an arbit-
rary decomposable unitary group G does not contain
Case B irreducible representations; the direct pro-
duct of a Case A and a Case B irreducible represen-
tation does not contain Case A irreducible represen-
tations.

The direct product, for example, of two Case A irre-
ducible representations contains only Case A or
Case C irreducible representations, each represen-
tation possibly more than once. For simply reduc-
ible groups Lemma 2 is identical to Lemma 1.

Proof of Lemma 2: We take the direct product
Al) = Ai(u) X Afu), where Al and A7 are either Case
A or Case B irreducible representations, that is,

Ai(u)* = 6;1Al(u)B, » BzBZ* = CiE,

Aiw)* = Bj‘lA]'(u)B]., B]-B]-* =CE. 1)

We show that if the decomposition of the direct pro-
duct contains the irreducible representation A* equi-
valent to AR*,

AR@)* = B akw)B,,

then C, = CiC]..

The direct product A(x) is decomposed via a simi-
larity transformation with a unitary matrix U:

Bk Bk* = CkE; (2)

A () = U 1A@)U.
We assume that A is in the following form

Ak
AR

AP

where Ak appears » times and is assumed to be equi-
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valent to A** i.e.,is either a Case A or Case B irre-
ducible representation.

Using (1), we have
A )* = U la@)*U*
= [U~1(8; x ﬁj)U*]_lAy O)NU1(; % B].)U*].

Denoting U~1(g; % ,Gj)U* by B8, we write the preceeding
relation as

A, @)* =p71a, ()8, 3)
where 8* = C,CE.

B is subdivided into blocks corresponding in dimen-
sion to the irreducible representations appearing in
A,:
P11 Bz
B= | P21 Pa2

From (3) we have for 4,j = 1,2,...,n
Ak(u)* = ﬁi_lek(u)Bij . (4)

The g;; for i =n andj >n,andj =n and i > », are
zero for they connect nonequivalent irreducible re-
presentations. § therefore is of the form

Bipi - v B_ln

We consider now only the submatrix of 8 containing
the matrices Bij» i,j =1,2,...,n,and denote this
by 8. From the properties of 8 we have

Ak ()*

.

AM)
N T -A 0 G I ©
N0 A4)

and

BE* = C,C,E. (6)

We will show that E can be transformed into the
quasidiagonal form:

o
o

‘o
From (2) and (5) we then have A¥* = o~1A%x and

aa* = C,E,and from (6) that aa* = C,C,E, thus
giving C, = C,-Cj proving Lemma 2.

The matrix § of relation (5) is not unique. (5) will
remain unchanged under any similarity transforma-
tion with a unitary matrix of the form A X E, where
E is of the same dimension as the irreducible re-
presentation A* and A is an arbitrary unitary matrix
of dimension 7, the number of times A* appears in
(5).5
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The matrix B- can be replaced by
(A XE)B (7

without changing the form of relation (5).

We seek a matrix A that will put (7) in the required
quasidiagonal form. To do this, we look at the
structure of the matrix 8. From (4) for i =j = 1 and
for a general 7 and j

AR@)* = Briakw)s, 4,
Ak(u)* = B,;_lek(u)Bij

from which we have
B BTIAMu) = AR, BTE

giving, by Schur's lemma, ¢ Bij = X811, Where ) is a
constant. B can be written now as

A'11Bll Alnﬁll All L Xln
Bl N :
Anlﬁll )\nnﬁll Anl hnn

X By =AXByy.

Since both £ and §;; are unitary matrices, A is also
unitary, Finally, by choosing A = A~1, (7) takes on
the required quasidiagonal form and the proof of
Lemma 2 is complete.

IV. NONUNITARY GROUPS

A nonunitary group M contains elements half of
which are unitary and half antiunitary. The unitary
elements form an invariant subgroup G of index two,
and we can write M as

M =G + Ga,

where a is a fixed antiunitary element.

Corepresentations D* of a nonunitary group M are
constructed in one of three ways depending on the
following classification of the irreducible represen-
tations A* of the unitary subgroup G7:

Type I A*(u) is equivalent to A*(agluay)*,
Mr(agluag)* = f10%w)B, and BB, = A*(ad).

Type II: A*(u) is equivalent to A*(ajgluay)*,
Ar(agluag)* = BlARm)B, but  B,B* =—A%(ad).

Type II: A%() is not equivalent to A*(agluay)*.
The three types of corepresentations corresponding
to the above classification of the irreducible repre-
sentation of the unitary subgroup G are?

Type I: Di(u) = Ak@),  D*(uay) = A*u)B,.

Type 1I:

Dr(u) = Ak(u) D*(ua,) = BRI,
- Atw))’ T \— Aru)B, ’

(8)
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TABLE I: The number of times the corepresentation D* is con-
tained in the direct product D¢ x DJ, denoted by Ck, is given in terms
of the d%, the number of times the irreducible representation A* is
contained in the direct product A X Aj. Primed suffices, as in ..,
denote that the irreducible representation Af(agluay)* replaces
Alfu) in the direct product.

Di Di D* Cl?j

I I I dfj

I I i s,

I I I dfj

I II 1 2d{'j

1 i I dll?j

I I m 2d{*j

1 il I dk +dk,

1 m I Sk + Mk,

I m m d{‘j + dfj,

I il 1 4df].

I il o dej

I I n1 4d{’j

II jui I Zd{‘j + dej,

I m I dzl?]. + dfj,

il I oI Zd,!‘j + 2a'{‘jr

hass m 1 b +dh, +db v db
ot m I sl + sl + %dlk,j + b,
I m m db +db, +db +db,

Type III:

Ak(u) A*(uag)
DHe) = ( Ak(abluao)*>’ Diuao) = (Ak(abluao)* >

The decomposition of direct products of two corepre-
sentations of a nonunitary group M can be analyzed
in terms of the decomposition of direct products of
irreducible representations of the unitary subgroup
G.

Let Cf]. be the number of times the corepresentation
D* is contained in the direct product D¢ X DJ, Cf]. is
calculated from3

23X @) x D7) x (D*u))*

Ck = , 9)
23 x Dk@)) x (D*@))*

where x(Di(u)) is the trace of Di(#). The number of
times an irreducible representation A* of the sub-
group G of M is contained in the direct product A? X
AJ is denoted by dk and calculated from

da¥; = (1,/n) 2ox (A @) x (A7 () x (a*@w))*, (10)

where [, is the dimension of A% and n the order of
the group G.

By using the explicit form of the corepresentations
(8), the Ci’;. defined by (9) can be written in terms of
the di'; defined by (10). The explicit form of the rela-
tion depends on the type of the corepresentation

Di, Di, and D*. The relations between the C% and the

df, taken from Ref. 9, are listed in Table I.

We prove the following lemmas:

Lemma 3: The direct product of two Type I or
two Type II irreducible representations of the sub-
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group G of an arbitrary decomposable nonunitary
group M = G + Ga, does not contain Type II irre-
ducible representations; the direct product of a
Type I and a Type II irreducible representation does
not contain Type I irreducible representations.

Lemma 4: The direct product of two Type I or
two Type II corepresentations of an arbitrary de-
composable nonunitary group M does not contain
Type II corepresentations; the direct product of a
Type I and a Type II corepresentation does not con-
tain Type I corepresentations.

Proof of Lemma 3: We take the direct product
A = AP X Aj, where Af and AJ are each either Type
1 or Type II irreducible representations of the sub-
group G of a nonunitary group M:
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Aifgglua )* = p;1AMu)B;,
Ailapluag)* = B;lAJ'(u)Bj,

ﬁiﬁi* = C,’ Ai(a(z));
B B* = Cypilag).

If the decomposition of the direct product contains
the irreducible representation A*{u) equivalent to
Ak(aylua g)*, possibly more than once,

6k Bk* = CkAk(aﬁ),

then C, = C,C,. The remainder of this proof is
parallel to the proof of Lemma 2.

Ak(ablua o)¥ = Bplaku)B,,

The proof of Lemma 4 follows immediately from
Lemma 3 and Table I.
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It is shown that the symmetrization of N particle states by means of the orthogonal units of the algebra of the
symmetric group S, yields the Gel'fand basis states of the irreducible representations of U(3). The existence of
generalizations of the Dirac identity is demonstrated, and a connection between the symmetrized two- and three-
body exchange operators and the invariants of U(3) is established.

INTRODUCTION

The study of the unitary group U(3) and, more gene-
rally, of U(r) is of great interest to present day
physics. Most well known is the successful classifi-
cation of the elementary particles according to the
octet model as proposed by Gell-Mann and Ne'eman?
in 1962. A physically different application of the
theory of the unitary groups has been to the many
particle system. In fact, a great deal of the develop-
ment of the theory—associated with the names of
Racah and Wigner2—has been done towards the goal
of classifying the electronic states in the atom. More
recently, the theory of the unitary groups has been
used to obtain approximate solutions of the nuclear
many-body problem.3

The study of the many-body system leads, in a rather
natural manner, to consideration of the operations
which permute the particles and, thus, to the introduc-
tion of the symmetric group Sy. The connection be-
tween the two groups U(r) and S, has been known
since the work of Young and Frobenius around 1900.
Later, recognizing the importance of the concepts

for quantum mechanics, Weyl4 continued research
along these lines and laid the foundation for our pre-
sent understanding of the subject. He formulated the
concept of duality and gave it an expression in a num-
ber of theorems. These early investigations have
been concerned with the irreducible representations
and have used the characters as tools. It was only
within the past decade that a systematic investigation

of the basis states has been taken up, pursued mainly
by Biedenharn5:6 and also by Moshinsky 7:8 and their
collaborators. Yet, the relevance of the symmetric
group for the Gel'fand?® states has been considered to
a limited extent only. Moshinsky!0 showed that a
certain class of Gel'fand states had a definite per-
mutational symmetry, and Ciftan and Biedenharni?
and Ciftan12 used the concept of “hooks” (which origi-
nally has its proper meaning in the symmetric group)
to construct the Gel'fand states of U(4).

In the present paper we show that the duality between
U(n) and Sy can be extended to the individual basis
states defined by the subgroup decompositioné U(r) D
Up —1)> --- DU(1) on the one side and by an analo-
gous chain on the other side. It will be shown that the
Gel'fand states can be obtained by use of operations
of Sy only, thus supplying a link to the understanding
of the hook structure concept for the unitary groups.
In addition to their transformation properties under
the unitary groups, the Gel'fand states will be seen

to transform like the basis states of the irreducible
representations of S;. The situation will be pictured
by introducing a “combined Young—Weyl tableau.”

As a first step we shall demonstrate the existence of
generalizations of the Dirac identityl3 which emerge
naturally by considering the operations of both groups,
U(n) and Sy, in the same space. In this way we are

led to explicit expressions for the fully symmetrized
Majorana operator and the analogous three-body
exchange operator in terms of the invariants of U(3).
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It is shown that the symmetrization of N particle states by means of the orthogonal units of the algebra of the
symmetric group S, yields the Gel'fand basis states of the irreducible representations of U(3). The existence of
generalizations of the Dirac identity is demonstrated, and a connection between the symmetrized two- and three-
body exchange operators and the invariants of U(3) is established.

INTRODUCTION

The study of the unitary group U(3) and, more gene-
rally, of U(r) is of great interest to present day
physics. Most well known is the successful classifi-
cation of the elementary particles according to the
octet model as proposed by Gell-Mann and Ne'eman?
in 1962. A physically different application of the
theory of the unitary groups has been to the many
particle system. In fact, a great deal of the develop-
ment of the theory—associated with the names of
Racah and Wigner2—has been done towards the goal
of classifying the electronic states in the atom. More
recently, the theory of the unitary groups has been
used to obtain approximate solutions of the nuclear
many-body problem.3

The study of the many-body system leads, in a rather
natural manner, to consideration of the operations
which permute the particles and, thus, to the introduc-
tion of the symmetric group Sy. The connection be-
tween the two groups U(r) and S, has been known
since the work of Young and Frobenius around 1900.
Later, recognizing the importance of the concepts

for quantum mechanics, Weyl4 continued research
along these lines and laid the foundation for our pre-
sent understanding of the subject. He formulated the
concept of duality and gave it an expression in a num-
ber of theorems. These early investigations have
been concerned with the irreducible representations
and have used the characters as tools. It was only
within the past decade that a systematic investigation

of the basis states has been taken up, pursued mainly
by Biedenharn5:6 and also by Moshinsky 7:8 and their
collaborators. Yet, the relevance of the symmetric
group for the Gel'fand?® states has been considered to
a limited extent only. Moshinsky!0 showed that a
certain class of Gel'fand states had a definite per-
mutational symmetry, and Ciftan and Biedenharni?
and Ciftan12 used the concept of “hooks” (which origi-
nally has its proper meaning in the symmetric group)
to construct the Gel'fand states of U(4).

In the present paper we show that the duality between
U(n) and Sy can be extended to the individual basis
states defined by the subgroup decompositioné U(r) D
Up —1)> --- DU(1) on the one side and by an analo-
gous chain on the other side. It will be shown that the
Gel'fand states can be obtained by use of operations
of Sy only, thus supplying a link to the understanding
of the hook structure concept for the unitary groups.
In addition to their transformation properties under
the unitary groups, the Gel'fand states will be seen

to transform like the basis states of the irreducible
representations of S;. The situation will be pictured
by introducing a “combined Young—Weyl tableau.”

As a first step we shall demonstrate the existence of
generalizations of the Dirac identityl3 which emerge
naturally by considering the operations of both groups,
U(n) and Sy, in the same space. In this way we are

led to explicit expressions for the fully symmetrized
Majorana operator and the analogous three-body
exchange operator in terms of the invariants of U(3).
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The methods used draw from expositions of the
properties of the algebra of S, by Lowdin,14 and some
applications to branching diagram functions by
Goddard.t5

GENERALIZED DIRAC IDENTITIES FOR U(3)
The Dirac identityl3 constitutes a relation between
operations of Sy and of SU(2). It reads

P, =31 +0a(1) 0(2)], (1)

and expresses the permutation operator P, in terms
of the generators of SU(2). A well-known application
is to the theory of ferromagnetism where the ex-
change energy is represented by the scalar product

of spin vectors leading to the Heisenberg Hamiltonian.

The Dirac identity has been discussed in various
papers, and we may, e.g., refer to Lowdin,14 and to
Biedenharnl®6 for elementary discussion of the sub-
ject. Biedenharn, in fact, also indicates the possibility
of generalization to three- and many-particle ex-
change operators.

A different interpretation can be given to the Dirac
identity by considering the operator for the total
spin, which for an N-particle system is

S2=3N+22;(=% +3P,. (2)
.
Since Z)Pij is the sum over all transpositions of S,
it 1s useful to introduce the class operator Ci2] as the
“arithmetic mean” of all elements in the class,i.e.,

ct2l=[2/N(N —1)] L P, ®3)

i<j

and rewrite Eq. (2) as
S2 = — {N(N — 4) + tN(¥ — 1)C!I2], (4)

Equation (4) constitutes an identity between the fully
symmeltrized exchange operator and the invariant

of SU(2). In the following we want to show that similar
identities relate the class operators C[2] and CI3] to
the invariants of U(3).

Before we discuss the subject we define an explicit
realization of the basis functions in terms of a Boson
or a Fermion calculus. The possibility of this real-
ization is well known from the work of Jordanl7 and
has been used and further developed by Schwinger,18
by Baird and Biedenharn® and by Moshinsky 7 and
others. The generators of U(3) can be expressed in
terms of Boson or Fermion operators,

N
E, =7 q(k)ak), i,j=1,2,3, (5)
k=1
and, by use of the commutation relations
[a,(k), & ()], = 0,;6 4,5 (6)

can be shown to fulfill the defining relations for the
Lie algebra

[Eij ’ Ekl]— = ij E; — GilEkj . (7

An appropriate basis on which the generator as de-
fined by Eq.(5) act is given by

ligig =iy =a; (Da;(2) - a7 (N)]0), (8)
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where ¢,,7,,...,iy =1,2,3. In addition let us intro-
duce the operations U(r),T € S, which permute the
particles. Explicitlyl®

U(T)|i1i2 e iN> = li,-(l);ir(z); v "ir(N)>’ (9)

for all 7 € S.

Returning now to the invariants of U(3) we recall that
there are two independent invariants, the second-
order Casimir invariant

I§3) =2[H{(H, +1) +3H,(H, + 1)

+ Ey B, t Eg By,

2181 + EgpE,5],  (10)

where
Hy =3(E;; —Ey), Hy=L(Ey +Ey,—2E,,),
(11)
and the third-order Biedenharn® invariant
I = (2H, + 1)H; —H,)H, +H, +1)
+ (2H1 + 1)E21E12 + (H1 —HZ)E31E13
- (H1 + Hz)E32E23 TE By Eyg t Eq 1 E5pE 5,
(12)

defined by means of the symmetric coupling coeffi-
cients. By introducing the class operators

Cl2) =[2/N(N — 1)] 22 U(%), (13)
i<y
Cl3l = [1/2())] 'Z')k [UGR) + U(jik)], (14)
1<]<

it can be shown that the following operator identities
hold:

I =— TN —9) + NV — 1)C2), (15)
I® = 2 N(4N2 — 27N + 63) — LN(N — 1)(2N — 9)C[2)
+ 35NN — 1)(V — 2)CI31.  (186)

The proof of these relations can be given by explicit
application to all basis states. Here, we only remark
that it is sufficient to check the result for the states
|4, < iy < -+- <iy). The rest of the basis can be
obtained by the operations U(r),T € S, which commute
with the invariants on account of their being sym-
metric functions.

The relations (15) and (16) constitute generalizations
of the Dirac identity equation (4), In physical appli-
cation the emphasis may be put on reading the equa-
tions from right to left. Solving for C!2] and CI31 we
obtain expressions for the symmetrized Majorana
operator and for the three-body exchange operator in
terms of the invariants of U(3).20

THE GEL'FAND BASIS

The task of the representation theory is to reduce the
N-particle space as defined by the basis states equa-
tion (8) into its irreducible components. It is well
known that the reduction of the tensor space can be
achieved by the operations of the symmetric group.
Graphically this is expressed by using the Young
frame to characterize the irreducible representations
of U(3). The basis states within the various irre-
ducible representations are known as the Gel'fand
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states and are defined by means of the subgroup de-
compositions U(3) D U(2) D U(1). The appropriate
quantum numbers are defined by the weights and by
the eigenvalues of the invariants of the group and its
subgroups and may be pictured by means of the Gel'
fand pattern

Myg3

Mg (1m

My,

where the m;; are positive integers limited to the
range M,y ;4 M S M, . Alternatively, the m;;
may be visualized in the Weyl tableau, which is a
Young frame lexically filled with the integers 1, 2, 3.
For further development, it is important to note that
the Weyl tableau as defined is a mnemonic device to
label the states in a manner equivalent to the Gel'fand
pattern and does not give a prescription for construct-
ing the states explicitly as a boson or fermion opera-
tor polynomial. The constructive aspect, however, is
an important one. For U(3), Baird and Biedenharn®
solved the problem by showing that the “semimaxi-
mal” state (m,, =m,,) is a single monomial in the
boson creation operators and obtained the general
state by use of the lowering operator E,,. More gene-
ral methods have been devised by Moshinsky and
Nagel,® and also by Ciftan and Biedenharn,11

In the present paper we want to show that the Gel'fand
states can be obtained by appropriate symmetrization,
thereby extending the concept of duality to the indivi-
dual states of the basis. We make use of a set of
idempotents which are known as the orthogonal units
of the algebra of S,,. Discussion are found in many
books21,22 on the algebraic treatment of S,. We
briefly recall some of their properties. The orthogo-
nal units are linear combinations of permutation
operators, in which the matrix elements of the irre~
ducible representations of S, figure as coefficients,
i.e.,

Of = fr 23 DE(TU(T).
T€SN

(18)

The notation, which is essentially that of Ruther-
ford,21 is as follows: p is a partition of N and charac-
terizes the irreducible representation of dimension
J#. The individual matrix elements D¥ (1) are labeled
by means of lexical Young tableaux » and s. A basic
property of these representation matrices (and hence
of the orthogonal units) is that they decompose into
irveducible submatrices upon restricting Sy to Sy_;.
Numerical values for the matrices of the generating
elements (¢ — 1, k) are given in the textbooks. The
fundamental multiplication rule for the orthogonal
units is the following:

OL Oy = 6rvo O

st rv* (19)
We are now prepared to show that the states

Ok|iy + - iy) are the Gel'fand basis states | (m)) apart
from a normalization factor,i.e.,

I(m)> :0#S|2112 vt ZN>’ (20)
where (m) is a short-hand notation for the Gel'fand
pattern (17). The proof of this assertion is straight-
forward and makes use of the operator identities (15)
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and (16) and the property of the orthogonal units to be
eigenoperators of the class operators,14 i.e.,

CIMOE = (1/ft)xit ) OL (21)
where xit, is the character of the class [A] in the
irreducible representation u of S,. With the forms
(15) and (16) of the U(3) invariants, it is immediately
clear that the states are eigenstates as should be. In
order to identify the states as the correct Gel'fand
states, the crucial test is to show that they are also
eigenstates of the U(2) invariant 152). Since this does
not seem to be as obvious we sketch the proof.

Proof: Let the state Ofli, - -+ iy) be such that Ny
indices have the numerical value 1, N, the value 2,
and N, of them the value 3. As shown in the Appendix
we may choose iy = i, <--+ = i, without loss of gene-
rality. Thus, the first set of N’ =N, + N, indices has
the numerical values 1 and 2. We should remark now
that the class operator C[2] which occurs in the Dirac
identity Eq.(4) is defined over the subgroup S,/ of
Sy, and not over S,. We may write

Cl2l=(/N'l) % Ul )ua)uE1),

€SN

(22)

where (12) stands typically for a transposition. With
this form for C[2] and the expansion (18) for O%, we
can investigate the product C[2104 . Making use of
the group property of U(r), U )U(12)U(r-1)U(r) =
U[r’(12)7'"*7], and changing variables ¢ = 7'(12)r'"1r,
we are led to

CL2I0L = (f4/N'1) 25 25 D¢ [1'(12)7'-1]|D¥ (0)U(0).

(23)
For further evaluation we write this expression as

2 4T (12r-1] = 5 3 Di(r)DY, (12)Dg, (1),

T/ t,v

(24)

At this point it is essential to note that the represen-
tation matrices D* are so constructed that they de-
compose into irreducible submatrices—i.e., blocks on
the diagonal, zeros elsewhere—upon restricting S, to
any of its subgroups in the chain Sy D S ; D --- D §;.
This property holds in particular for all 7/ € §,.
Thus, in the expression above the sums over { and v
are effective only over the states of the irreducible
representations of the subgroup S, and can be worked
out, using

¥ DY, (DY, (1 7L) = (N'1JfE),0,.16,,.
r’

Here,p’ is the irreducible representation of Sy,
which occurs in the sum p = > u’ and has » among
its basis vectors. The primes have been added to ¢
and v to indicate their restricted ranges. Inserting
the result into Eq. (23) we find

CL2i0g = (1) 210k (25)

which proves OF to be an eigenoperator of C{2] and,
h(er)lce, the states OX |7, - -+ i,) to be eigenstates of
1@

2.

Equation (20) states that the Gel'fand states can be
obtained by means of the orthogonal units and, in fact,
possess a further property: In addition to the m;;
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which identify the states within the unitary group, the

Young tableau 7 defines their permutational symmetry.

The situation may be pictured in a tableau which
indicates the symmelry properties by the name of
the indices (“Young tableau”) and the unilary proper-
ties by their numerical values (“Weyl tableau”). For
clarity we give an example

W1 T”ﬂ\
/

iy 3

Young tableau Weyl tableau

i, =1 i3¥lj
ip=3

We call the tableau defined above a combined Young~
Weyl tableau. It defines the properties of the state
under transformations of S, as well as under trans-
formations of U(n) and stresses the concept of duality
at the level of states.

Combined

We can now apply the operator identities (15) and (16)
to the properly symmetrized states and obtain by use
of Eq.{21) a relation between the eigenvalues of the
invariants of U(3) and the characters of S.

We conclude by remarking that we expect the results
to generalize to the case of U(n) also. For U(4), in
particular, the Gel'fand states have already been
proven to have a definite permutational symmetry,
since it is clear that the states Of|i, -+ iy),
iy5...,1y=1,2,3,4 belong to a U(4) multiplet, the
rest being deducible from the generalized Dirac
identities of U(3) and U(2).
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APPENDIX

For practical purposes it is useful to adopt several
conventions. Given a certain state |i i, - iy) the
fully reduced basis is obtained by application of all
possible OX . An entirely equivalent reduction re-
sults, if instead we apply OX to U(r)|i; +++iy) =
li, ¢y +++»i,(xy- In other words, we see that the
reduction is unique only up to an equivalence. In
order to make a specific choice we use

iy Sdg =0 Sy (A1)
A further convention seems useful. First we note that
the states Of|i, -+ - i) for fixed s transform accord-
ing to irreducible representation of Sy, i.e.,

U)OK\iy » -+ iy) = 20 DE(0)OLIEy - - i), (A2)

K. J. LEZUO

Let the indices i,,4,,...,i, take on all the values
1,2,...,N. Then,it is clear that OLlé,,...,i,) con-
stitutes the reduction of the regular representation

of S, as s is varied over all possible standard Young
tableaux (r of course also). In general, however, if
the numerical values of f19enes iy are restricted as
in the U(3) case, we cannot expect to find all possible
symmetry classes present. More explicitly, it will

be found that certain O |4, - - iy) may be zero;
others may be proportional to one another. The rules
are as follows and can be proven straightforwardly.14
Let s stand for a standard Young tableau consisting
of N boxes with the numbers 1,2, ...,N inserted
lexically. Now,if we insert the numevical values of
i1)%9,...,0y inplace of 1,2,..., N a Weyl tableau is
obtained. Moreover, (i) O£, - -+ i)} = 0 if the Weyl
tableau has two identical integers in the same column,
and (ii) OK1i, * -~ i,) = const OLld, « -+ i) if the two
Weyl tableaux resulting from s and s’ are identical.

The situation may be visualized by using a tableau
similar to the combined Young-Weyl tableau which
shows both the name of the index and its numerical
value in each box. We give two examples to demon-
strate the rules above:

\
ip=1 ] ig=2
= 0 according to (i).
iy =1
i, =1 iy :ﬂ
ig=3

accor(iing to (ii),

In order to obtain a unique set of nonzero states, we
adopt the following convention consistent with (A1):
We draw a Weyl tableau according to the Gel'fand
pattern (m) and insert the indices il, iz, .o iyto
yield a Young~Weyl tableau. The first few indices
will be associated with the 1's in the first row, the
next set with the 1's in the second row, etc., until all
the 1's are saturated. Then we start with the 2's in
the first row and continue as before, and finally, we
proceed with the 3's in the same manner. The follow-
ing example should make this clear:

From the tableau so obtained, we deduce s and (m)
such that

|(m)) = Oxliy - iy) forallr.

This work was carried out in part during the author's stay at the
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It is shown that the Lauricella functions ¥, in # variables transform as basis vectors corresponding to irredu-
cible representations of the Lie algebra sl(z + 3,C). Group representation theory can then be applied to derive

addition theorems, transformation formulas, and generating functions for the F,.

It is clear from this analysis

that the use of SL(m,C)symmetry in atomic and elementary particle physics will lead inevitably to the re-

markable functions Fj,.

INTRODUCTION

In a recent paper,! Ciftan has shown that the Appell
function F; arises naturally from a study of the re-
presentation theory of the special linear groups. The
author proved in Ref. 2 that this was due to the fact
that SL(5,C) was the dynamical symmetry group of
F,. Here we generalize this observation by demon-
strating that SL(z + 3,C) is the dynamical symmetry
group of the Lauricella functions Fp in» variables
(Recall that F, is an F;, with n = 2). We further show
that exploltatlon of the SL(n + 3,C) symmetry yields
elegant and simple derivations of addition theorems,
transformation formulas, and generating functions
for the F,. It follows from this analysis that the
implementation of SL(m, C) symmetry in atomic and
particle physics will necessarily lead to the func-
tions F,,.

The methods employed in this paper are rather
straightforward generalizations of those employed
in Refs. 2 and 3.

1. THE DYNAMICAL SYMMETRY GROUP

The Lauricella function F}, is defined by the series

Fplasby,...,b,;¢5x,...,%,)

. OZO; (a,ml 4 e +n1n)(b1,m1)...(bn,mn)
oo =0 (C,Wll + - +mn)ml!'”mn!
Xxlml.-.x”m;z’ (1.1)

convergent for |x| <1,...,|x,|< 1.4.5

Here,
(a,n)=al@+1)---(a +n—1) = (a),, (1.2)
and it is assumed thatc #0,— 1,— 2,-.., We de-

fine the following partial differential operators act-

ing on a space of functions of 2n + 2 complex vari-

ables, s,uy, ..., 4,8, %1, ...,%,"

n
E, = s(}?1 X2, + sas), Eop,y = Staldy,,

Ey, =u, (xkaxk + ukauk),

n
E = t-l(_Z) %0, + 10, — 1),
=17

n
xa + 19, — s0,— X,
) 23 542,)

'B —.Hk 5

sl(zn)
=
( (1—xpa, +xk2(1 x)ax]_

n
+ 19, — x,59, — };}1 uhauh>,

By, =it (= 1)2, +u,d,,),

n n
By =10 D5~ it~ Doga, + 0, 1),
]‘1 ]_1

n
E oy ry =STT3! fl(}ng(x] — 13, — 10, + x50,

+27 5u,b, — x, + 1),
17k 1
E—Bk,—y = uk-lt-1<xk(xk — 1)axk+jz;k (ep— 1) 9,

+ %80, — 13, + 1),

xp)axk + uka

R
By s, = Uethp (bry — gy

Jy = S0,— 43, Jy =0, —

218, + 325 43, ,
itk T
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x®
J}J =9, — %(sas +j§ujauj + 1), kp=1,2,...,n,
(1.3)

We define basis functxonsfm@l,”_’ﬁn’y (s,05, 00 vy,

t,%4,...,%,) in this space by

fa.ﬁl‘...,ﬁn.y(ssuv ety by Xy, e e X,) :fasﬂ{s,uj, £,%)

= [Ty — a)T(@)/TO) Fpla; By ey Bisvi®ys oo s %)

xseufe . ybng?, (1.4)

wherey = 0,— 1,— 2,--- and I'(z) is the gamma
function.® The action of the above operators on the
basis functions is

Eafa,aj.y =—o— 1)fa+1,3j,y:

Eaﬂk)'fa,ﬂj,)' = B fus l.ﬁk gyl

Eﬁkfaxﬁjn)' = ka“jk Wy ?
E—yfa.ﬁ}v.y = (')’ —a— l)foc,ﬂj,y-l!
”
anfa,aj,y =<}§1 Bj - '}’) fa+1,Bj,y+1:
n
Eyfa,ﬁj,y = (’}/ __]2 %‘)fa,ﬁj,y’rl’
E_afa,ﬁj’}, = (a - 1)fa_1’ﬁj.),,
n
E—kad.ﬁj.)f = ('}/ - Z} 3]) fq,ﬁk,y s
j=1
Eﬁkyfa,ﬁj.y = kaa.ék.)'*l »
E—oc;*yfa.ﬁj,y == (a — 1)f0t‘1»ﬁj,7"1 s

E—a."ﬂk»')‘-f;x,ﬁj,y = (1—0)f, ~1.8,-10

E~Bkr7fa,ﬁj,y = (a -v + l)fatﬁk ,y“l’

Esk"spfoz.ﬁj.}' = kaa,al.....ak+1,...,sp'1,...,s,z.y s

1
Jafq,gj,}, = (o — EY)fa,Bj,y;

1 1
Jﬁkf“'ﬁj-Y = (Sk —zy* Ez% Bl>fa,8j.7 ’

n
Jafa,ﬂj,y = ['y — %(Ol +;Z=%Bl + 1)] fOL.Bj,)' s

k,p=1,2,...,n. (1.5)
{(Here the E operators and the J operators are inde-
pendent of the parameters @, 8;,y. The subscripts
merely indicate the action of these operators.) The
symbols 3, and 3, are defined by

Bk = 31: ""Bk—lsﬁk + l,ﬁk+1,- st Py

Bk:Bll""Bl%l’BkaI’Bk+1”“’6n' (1-6)
Relations (1. 5) can be verified by routine computa-
tion. Furthermore, it is straightforward to show that
the operators (1.3) form a basis for a simple Lie
algebra of dimension (n + 3)2 — 1, i.e.,a basis for
sln + 3,C).

To determine the group action of SL(n + 3,C) induced
by the operators (1. 3), we note that each of the trip-
lets
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{7, -, g3t = {E,,
By Bug, d )y

{Eotﬁky7

E—Ot’ 'L}’
{Ey) E—y ’ J’y},

E I + 5, + 1,

o By iy Y

{E, ,E g, +J.h {E

ny? Trasy?Ya Bky’E

-8,y 98, T s

{E

BB ! k=1,...,n,1=1<p=n,

E J, —J, t

-8,.8,78 B,d*

e (1.7
satisfies the commutation relations

[(I3,d5) =2 d%, [J',J]=2J3, (1.8)
and forms a basis for a subalgebra of sl{z + 3,C)
isomorphic to sl(2,C). Furthermore, each triplet
generates a local Lie subgroup of SL(x + 3,C) iso-
mozrphic to SL(2,C) and the subgroups so obtained
sgffice to generate the full group action of SL(z + 3,
C).

We pass from the Lie algebra action generated by
{J*,d7,J3} to the group action via the relation

T(A) = exp[— (b/d)J*] exp(— cdJ") exp(rJ3),

er/2 = g1, (1.9)

where

A:(“b
C

d

see Ref.7. We find that the triplet {E ,E_,J}
generates the group action

> € SL(2,C), ad—bc=1; (1.10)

Ty A (S, 0y v eyt By X, 000y X,)
(as +c  wlas +c) ts
- d+bs’as+c(1..%)’as+c’

X;8
(d +bs)as —cx; + ¢) ) (1.11)

and the triplet {E; £, ,J; }

Tz,kM)f(s;uj:uk)tsx}sxk)
slau, + c¢) U; au, + ¢
ATy g, S
au,+ c(l —x,) " u, d + bu,

u,t auyx; + (X — xp)

auy, + ¢’ au, +c(l—x) "’

(1.12)

Xplhe
d + bu Mau,— cx,+ c))‘

In (1.11) the index j runs from 1 ton,but in (1.12}j
runs from 1 to# excluding . The triplet {E, E,),,J),}
generates

T4 (A)f(s, 45,1, %)
- [+
=<a +t£) 1f(S(d +bt),uj(d +bt), g-:-:_—'b%,

[dx; — b(1 — x,.)](a + %)) ,

the triplet {E,; , E_, , Y7

(1.13)

By g, +dy, + Jr} generates

T4‘ k(A)f(s’ uj: uk: t’ xj’ xk)

c(l ——xk)>‘1 cxy asul — cx,
=ta+ ———-———-—-—ukt f(aS —&k_t’”i\asukt T c(xJ - xk))’

s
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au, —

cxy (asukt +c(1—xy) asu,t +c(l —x,)
st asu,t — cx, >’ (asukt + el —x)’
(x,d — bsu,t)a + ¢ — cxk)), (1.14)
the triplet {E oy B-arysdo F J,} generates

Ts(A)f (s, %, 1, %)

c‘1< s st , c
=\~ fd—bst’ast——cxj’a__g’

(dx; — bst)(ast — c)>
(ast — cx;)(d — bst) ’

(1.15)

the triplet {E, L7 gy, t Jy} generates

'Bk,")”
TG k(A)f(s’ ]yuky t’ xj’xk)
c)"l < suyt U,
(a tar) S aupt + cx,, 9 d + bu,t’

¢ xlaupt +c) (dx,+ but)(au,t + c)>

u,’ auyt +cx, ’ (d + bu ) an,t + cx,)/)’
(1.16)

and the triplet {Eﬁk-'ﬂ v Eop, 'Bp’JBk— Jﬁp} generates

at +

T7 k,p (A)f(sr ]7 up i t: xpxk;xp)

_#ls Uplty Uy Uy, ;
’ J’du +bu,’ auy, +cu,’

dxyu, +bxu, axu, + cxkup>
H

ek du, +bu, ’ auy+ cu,

1=k<p=n. (1.17)
Let

Cr=EBy, —Ey, B, l=sk=n. (1.18)

It is straightforward to check that the solution f of
the simultaneous equations

4 f = (a _%')’)f, Jgkf = (Bk“‘
5=y =4(a+ B+ )]s,
=1

1y +%Z)B>f,
itk

Cf=0,k=1,...,n, (1.19)
analytic in a neighborhood of x; =%, = --- =x, =0
is

= 3N CH T R TV S ,xn)s"‘ufl- culnt®, (1.20)

unique to within a multiplicative constant. In fact the
first » + 2 equations imply

sz(xly ..
and the last » imply
[(]Z_,;xjaxj + a> (xkaxk +B8,)—
=0, k:l,...,n

%,)8% ull "t7

n
2 3 +,—1)|F
xk(]zix] b Y )J

(1.21)

which are the partial differential equations for Fp.4
The operators C, do not commute with all the ele—
ments of s/(n + 3,C), but each such element maps a
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solutionf of C, f = 0, £ =1,...,n,into another solu-
tion. It follows that the operators T (A) also map
solutions into solutions. Furthermore, it f(s,u;,t,x)
is a solutionof C,f =0, £ =1,...,n,which has a
Laurent expansion

f E gaﬂy(x)s it uint?, (1.22)

and 1ff is analytic atx; =x, = ..+ =x, = 0, then it
follows from the above remarks that

k(OlB]-y) (a Bl""a n;Y;xls---,xn)’ (1-23)

gaBj)'
where k(OlB-'y) is a constant.

Let @0,80,90, 1=j =n, be fixed complex numbers,
not mtegers and let @ = a0 +hy B=p0+n, y=
y® + m, where b,n;, m run over a11 1ntegers "The
basis vectors {faﬂ,y} (1.4), and operators (1. 3) de-

fine an 1nf1n1te—d1mensional irreducible representa-
tion P(a9,89,99) of si(z + 3,C). Using operators
(1.10)=(1.17), we can extend this Lie algebra repre-
sentation to a local group representation of SL{n +
3,C).

In order to compute the matrix elements of this
group representation with respect to the basis func-
tions {f }, it is useful to consider the following
simple renlization of p(@9,80,19) in terms of differ-
ential operators inn + 2 complex variables: s,u,,
..s#,,t. The basis functions in this new model are

focB].y(s7u1’° ¢ n,t) —sauil nﬁnt)’ (1.24)

and the Lie derivatives are

E,=s(d,—s3,—1), Eyu,= su%tauk,

o

Eﬂk:uia E =t'1(tat—sas—— 1),

uk’ =Y
n n
E, = sl<jZ:)1 wh,, —~ tat), E, = t(tat —j};l ujauj>,

E—a =s1 (Sas-— 1),

n
E, =u;l (tat —;)1 ujauj),
= s 1(sd,— 1),

By, =ugto, , E

Bry ’ Ty
E—a.—ﬁk.-y = s luplt-1(1 — s3,),
Egy = uplt-(sd, — to, + 1),
E =ulu s J, =53, — 140
Bk'_BP - %% uk’ a s 2%
Jy =0, — 313, + %
Bk o, up 2tat Zl% [} auk,

J, =15, — é(sas +27 ud, + 1). (1.25)

=1

As is simple to verify, these operators and basis
functions satisfy relations (1. 5), so that they deter-
mine a model of p(a9,89,70). We extend this model
to encompass the group action by computing the
operators T;(A4) analogous to (1.11)-(1.17):

T, (A)f (s, t)
- (d——bs)‘1< —sf)_lf<“—sT, w, 1d — bs)>,
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a, + ¢ tu, )

c
Ty, o (A)f(s,%,u,, t) = (S u(a toa ) ‘d +bu, tan,+c)’

e\t [ st t+
T3(‘4)f(s’ s t) = (a +t_> f(m’ ](d + bt),g + bct)y

T4 k(A)f(s; ]’uk, t)
_ + c \-1 + c Uy,
__(a sukt> f(as Uyl ? uf’m’t>’
TS(A)f('s} _19 )
c\1 t
:(a —a—) f(as ra J(d bSt),m),
Ts,k(A)f(s;uj’uk; t)

L€ "1 syl Uy
:(a ukt) f<c+aukt’ui’d+bu at+uk)

bu Up\~
T7 kp(A)f(s uj’uk:up, t) —(d - ""_k> (a - cit‘;)

Uy

X f(s,u;, auy— cu,, du, — buy, t), (1.26)
The matrix elements corresponding to a representa-
tion T(A4) of SL(2,C) induced by a triplet {J*,J-, J3}
acting on a basis f,, according to the rule

Jf,= (w+ m)fmtl’ J3fm: mf,,

have been computed many times before.? The result
is

weC, (1.27

T (A) _ aw-g. ;}zo+i&1"dw‘m0-n n-n' F(w + myg +n + 1)
" ) Tlw +ng +0" + 1)
2Bl w—my—n',—w +my +n;n —n'+ 1;bc/ad)

T —n +1) ’
(1. 28)
where
[cad
T(A)fm +y = 2 Tn'n(A)fm +nl3 n=0,+1+2...,
0 n!—o0 0
(1.29)

and A is in a sufficiently small neighborhood of the
identity element. From this result it is easy to com-
pute the matrix elements of each of the operators
(1.11)-(1.17).

For more complicated group elements, however, the
model (1.26) is very convenient. Consider the (2n +
3)-dimensional complex Lie algebra G with basis

{J5,0°,J3, E L B, j =1, .,n} and commutation
relations

[73,J¢] = + J*,[J*,J°] = 2J3,
U El=— B Bl =— B,
VB = E1=0,

[J3, E] = :t%Ej*,[E;,Eg] =0,
L&, Eil= [Ej-:E;e]: 0,

Sk=1,...,n.  (1.30)

This is the Lie algebra of the group G of (n +2) X
{n + 2) matrices

A :: g(l)’ ey g(n)
A, g ..., g®} =\ ——yTmm T ,
0

A e sK2,c), gPc, (1.31)
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and multiplication law
{A, g(j)}{A’} g’ (J')} = {AA',Ag’ H 3 g(i)} s

Here g = {g if)’ géj)} is a column 2-vector and E, is

the #n X#n identity matrix, The Lie algebra § is rela-
ted to G by the expression

(1.32)

{4,g")=exp(g {UF} + g EY)- - - exple,E, + £,”E])
x exp[— (b/d)J"] exp(~ cdJ ) exp(rd®),
2oat. (1.33)
The Lie algebra§ can be embedded as a subalgebra
of sl{n + 3,C) in many distinct ways, but for purposes

of illustration we consider only the example {J*, J",
J3,E;,E} = {E,, E_,J,, B, ., E, y}. Using this
i

- %oy ocB Y?
embedding, we compute the actlon of G in our (i + 2)-
variable model:

T(A,g”)) f(s,,8) = exp(g PE,, , +&5VE, )
- exp(g{E,p o + 85 E; ) T1(A)f
-1 e\l sas —c
= (d — bs) (a —;) f(d—:_‘;g,

I

/ a8 ,t(d~bs)). (1.34)

l—g1 ust——g

Applying T{4, g(f)} to the basis vectors f,m m(S: 5, 1)

=s 0+hufl*"1 B apr™ " we obtain
) S ’
D
Lom=
(1.35)
or
(]) I [
T )}mm =0
n
unlessn/=mn;, j =1,...,n, and m’ —m 21 —n);
i=
(1. 386)
. 9 0
B+ kgt B mAsl — By — —BY—n
T(A;g(j))knjm% A z( Blll nl) .. ( n L n)
rl—k—al—h -1 y-o-
e e T g et
f,%ic—)—j FD(I—k—a;~£1,...,—ln,a—y +1;
1) @)
1—k; —g —s'e by g
» (1) 3oeey (n) IR £ F Y
&5 'a gy °a ad

The group property (1.32) leads immediately to the
addition theorem

Tas, ab? + g = B T €

x T{B h(")}HN sM(1.37)

for the Fp,.

Equation (1. 35) with matrix elements (1.36) is also
valid for the (2» + 2)-variable model. In this case
the basis functions are given by (1.4) and the opera-
tor T{4,g®} by
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s +¢
TIA. e} 7(s
{4, 89} /5,1, , ) f(d+bs
wlas +c) ts
(1—' ut)'*‘c(l—x—g{])sut as +c¢’

(x}_ + "'(])S”jt (]) t)

@ +bs)as(l — gé’)u ) + c(1 — X — g§])su.t )])
(1. 38)

A variety of addition theorems for the F,, can be
obtained from (1. 35} and (1. 38) by speclahzatlon of
the group parameters. Since this is routine, we give
no examples.

2. TRANSFORMATION FORMULAS AND
GENERATING FUNCTIONS

We next show that the transformation formulas for
the F, are consequences of the SL{z + 3,C) sym-
metry. Let

1 :(_‘1) é)c—: SL(2,C). 2.1)
Expressions (1.4) and (1.11) imply
Ty fupy = & D*7 [Tl — )T (@)/T6)]

X Fy (0 B39, %/ (5 — D)1 — 2,) ™

x (1 —xn)'ﬂﬂs’w’ufl---ufnty. (2.2r

However, T, (I)fasj'y
of Ja,Jsl, ‘ens
Thus,

is a simultaneous eigenfunction
Jﬁn’Jy’ analyticatx; = -.» =x, = 0.

a;B5yi%)s Crubr, Pt (2.3)

Setting x, = --+ =%, = 0in (2. 2) and (2. 3), we can
evaluate the constant 2 and obtain the transformation
formula

(1"‘5(1)‘61" (1 x)BF (a; 3V ]/

= D('Y_ 3 jy')”xj)'4 (2-4)

Similarly, T, ,(I) fus,y Yields the formulas
7
(1 —x,)yeF

D(G;Bj’ Bk;)’;(xkg x])/(xk““ 1);xk/(xk - 1))
ZFD(G;@,V‘Z)BNY;%,%), k=1,...,n.
i (2.5)

The remaining transformation formulas for the Fj,
can be obtained by composition from (2. 4) and (2. 5).

Computing T,(/) fap,y» We find that
v

Fpo; B5; +26j~y+1;1—99) (2.6)
is a solution of Egs. (1. 21), analyticatx; = -+« = x,
= 1. Computing T;(/) faB > We see that
%0, “FD(ZZDBE-— vy + 1;8; %38; —a+3x5Y)
2.7

is another solution of (1.21). Similarly, Ty ,(7) jaﬂ y
yields the solution

xRy (B, —y + Lo — B, + 1;x]/xk,1/xk) {2.8)
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For A close to the identity in SL(2,C) the expres-
sions T; ,(A4) fas _y can be expanded by use of the

matrix elements (1. 28). However, for A far from the
identity, say A = I, these expansions are no longer
valid. For example,

(expeE, (5,15, t,%) =1

S tx-i—cst
1 +e¢st? %o ts 1+ ¢st

2.9)
For lc| small we find

& (238, —
(exch OKB Ly E < ! )fa+k'5j,7+hch)

h=

%G te 28—y
Lk s A G

k=0

i.e.,

1+ c)‘“FD<

X ((a))h (a +h; Bj;'y + h;xj)c k,

Ifc =1and |7| <1,where 7 = s 1", then (expE,,)
faﬁ Y isnotanalyticat x, = - -+ =x, =7=0. However,

we can apply expE_, to the solution (2.6) and use
(1.22), (1. 23) to obtain

(1 +7)yeFy(o; B a+258—y+ 1 ;71— x)/(1 + 1))

fel <1. (2.10)

__Z) CoFpl—h;Bi5y — a —hyx)rh, (2.11)

To evaluate the constants C,, we setx; = +++x, = 0:

(1 + T)_"‘FD((!,BJ;;CY +ZZ>BZ -
= (1+7)‘°‘2F1(a,12,81;a+2l]{32—

y +1;7/(1 +7))

y+L7/(1 +7))

::E Ch’Th
r=0
Thus,
c,,:(—k“) i D ha + 58—y + )

(Ol -y + l)k

:<—’_la> (@ +28,—y +1),

from Ref. 7, p. 211, and Vandermonde's theorem.

(2.12)

Expanding TI(A)faB y 85 a power series in7 = s~ 1
we obtain

a*EBZ'y -
(1) ()

-B
x,.,(1 +£(.1§_x_n_)>

XFD(G!;SJ-;-/;

er(l—x) ™
ol ~s))

x]T
(o +dt)a +cT(1— xj)])

o0

= Eok,, Fy (= ;8593507 ", (2.13)

Setting x; = +-- =x, = 0 and using identity (5.124),
Ref. 7, p. 206, we find

o —_
&, :(565) a‘?“"c’( ;;) o F1(— 1k, ;43— 1/bc),

ad —be = 1. (2.14)
Ifa=d =05 =1and ¢ = 0, the identity becomes
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. %57
(1 + T) 0‘~FD<U;@;‘}/; T+—T>
:Eo(_ha)Fu(—h;ij;%)T”, IT1 <1, (2.19)
and,if a = ¢ = 1,b = —w"1, it reduces to

@+ 501 4 —w)T]_ale [1+ 1 —x)]™

) — X% TW
X FD(“‘@'W’ [T+ @—wr][l+( —xj)7]>
:h§0<—;ly> 2 F1( by 0595w) Fpl— b5 B5955) 77,

I <min(l,ll—le‘l,ll—wl‘l). (2.16)
More generally, we can derive generating functions
for the F}, through the characterization of a solution
fofC;f =0, j=1,...,n,by the requirement that s is
a simultaneous eigenfunction of » + 2 independent
operators constructed from si(z + 3,C). Such a
characterization of faﬂﬂ is given by (1.19).

As an example we compute the solution f of the
simultaneous equations

Eafzf’ Jﬁkf =<Bk+%%‘%8j'—%'}’>f;

(Jy + %Ja)f :<%7 - % 71_)61_' %)f;
C,f=0,k=1,...,n, (2.17)
which is analytic at x; = -+« = x, = 0. The firstn + 2
equations have the general solution
f=hte/s,...,x,/s)exp(— s"l)ug1 ceulbat?
where % is an arbitrary function. Substitution of this
expression into C,f =0, 1=k = n,yields

Ry, e

x,) =®@, ..., REVE SN
© By B,

2 Xy, K
..-mn:O (’y)m1+"-+m

n

! !
ml ml....mn.

; %
= lim Fp| @;8;3v; 5 )

n

(2.18)

unique up to a constant multiple. Expanding T,(A)f as
a power series in 7 = s~1, we obtain

dr +b By * -
Y Y - B
exp[ (a T CT)] (@ +ecT) l[ll [a +cT(1 —x)]

x]-'r

X cb(Bj;"’; (@ +cm)a +ct(l —x5)]
= kz_ro”kop(— k;Bj;y;xj)r", ad —bc =1. (2.19)

Setting x; = + -+ =x, = 0 and using the generating
function for Laguerre polynomials {(5.101), Ref. 7,
p. 190], we find

-y ~olafC\ * ;-1
Yp=4da 7e a(—a-> ka <a—(—:->,
where L(n“)(x) is a generalized Laguerre polynomial.
Ifb =c =0, a =d = 1, the identity simplifies to
exp— ) 8(557;57) =15 S R kg7

k=0 T (2.21)

(2. 20)
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a=c=d=wl2 b =0,we find

exp <1::}_w—:_> a +7)*r7 [1+7(1— xl)]_B‘- .-

X[1+7(1 —x)] %8 (8;; widd
(170 =8I (57 oy )
=7, L?-D (W) Fpl— k;Bj;y;xj)'rk,
< min(1, |x; — 1]-1), (2.22)
Ifb =—c =1, a=d=0,then T,(4)f becomes

s - - S
e’ 1 —x) .. (1~x) ﬁ"s7<i>(3j§71—%:ij_>

xubt, ., ubnt?,

Expanding this function in powers of s, we obtain

- X;8
—_ xﬂ) Bnd’ (B]; ‘y; l—ix—>
J

= /;52"0 71 Foly + B B39 %)

e(1—x)%...(1
(2. 23)

Although the derivation of these generating functions
is completely routine, an exhaustive classification of
such generating functions awaits the classification
of all algebraically irreducible representations of
sl(n + 3,C).

The various confluent forms of the functions F), have
symmetry algebras corresponding to contractions of
the algebra gl(n + 3,C) = sl(n + 3,C)® (§). For
example, consider the confluent function

x,) = %

yr e My,

11!(01;31, . ';Bn-l;'}’;xly ey

('y)ml*f. rmy, g Teee iy

('V)ml’f catm (Bl)ml' o (B"-l)mn—l myle. .n, !

n

xn
= gilggoFD@;Bl’ cooyBro1sBriYiXgs e ey Xy1s B;)
(2.24)

To obtain the symmetry algebra, we introduce new
operators

1 - r- 1
EO,LBn')’ _’67’2 EocBny! By = B, an; Ey =B, Ey
S T Ve I
E_Bk-— 'B: ..ﬂk, n, Bny - Bn B”'y’

1
Eén—ﬁk = E EB,L.—Bk ’

Ji = (1/8,)J, and E/ = E, for all other elements of
n n
sife +3,C).

Formally letting 8, — «, we obtain a contracted Lie
algebra not isomorphie to si{rn + 3,C). The opera-
tors which raise and lower #, are now redundant.
Dropping these operators, we are left with an (n +
2)2-dimensional non-semi-simple Lie algebra, the
symmetry algebra of Y. This algebra can be used
to derive identities for the ¥ functions in a manner
analogous to that for F,.
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It is shown that a parametrization of the orthogonal and unitary groups due to Hurwitz can be used to evaluate
averages of components of random unit vectors for those two spaces. Explicit results are given for moments
which are general enough to include most cases of interest in applications.

1. INTRODUCTION

Several years ago, Ullah developed a method for eval~
uating averages of components of random unit vec-
tors.1 The technique is applicable for an N-dimen-
sional orthogonal, unitary, or symplectic space.2 How-
ever, the method as given is restricted to the even
moments of a single vector for the unitary and sym-
plectic spaces and is restricted to moments involving
at most two orthogonal unit vectors for the orthogonal
space. Unfortunately, it does not seem possible to
extend the method to averages which involve a larger
number of vectors.

A possible alternative to Ullah's method is the expli-
cit parametrization of the group of transformations
involved. The advantage to this approach is that in
principle there is no restriction on the number of
vectors involved.

It would appear that the major obstacle is the para-
metrization itself. That is, one must parametrize the
group in such a way that the calculation is tractable.
In particular, one must be able to express any ele-
ment of the rotation matrix explicitly in terms of the
parameters, and one must be able to determine the
corresponding volume element in the parameter
space.

Fortunately, such a parametrization for the orthogonal
and unitary groups is known. These parametrizations
are due to Hurwitz.3

We shall show that these parametrizations are indeed
satisfactory for the explicit evaluation of averages
which involve any number of vectors.

2. THE GENERAL ROTATION MATRIX

The general rotation matrix for an N-dimension orth-
ogonal or unitary space can be built up out of succes-
sive two-dimensional rotations as follows. Let the

N X N matrices o,(s) be defined as

[, = %,

= aNSf)'r 5]'7 + bN'('fz'r 6]'1'+1:
(s)

=i, 8, + dfS), 6,4,

izr,r+1,
i=7r

i=7'+1, (1)

where s =1,2,...,N—landr=N—s,N—s5 —
1,...,N— 1L

The matrix @(s) is a rotation in the corresponding
two-dimensional subspace. For the orthogonal space
aldals) = 1, and for the unitary space afs)ols) = 1,
These matrices will be parametrized below for the
orthogonal and unitary spaces.

Next we define the matrices E{s) ag

5@ =Tl o), 8
where m means that successive factors are to the
left. It follows easily from mathematical induction
that

Iyo1 O
E(s):':Nsl J’ (3)
0 T(s)

where I, ., is the (N —s — 1) X (N — s — 1) unit
matrix, and T¢s) is the (s + 1) X (s + 1) matrix with
elements

Ty,() = als, (4)
(s) _ () s-1 ) .

Tij = sy r:sn—jﬂ b7, iz, (5)
(s) ( .

Tif = asi)i dgi)’:+1, 1= 2’ (6)
(9 _ ) st L

Tijs - a(ss—)jdsii-rl stl:[j+1 b‘r‘(S)’ g > 7 2 2, (7)

Ti(si)"l = és—)i»rl’ iz 2, (8)

ng-) =0, i>j+1. (9)

In the above equations a_; = 1.

Finally, the general rotation matrix 4 is given by

E (s)’ (10)

where l’l\{[ means that successive factors are to the
right. It follows easily from the definition of T (&) that
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E (s)’ (10)

where l’l\{[ means that successive factors are to the
right. It follows easily from the definition of T (&) that
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Ay =Ty, 0, (11)
_ (N-1) (W-i+1) W-2) w-1)
A” - klvkz,.z.:.,ki-l 1 Tki—l"lki—z. o Tk2+1 BTkl o
N>i=z2, (12)
and
_ ()] (2) L (NF2) (N1
AN] - kl,...E.kN_z 2kN"2 kN'2+1 kN“I} Tk2+1 k[ k1+1j ’
(13)

The A;; can now be expressed in terms of the al®,
b9, ¢ 19, and d ) by combining Egs. (4)~(9) with
Egs. (11)-(13). The resulting expressions for those

Aj; to be used below are

N-1
Ay = ay ), (14)
w1 "I j 15
- - =
Ayj=ay1-; r=1;\1]—j b," 7 2, (15)
(v-p i e :
Ap =ayyq Dey,n, N>i22 (16)
N-1 (-
Ay = I clffl’r_yi , (17)
_ N2) (N-1) ;(N-1) (N-2 -2 -1
Agp =ay.3 @ N3 d Ny —ayy )bﬁvlfs )Cgvys ) (18)

_ L (N-2) _(N-1) 4(N-1), (N-1
Agz =ay3’ay, )dgz-z )bz(v—s )

(N-2),(N-2) (N-1) ;(N-1)
+ay, by dy-3

-3 AN-4
— R D, 09
and
Agy = =P c P allallyd
— A AP e
R o)

It should be noted that AA = 1 for the orthogonal
space and AA+ =1 for the unitary space, because of
the corresponding conditions on the a{s).

3. THE ORTHOGONAL SPACE

We now introduce the explicit parametrization of the
orthogonal group due to Hurwitz.3 Let ¢§, » = 0,1,
2,...,s—1,s=1,2,...,N— 1,denote a set of

N(N — 1)/2 variables. The general rotation matrix
is then given by the above expressions if we define

a9 = d{s) = coses, (21)
b{9) = — ¢{s) = sings, (22)
where

0 < ¢§ < 2m, 0<¢s<m, r > 0. (23)

The explicit results for the nonzero T,;” are

T$) = cosds_,, (24)
(s) _ s sd indS +1=2j22 25
T{; = cosog.; r:P—jd sings, s zj=z2, (25)

Ti(iS) = COSd)z_i COSd);_Hl’ s+1=z2i=2 (26)

(s) :
i1 = — sing?_, 4, (27)
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-1
(s) _ s s $
T = cos¢g_;,y coso. r:sI_de

s+12j>i=2

sing;,

(28)

b

where ¢)(_s1) = 0. The resulting expressions for those
A;; to be used below are

Ay, =coso¥3, (29)
N-2
=cos¢p¥ 1 T singd1,
Wi

Al -jr:N

; N=j=z2, (30

i~1
A,y = (— 1)1 cospliy ’_1 sinp{7,, N=i=2
” (31)
Ayy = coso N3 cospl] cosp ol
— sing 3 cosp i F sinoi3, (32)

Ayg = cosdp 2 sing L cospi] cosei}

+ cos¢p % sind % cos¢ i} cospd

— cos¢XE sing§% sing % sing ¥}, (33)
Ag, = —cospN-3 sing -3 cosp N} cospid

— cospN-3 cospZ cosp % sing 7}

+ sing {3 cosep 22 sing ¥ sind {3, (34)

where ¢2 = 0in (31).

The volume element dV,, for this parametrization can
be chosen as3

av, = y'Hs (singg) 7dos. (35)
It is easily verified that
ny= [dv, = 2 N@-1/4, (36)

Further if f(A) is any function of the A;; we define
its average as

FAY = nt [f(4)dv,. (37)

Here we wish to consider f(A) of the form Hi_inj"ii,

where the n;; are nonnegative integers. For definite-

ness we consider only quantities of the form
= AT ALAL, T AlAT 38
Q = AppAg5As, 11 AhAy, (38)

where n, p, q,and all of the [, and m; are nonnegative
integers. It should be noted that the power of A,
is ll + wq.

From Egs. (29)-(34) it easily follows that

N-1 Can e . SPNEY;
I:I1 (cosp M) N7 (sing ) r?, (39)

N N-1 ’
0 A% = (— 1) I (cos¢l )" N (sing; )" 7,
i=1 r=1 (40)
Az, = ; — 1"
%2 n?nz (nyn]_)nz)( 1) 2

X (cos¢pN-2 cosei-l cose H-1)™

X (sing §% cospF sing 1) 2, (41)
Afg= 2 (P;by, by, ba)(— 1P

P1:D2.P3

X (cosp ¥ sind ¥} cosp¥ ] cospp)P!
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TABLE 1. Definition of the &,
N N-5 N—4 N-3 N=2
N — 3 q3 mqt g tq, — —
N-—-2 P3 ng * byt 4y my +t g+ p+qy -
N—1 — I3+ Py + by ly +ny +py +q, I; +my +ny+py + gy
TABLE II. Definition of the kij.
N N—5 N-—4 N—3 N=2
N-3 0 Miy-q ¥ 43 — —
N-—-2 p3+Q3 'n}\l-3+n2+p2+p3+q1 -
N—-1 - Uy-a T 03 lyg tmgt+ py+ay +q;3 Inez + g
Nz -1 N-1yP2 a) N =
X (cosp ¥ 2 sinp ¥ cosp =} cospiL) Q= 2, Bopq 1, @ ) (53)
P n.p,q -
X (cosp N2 singp{-F singN% sing §3)°3, (42) where
o =
Ay = (4591, 92,93)(— D" QI =dy  my/Jo0s (54)
q1.492.493
X [cosp N3 sinp¥Z cosp N1 cospN3]%t Q) = Loyl vt/ Toy-1, 257 <N—4, (55)
% [cosp N3 cos cos singN-1]92 r-1
[cosp i3 cosp g cosplg sinp i) = W, G i/lo), 7=N—3,N~2, (56)
X [sing N3 cospi3 sing N7 singp}]%3, (43) q j=N-5
where ” an N-2
QWD = T (I, o + j/1y;
n,= iZ%) M y-i5 (44) Q jaN-4 " FN-1j N“lJ 4 0])
N X (J, 1/ dg0) n & /Iy ). (D)
0, = Z (Z . l)mi, (45) Iy lo 00 oo Iyl 7 r
i1 i
and In these equations
m I
(n;"h"z, e ’nm) = <n'/zr_11 ni!) 6n,n1+n2+"'+”m. (46) IPlI = fO COSp(b Sinqd)dd)

Combining Egs. (38)—-(43) we obtain

N-1
Q=2 Bnpg @M, (47)
n,p.q
where
Bn,p,q = ( - l)a(n;nl,nz)(p;p1,p27p3)(q;q17 qzy CI32948
Q) = (cos¢r )"V [singr_,|"*1, 1<r<N-—4,
(49)

r-1 ) . ,
= jzzlv]—s (cos¢)) 73 (sing)) kv, ¥ =N—3,N—2,

(50)

N-2 '
QW-1) = I (cospd¥1)N1j (singN-1)*N-1j
j=N-4 / 7

N-4 ,
S1VN-7 (gindN-1) -

x T (cosp V1Y N7 (singd1)* 71, (51)

and

0=0, tn, +p3t+taqqt+ags, (52)
The k,, are given in Table I, and the k’yj are given
in Table II.

Since the ¢$ are statistically independent, it follows
that

@ pog-0

T[3(ly +my

=B, Tlz(p + DIT[2(q + DY/T[5(p + q + 2)], (58)
and
210
Jyy = fo costd sindpdd = 28,1, (59)
where
B, =[1+(—1)*)/2. (60)

Combining Egs. (54)~(59) we obtain

Q= CN[]{(%(I},_(; + N = 3)NC(5(m}, + N —3)]L
x 1B, B T(zm, + NT(:(, + 1))

x E Bn,p,q yH. Bk I—‘(%(k'r] + ]))F(%(k;] +] + ]))
n,p,q 7 v
X r(g(k”.+ ky; 7+ 2), (61a)
where

C, = <iﬁo TN — z‘))>/I‘2(%(N — OIT2N2(3). (62)

The product over # and j includes only those (7, j) for
which k, . and k,; were defined above. It should be
noted that Q= O unless I ,m,, v =4,5,... ,N are all
even. If #n = p = g = 0, the result simplifies to

+ DIT[3(1y g + myg + N — DTG T[z(V — 1)]

N
+ Lim, +
Bll+m1 VI:]2 Blr'err[ (4, + DIT0m, bl F[%(ZXJ—Z

Clearly @ = 0 in this case unless I, + m,,and all the
!, andm,, v = 2 are even.

+ N = DT[3myy + N — DTl

+mj g + N2V
(61b)

- . _
In Appendix A we have listed explicitly averages for
HA"” with Zn;; < 6. In particular, those averages

Wthh are nonzero are given.
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4. THE UNITARY SPACE

Again we use a parametrization due to Hurwitz.3 Let

s, ws,x8, s=12,...,,N—1,v=0,1,...,s— 1,
denote a set of N2 — 1 variables. The general rota-
tion matrix is then given by the above results if we
define

als) = dfs)»* =ei'p’f cosos, (83)

bis) = — ¥ = et* %o sings, (64)
where

<sys<2m, O<sys<2m, O<¢pssmu/2. (65)

The explicit expressions for the nonzero 7,{s) are

T(S) eiv3n cosps (66)

-1

S s
T{)=e¥sicosps, 1

ixsé,,o
T oy=s-jel ?

singse
s+1=2522, (67
(s) _ W55 8-
T = e!Ws—¥s-j+1) cos¢;_; cosps_;, 1,

s+1=2j=2, (68

oS _.S
TS = €'V s ks cosey_, COShL-;,q
s= .8
x T e*ProsingS, s+1>k>j>2, (69)
r=s-k+1l
—ixS
T](]s)1 = ¢ i¥ 5s-3410 Sin‘pz—jﬂi s+1=zj2=22, (70)
where ¢35 = y5 = 0.

The volume element for this set of parameters can
be chosen as

dvy = H _cos; (sings)27+1 dgpsdy s dx s, (71)
where
v =dVy = 1/JVNT 280172, (12)

If now f(A) is any function of A;; and A,],we define
its average as

@A) =03t [ A(AdVy. (73)

Here we wish to consider f(A) of the form H
ATHAY, "'1 where the 7, and n;; are all nonnegatlve

integers. For deflmteness we cons1der only quan-
tities of the form

MCDONALD

where n,n, andl l N m , j=1, ,N,are all non-
negatwe mtegers Note that the power of A is
!, + m, while the power of A}, is I; + m;.

From Eqgs. (11)-(13) and (66)=(70) it follows easily
that

A= i cosp 3, (75)
Ay = et V- cospN1_, ;«I]:I sinp 71,
N—12j>2 (76)

o N
Aqy = eixt? L sing {23, (17

A = 1)s-1 iwiao 1]1 ing N-r+1
1= (— 1) 1le cosqu_] a1 sing{-7+1,
N>j=2, (18)
N
Ayq = (— 1N 1gixd Il sing7+1, (79)
r=

and

N-1_ N-1
Ay, = RO SRS cosp 2 cosp ¥} cosp i

g N-2
—e cosd 7 singp 7% singp 1. (80)
From these equations one easily obtains
-I-Amnxl)

1)e i(apya N

Q=(—
_2 . -
x I (et etvni-r gyt
s
X (cosgp N-1)In-1-r (sin¢1;"1)l"7 (cosgr+1yMn-1-r

X (sin¢>;+1)M"' E_ Y
by kg By By

NIPE LU O S i VR T 5

X (cos¢p N cospl] coscpf"‘%)K1

X (cosp - sinp - sing §3)%2, (81)
where

N
o EZ)l (j—1M,, (82)

7=
al,=1,-1, (83)
=L+, (84)
L, =3 Ly (85)

j=0

and B,; = ( — 1)®2 (n; by, ko) (03 k). (86)

Once again since all of the variables are statistically
independent, the averaging process is straightforward.

- N - —
Q = A3, A% Ry AlfjA’;]l.jA;"ijAz‘lmj, (14)  The result can be written as
i
— ¥
Q = ba1,8n001,am,01,-01, 11, 6,1 % m I‘(l + 1)T(m, + 1) opy,y 20 Byg 0 Eyky

(3K, + 2)]T[HLy + My + Ky + 2)|T[3(M, + Ky + 2)|T[HL, + K; + 2)]

T[3(2N — 4 + Kp)T[5(2N + Ky + Ly + Mfy)]

Oimnn

X T[3(2N — 4 + L} o + K))IT[3(2N — 4 + M}, 3 + K,)], (87)
T(N)I(N — D)T(N — 2)T(3(2N — 2 + Ly, + M) (8)

T TN — 2 + [[_)T(N —
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If n = m, = 0, the result simplifies to

Qn:mlzo
N
=0, Ty + 1) 1L 6, 58, 5T +1)Tim, + 1)
Note that @ =O unless I, =[,, v =1,...,N,and

r=2,3,...,N

In Appendix B we have listed explicitly averages for
L AHATY with Z(n;; + n;;) < 4. In particular, those
averages which are nonzero are given.

L, =M,

5. DISCUSSION

1t is clear from the calculations of the previous two
sections that the evaluation of moments becomes
more and more complex (for both the orthogonal and
unitary spaces) as more and more Ay (i>1,7>1)
are involved.4 For this reason we have not attempted
to evaluate the most general moments (i.e., all ay
arbitrary). Instead, we restricted our dlscussmn to
moments which were special enough so that the cal-
culations were tractable;but at the same time the
moments were general enough so that the results
given probably include most cases of interest in app-
lications. Clearly, any particular case which is not
included in the above results can be evaluated in a
straightforward manner using the expressions given
above for the parametrization of the 4;; and the vol-
ume elements.®

There are various possible applications of the re-
sults given in the previous two sections. Ullah used
such averages to investigate the implications of the
invariance hypothesis on matrix element correla-
tions for an ensemble of random matrices.1.6 The
results given above enable one to consider the ef-
fects of the invariance hypothesis on higher correla-
tions of Hamiltonian matrix elements.

Another obvious application of the above parametri-
zations is to the problem of the distribution of eigen-
values and eigenvector components of random matri-
ces.”?

For example, for an ensemble of Hamiltonian matri-
ces which satisfies the invariance hypothesis, the
distribution of widths for both the orthogonal and uni-
tary spaces can be derived in a trivial manner. For
such an ensemble the corresponding distribution of
widths p(X) is given by8

pX) =3t [ 8(X — N4y, |2)dv,, (90)

Via the parametrizations given above for the ortho-
gonal and unitary spaces, one finds easily that

bordX) = Ishy [ 6(X—N cos?¢§)(singy3)n2

! T(3N) X\ -3/
xdelil, = =
-2 VaNX T(A(N — 1)) <1 N) ’
(91)
and 2
PunselX) =J1 B3 [ 0(X — N cos2¢ip)
X cosp N3 (sing §3)2¥3d¢N-)
N1 x\¥?
=55 -5 - (92)

CNTN — DLy, + m)yy + N — 1]

Dlly-y + myq + NJT[ljyy + N — 1]T[mfy + N — 1]

(89)

I

These results agree with those previously
obtained.9.10

In addition there has been recent interest in the prob-
lem of how a small time-reversal odd term in the
Hamiltonian of a complex system would influence the
statistical properties of the energy levels and
widths.8-10=17 Sych investigations have led to inte-
rest in ensembles which are not representationally
invariant.

We feel that the above parametrizations (and/or
moments) will turn out to be very valuable in future
investigations of the distribution of eigenvalues and
eigenvector components for such ensembles.

APPENDIX A: SOME PARTICULAR ORTHOGONAL
AVERAGES

In this appendix we give the results for (nAZU) with
Zn;; < 6. In particular,
1
(At =

4ty =5 N(N NV T 2)’

1

16
<A%1A%2> = N(N + 2)7

U =y Foaw F )

N+1
UiA8) = v —Dw + oy
3
NN TN T )’
3N + 3)
OV F O Ty
1
N T W T 4y
N+1
VW + W T 4
N +3
NN DN + D * 9
N2 + 3N — 2
NN T 2N = W T 3y
1
NV =T\ + 3’

(41,41, =

<A%2A%1> = NN
(A3,A%,A%5) =

(A%,A%,431)

TNWN=

<A%2A%3A%1> =

A3143:48) = Fr—

<A11A12A21A22> ==

(AF1A104134,54,3)
1
TTNN=—1)(N + 2)(N
and

(A19A413422455A51) =~

— 2)(N — 4y

1
NIV —1Y(N — 5)(N + 3)'

Every other nonzero average with Zn;; < 6 can be
obtained from these by appropriate permutatlons of
the labeling of rows and columns.

APPENDIX B: SOME PARTICULAR UNITARY
AVERAGES

In this appendlx we give the results for (nA, "‘JA*"'J)
with E(n n;;) < 4. In particular,
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and
(A1 A A% 1A ,5) =— 1/N(N — 1)(N + 1).

Every other nonzero average with S(n ij + n; j) <4
can be obtained from these by appropriate permuta-
tions of the labeling of rows and columns.

1 N. Ullah, Nucl. Phys. 58, 65 (1964).

2 F.J.Dyson, J. Math. Phys, 3, 140 (1962),

3 A Hurwitz, Math. Werke 2, 546 (1933); reproduced in R, E. Bellman,
A Collection of Modevyn Mathematical Classics, Analysis (Dover,
New York, 1961).

4 In principle the problem itself is not more difficult. However, the
notation becomes extremely complex.

5 Tt should be noted that the results are invariant under any permu-
tation of the labeling of rows and columns. This can often be used
to simplify the evaluation of a particular moment. For example,
(A3, AP, AL, A% = (A3, AT, AL AQL), obviously the moment on
the right involves a simpler calculation than the one on the left.

6 N. Ullah and C. E. Porter, Phys. Letters 6,301 (1983).

7 This problem arose in connection with the distribution of energy
level spacings and level widths in nuclear spectra. See, for

example, C. E. Porter, Stafistical Theories of Spectra: Fluctua-
tions (Academic, New York, 1965) (Note: Refs. 1,2, 5, 6, and 9 are
included in this collection).

8 N.Rosenzweig, J. E. Monahan, and M. L. Mehta, Nucl. Phys. A109,
437 (1968).

9 C.E. Porter and R. G. Thomas, Phys. Rev. 104, 483 (1956).

10 N, Ullah, J. Math. Phys. 4, 1279 (1963).

31 M. L. Mehta and N. Rosenzweig, Nucl. Phys. A109, 449 (1968).

12 M. L. Mehta, Nuovo Cimento 65B, 107 (1970).

13 L.D. Favro and J. F. McDonald, Phys. Rev. Letters 19,1254 (1967).

14 L. D. Favro and J. F. McDonald, J. Math. Phys. 9, 1429 (1968).

15 J. F. McDonald, J. Math. Phys. 10, 1191 (1969).

16 J, F. McDonald and L. D. Favro, J. Math. Phys. 11, 3103 (1970).

17 J. F. McDonald, J. Math. Phys. 12,542 (1971).

Wave Propagation in a Random Lattice. |*
Pao-Liu Chow and Joseph B.Keller

Department of Mathematics, University Heights and Courant Institute of Malhemaltical Sciences, New York
University, New York, New York
(Received 12 January 1972;Revised Manuscript Received 20 January 1972)

The small amplitude periodic classical motion of a lattice of particles about their equilibrium positions in a
lattice is considered. The effect of random masses and random spring constants upon the coherent or mean
motion is treated by using an equation for the coherent motion derived previously by Keller and others. From
this equation the dispersion equation for coherent wave motion is determined. It is solved for the case in

which the spring constants are not random but the masses are random. Explicit resulis are obtained in the
one-dimensional case for both uncorrelated and exponentially correlated mass defects. They show an altera-
tion of frequency or of wavelength and of phase velocity,as well as an attenuation due to scattering by the defects.
In addition new highly attenuated modes are found. These results are utilized in Part ITin which various reflec-

tion and Green's function problems are treated.

INTRODUCTION

We consider the small amplitude time periodic clas-
sical motion of a collection of particles about their
positions of equilibrium, which form a lattice. The
masses of the particles and the coupling constants
which determine the forces between them are assu-
med to be random quantities having a prescribed joint
probability distribution. We call the ensemble of pos-
sible lattices, with this distribution,a random lattice,
and consider it to be a model of a crystal with imper-
fections. However,the results also apply to other
physical systems. Our purpose is to study wave pro-
pagation in such a lattice. To do so we assume that
the masses and coupling constants differ by small
random amounts from constant values,and we employ
a perturbation theory to analyze the mean wave mo-
tion.

A suitable perturbation method for such problems
has been devised by Keller,! Bourret,2 and Tatarski
and Gercenstein.3 It yields an equation satisfied by
the mean wave, which is correct through terms of
second order in the random quantities. In Sec.1 we
use this method to derive the dispersion equation for
the mean or coherent wave in a lattice with one par-
ticle per unit cell. In the Appendix we treat the gen-
eral case. In Sec.2 we simplify and solve this equa-
tion for certain one-,two-,and three-dimensional
cubic lattices in which only the masses are random.
In Sec. 3 we obtain more explicit results for the one-
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dimensional case, The results show that even in the
pass bands of the perfect lattice the propagation con-
stant or wavenumber of the mean wave is complex,
50 that the wave attenuates. The attenuation is a con-
sequence of scattering by irregularities. The phase
velocity of the mean wave is also affected by the ran-
dom irregularities,and may be either greater or less
than that in a perfect lattice, depending upon the fre-
quency. The dispersion equation involves the corre-
lation function of the masses,and we consider both
correlated and uncorrelated mass variations.

In Paper I1* we analyze the dispersion equation for
two- and three-dimensional lattices. We also con-
sider reflection of a plane wave from the plane in-
terface between a perfect and an imperfect crystal
and from a slab of imperfect crystal of finite thick-
ness. In addition, we construct the Green's function
for an infinite imperfect crystal and for a semi-
infinite imperfect crystal joined to a semi-infinite
perfect one.

Previously Koster,5 Lifshitz,® and others have treat-
ed scattering of waves by localized irregularities in
crystals. In addition various authors have considered
the effect of irregularities on the vibration frequen-
cies of crystals.® However, Rubin? -8 seems to have
been the first to have investigated wave propagation
in an infinite one-dimensional crystal with randomly
distributed mass defects. He has investigated the
mean of the logarithm of the amplitude transmission
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and
(A1 A A% 1A ,5) =— 1/N(N — 1)(N + 1).

Every other nonzero average with S(n ij + n; j) <4
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The small amplitude periodic classical motion of a lattice of particles about their equilibrium positions in a
lattice is considered. The effect of random masses and random spring constants upon the coherent or mean
motion is treated by using an equation for the coherent motion derived previously by Keller and others. From
this equation the dispersion equation for coherent wave motion is determined. It is solved for the case in

which the spring constants are not random but the masses are random. Explicit resulis are obtained in the
one-dimensional case for both uncorrelated and exponentially correlated mass defects. They show an altera-
tion of frequency or of wavelength and of phase velocity,as well as an attenuation due to scattering by the defects.
In addition new highly attenuated modes are found. These results are utilized in Part ITin which various reflec-

tion and Green's function problems are treated.

INTRODUCTION

We consider the small amplitude time periodic clas-
sical motion of a collection of particles about their
positions of equilibrium, which form a lattice. The
masses of the particles and the coupling constants
which determine the forces between them are assu-
med to be random quantities having a prescribed joint
probability distribution. We call the ensemble of pos-
sible lattices, with this distribution,a random lattice,
and consider it to be a model of a crystal with imper-
fections. However,the results also apply to other
physical systems. Our purpose is to study wave pro-
pagation in such a lattice. To do so we assume that
the masses and coupling constants differ by small
random amounts from constant values,and we employ
a perturbation theory to analyze the mean wave mo-
tion.

A suitable perturbation method for such problems
has been devised by Keller,! Bourret,2 and Tatarski
and Gercenstein.3 It yields an equation satisfied by
the mean wave, which is correct through terms of
second order in the random quantities. In Sec.1 we
use this method to derive the dispersion equation for
the mean or coherent wave in a lattice with one par-
ticle per unit cell. In the Appendix we treat the gen-
eral case. In Sec.2 we simplify and solve this equa-
tion for certain one-,two-,and three-dimensional
cubic lattices in which only the masses are random.
In Sec. 3 we obtain more explicit results for the one-
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dimensional case, The results show that even in the
pass bands of the perfect lattice the propagation con-
stant or wavenumber of the mean wave is complex,
50 that the wave attenuates. The attenuation is a con-
sequence of scattering by irregularities. The phase
velocity of the mean wave is also affected by the ran-
dom irregularities,and may be either greater or less
than that in a perfect lattice, depending upon the fre-
quency. The dispersion equation involves the corre-
lation function of the masses,and we consider both
correlated and uncorrelated mass variations.

In Paper I1* we analyze the dispersion equation for
two- and three-dimensional lattices. We also con-
sider reflection of a plane wave from the plane in-
terface between a perfect and an imperfect crystal
and from a slab of imperfect crystal of finite thick-
ness. In addition, we construct the Green's function
for an infinite imperfect crystal and for a semi-
infinite imperfect crystal joined to a semi-infinite
perfect one.

Previously Koster,5 Lifshitz,® and others have treat-
ed scattering of waves by localized irregularities in
crystals. In addition various authors have considered
the effect of irregularities on the vibration frequen-
cies of crystals.® However, Rubin? -8 seems to have
been the first to have investigated wave propagation
in an infinite one-dimensional crystal with randomly
distributed mass defects. He has investigated the
mean of the logarithm of the amplitude transmission
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coefficient for a section of the crystal containing N
defects,for N large. A similar study was made by
Matsuda and Ishii,® who also gave references to re-
lated work. One of the results of Rubin and Matsuda
and Ishii is compared with one of ours in Sec. 4.

1. DERIVATION OF THE DISPERSION EQUATION

Let us consider an infinite crystal in # dimensions.
Each particle of the crystal is labeled by an index ¢
which is a set of »n integers. The equilibrium posi-
tion of particle ¢ is the lattice site x(q). We suppose
that the particles are undergoing small amplitude
periodic motions with angular frequency w about their
equilibrium positions. Let the real part of u(g)e v
be the displacement of particle ¢ from its equilibrium
position. We assume that u satisfies the linear equa-
tion of motion

—M(g)w?u(q) + 2, ®(g,q"ulq’) =1(q). (1.1)
ql

Here M(q) is the mass of particle q, f(q)e it is the
external force on particle q,and the matrix ®(q,q’)

determines the force on particle g exerted by a dis-
placement of particle ¢’.

We wish to study those solutions of (1.1) which re-
present either propagating or standing waves. In
particular, we shall determine the effect of random
defects or impurities in the crystal upon the waves.
Thus we assume that the masses M(q), the coupling
matrices ®(q,q’),and the forces f(q) are random
quantities with a given joint probability distribution.
As a consequence a solution u(g) of (1.1) will also be
random. The mean value of u{g), which we denote
{u(q)),is often referred to as the coherent wave and
the difference u — {u) as the fluctuating or incoherent
wave. We shall consider only the coherent wave and
attempt to determine it.

For this purpose it is convenient to introduce the
linear operator L defined by

L=2 (8(q,q") — wM(g)0y]. (1.2)
ql
Then (1.1) can be written in the form
Lu =f. (1.3)

The solution of (1.3) can be written formally asu =
L~1f and then (u) = (L"f). We now assume that Land
f are statistically independent so that (u) ={L-1)().
Next, following Keller we multiply by {(L™1)~1 to obtain

(L"H"Kw) =(D.

This is an exact equation satisfied by (u),although in
this form it is not yet useful.

(1.4)

We now assume that the lattice is statistically homo-
geneous, which means that the operator (L 1) is in-
variant under the translations which leave the lattice
invariant. We also assume that {f) = 0. Then (1.4)
possesses plane wave solutions. For a lattice with
one particle per unit cell a plane wave has the form
(u(q)) = Aek=a, (1.5)
Here x(q) is the position of the gth lattice site. The
case in which there are more than one particle in
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each unit cell is treated in the Appendix. By using
(1.5) in (1. 4) with ) = 0 and multiplying by e &x(a),
we obtain

e kx (g [~1)-1¢ikx(g)A = 0, (1.86)
In order that (1.6) have a solution A different from
zero,the coefficient matrix must be singular,

det(e &=L -1)-1 gkex{g)) - 0, (1.7
Equation (1, 7) is the exact dispersion equation relat-
ing the wave vector or propagation vector k of the
mean wave to the frequency w. The matrix in it is of
nth order in » dimensions. It is independent of ¢ as a
consequence of the translational invariance of (L 1);

in fact,this independence could be taken as the defi-
nition of such invariance.

To make (1.7) useful we assume that L is the sum of
a nonrandom operator L, and a small random opera-
tor €V,where € is a small parameter. Thus we write

L=1L,+ ¢€V. (1.8)
We also assume that (V) = 0, which can always be
made so by choosing L, = (L). Then by using (1. 8)
we obtain,to second order in €,

(L) 1= L, — eXVLylV) + 0(e3). (1.9
Upon using (1.9) in (1.7) and omitting O(e3) we obtain
the dispersion equation in the following useful form:

det[e" XL, — eXVL V))e®xW)] = 0. (1.10)

More terms can be obtained in (1. 10) by keeping
more terms in (1.9).

In order to apply the result (1.10) we assume that M
and ® are of the forms

M(q) =m[1 + eulq)], (1.11)

®(q,9") = ¢y(q,q9") + €¢lg.q). (1.12)
Here the constant m and the matrix <I>0(q,q’) are not
random and pertain to the perfect crystal. The de-
fects are described by the random functions u(g)

and ¢(q,q’) which are assumed to have zero mean
values:

<N(q)> =0, <¢(€1,61')> =0.

The small parameter € is introduced to indicate that
the random imperfections are small. We can now
write L given by (1.2) in the form (1. 8) with L, and
V defined by

(1.13)

Lo =2 (24,97 — w2moy,], (1.14)

ql

V=2 [elg,q)— w?m u(g),,]- (1.15)
ql

To use (1.10) we must calculate Lyl, which can be ex-
pressed by means of the Green's matrix G(q,q’,w) of
the perfect crystal. This matrix is the outgoing solu-
tion of L,G = §_,I, where [ is the unit matrix. By
using (1.14) we can write this equation as

d. Math, Phys., Vol. 13, No. 9, September 1972
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—w?mGlg.q'sw) + 25 %4(¢:9") Glg",q", @) =08,,1.
q'f
(1.16)

In terms of G we can write the dispersion equation
(1. 10) explicitly as follows:

det{—w2mi + 2, &(q,q")e*ixla)x(g)]
ql

—e2 3 ([olg,q) — wlmulg)d,]
qlq"qll/

X Glg',q", w)elg", ¢") —~ wim u(g") 81

X giklx(gm-x(l} = 0, (1.17)
This is the dispersion equation which we shall sim-
plify and solve in the next section.

2. SIMPLIFICATION OF THE DISPERSION
EQUATION

We shall now assume that the coupling matrices
®{¢,q’) are not random so that ¢(g,q’) = 0. Then
{1.17) becomes

det(—-wzml + ®(k) — €2dm?2

X2 G(q»q’,wKu(q)u(q'))e""'["“")“X(q”) = 0.
¢ (2.1)

Here we have introduced the matrix ®(k),the dis-
crete Fourier transform of &,(q,q’),defined by
8(k) = (g, q)eix@)x@], (2.2)
ql
Because &, is invariant under lattice translations,
&(k) is independent of q.

1t is convenient to introduce R{q,q’),the two point
correlation function of u,defined by

Rlg,q") ={ul@)ulg).

In view of the assumed statistical homogeneity of the
crystal, R is invariant under lattice translations.
Then the sum in (2.1) can be recognized as the dis-
crete Fourier transform of GR. We shall denote it
GR(k,w) since G depends upon w and the transform
variable is k. Thus this matrix is defined by

GR(k,w) =2, Glg,q’, w)R(q,q")e&x@)x)],
ql

(2. 3)

(2.4

We note that GR is independent of g because both G
and R are invariant under lattice translations. Now
by using (2. 4) we can write (2. 1) in the compact form

det{w2Znl — (k) +62w4n32(5\1’2(k,w)} =0, (2.5)
To study propagating waves we must solve (2.5) for
k as a function of w,with w real, while for standing
waves we must solve for w as a function of k with k
real. In each case the solution will also depend upon
€2, 80 we can write the solutions as k{w, €2) and
w(k, €2). When € = 0,(2.5) becomes the dispersion
equation for the perfect crystal, which is
detfw2ml — &(K)] = 0. (2.6)

Let us denote the solutions of (2. 8) by kq{w) and
wg{k). Then because of the random defects these
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solutions will be modified,and we can write the modi-~
fied solutions in the forms

k(w, €2) = kolw)[1 + €2ky(w) + O(e?)], (2.7

w(k, €2) = wy(k) + 2w, (k) + O(ed). (2.8)

In (2.7) we have chosen the direction of k to be the
same as that of kg, so that &, is a scalar.

In order to find %, we substitute (2.7) into (2. 5), equ-
ate to zero the coefficient of €2,and solve the result-
ing equation. To find w,, we use (2.8) in (2.5) and
proceed similarly. The results can be written in
terms of derivatives of determinants or in terms of
cofactors. Upon using them in (2.7) and (2. 8) we can
write the solutions in the following two forms:

k(w, €2) = kolw) — €2ky(w)[8,2 det[w2mI — 5(1(0)]
+ e2wim? GR(kgy,w)] 2.,

* (koo det[wZm2] — $(ky)]}L + O(e?)
= ko) + e?k(wwtm? T [CRlk,, w)];
ij
x cof{w?ml — (ko) A2 [ko-3x P, (ko)

x cof[w2ml — &(ky)],, ;1 + O(e?), (2.9)

w(k, €2) = w(k) — €[5,z det{wdmI
— oK) + ezw%mzéﬁjk,wo)]}ez:o
X [awo‘ detjwml — e(k)]]* + O(e?)

= w(k) — §e2w8'm%} [GR(k, w,)],; cof[wmI

— &(B)], {2 coffwiml — &(R)], 11 + O(e).
? (2.10)

The €2 term in (2.9) is generally complex when w is
real. The real part of the correction represents a
change in the wavelength of the wave and, therefore,
also a change in its phase velocity. The imaginary
part represents an attenuation of the coherent wave
due to scattering of its energy into the incoherent
wave,which gradually grows as the coherent wave de-
cays. Similarly the real part of the €2 term in (2. 10)
represents a frequency shift due o scattering by the
impurities and the imaginary part represents a cor-
responding damping of the coherent vibration.

The dispersion equation (2.5} and the results (2.9)
and (2. 10) can be simplified in the one-dimensional
case. Then the matrix in {(2.5) is a scalar so that
(2.5) becomes

wim — 5(k) + 62w4mzéﬁ(k,w) = 0. (2.11)
The results (2.9) and (2. 10) are now simply
— 2&(k)\ L
Blw, €2) = kg(w) + €2wim2GR(ky, w)
ok,
+ 0(et), (2.12)

w(k, €2) = +{[m " 18(k)]1/2 — (e2/2m 1/2) [8(k)]3/2
XGR(k,wg) + O(e®)}. (2.13)
Here wy(k) =m~1/2 [$(k)]1/2,and ko(w) is the solution

of &(ky) = w?m . These results will be made more
explicit in Sec. 4, where a crystal with nearest neigh-
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bor interactions and two special forms of the cor-
relation function R will be considered.

In addition to the above solutions of the dispersion
equation, which are perturbations of the solutions for
the perfect crystal,there are generally other solu-
tions. They represent new waves or modes which
occur only when imperfections are present in the
crystal. We shall see an example of such solutions
in Sec. 4.

3. UNCORRELATED DEFECTS

An important special case of an imperfect crystal is
that in which the defects are uncorrelated. In that
case the correlation function R is given by

R(g,q") ={u2)o,,. (3.1)
Then if we note that G(q,q,w) isindependentof ¢, (2. 4)
yields

GR(k,w) = (12)G(0,0,w). (3.2)
For a simple cubic crystal with suitable symmetry in
n dimensions, the matrix G(0,0,w) is a scalar multi-
ple of the nth order unit matrix. This is also so for
certain other crystals. Therefore we now assume
that

G(Os 07 w) = g(w)l,

where g(w) is a scalar. Then the dispersion equation
(2. 5) becomes
det{{w2m + e2wim2(u2) g(w)|I — &(k)} = 0. (3.3)
This dispersion equation (3. 3) is the same as Eq.
(2.6) for a perfect crystal with m replaced by an ef-
fective mass m,(w) given by

my (W) =m +e2w2m2{u? g(w). (3.4)
Alternatively we may say that w is replaced by [w?2
+ €2wtm(u?) g(w)]1/2. Thus the solution of (3. 3) for
k{w, €2) can be written as

k(w, €2) = ko{[w? + 2wim(u2) g(w)]¥/2}. (8.5)
This result shows that no new modes of propagation
occur in this case. Instead the solution for k in the
presence of uncorrelated impurities is just that for
a perfect crystal at a shifted and, generally, complex
frequency. To expand (3.5) we set ky(w) =kykq(w),
where k, is a unit vector independent of w and ky(w)
is a scalar. Then (3.5) yields

. €2 kg
k(w, €2) =k, (ko(w) + ry w3m{u2) g(w) ™ + 0(64)>.

(3.6)

We note that the correction to ky(w) is proportional to
the reciprocal of the group veloecity dw/dk for the
perfect crystal.

In order to solve (3. 3) for w(k, €2), we first use the
solution w (k) for the perfect crystal to write
w2 + 2wim(p?) g(w) = wik). (3.7)

Then by expanding w(k, €2) about w (k) we obtain
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w(k, €2) = w(k) — 2m(p2wig(w,) + O(e?).  (3.8)
In addition to the solution (3.8), (3.7) may have other
solutions.

4. PROPAGATION CONSTANT FOR A ONE-
DIMENSIONAL CRYSTAL

To illustrate the preceding results we shall apply
them first to a one-dimensional crystal,i.e.,to a
linear chain with the gth particle at x(¢q) = g¢d, ¢ =
0,1, -. Let us assume that only nearest neighbors
interact, with spring constant a = 0. It follows that ¢
is given by

®lg,q) =—a if g’ =gql,
poned +20— lf q’ = q)
=0 otherwise. (4.1)
Then (1.14) yields for L the result
Ly=—aA? —w?m?2, (4.2)

Here A2 is the second central difference operator
defined by

AZu(q) =ulg + 1) — 2ulq) + u(q — 1). (4.3)

When ¢(q,q") = 0,(1.15) yields V = —emyw2u(q).

The Fourier transform (2. 2) becomes, when (4. 1) is
used in it,
(k) = —afeihd — 2 + ¢itd) = 20(1 — coskd). (4.4)

The Green's function of L, given by (4. 2) is easily
seen to be

pifola-aid

Gllg—q'l,w) = ———,

w = 0,(da/m)l/2,
Sia sinkyd

(4.5)

Here ky(w) is the solution of the dispersion equation
(2. 6) for the perfect crystal, which becomes, when
(4. 4) is used,

coskyd =1 — 2(w/w,)?, w, =(4a/m)1/2 (4.6)
We see that the principal solution of (4. 6) yields
ko(w) = 0 at w = 0,and that k, remains real and in-
creases to the value 7/d at the cut-off frequency
lw| = w, = (40/m)1/2. For |w| > w,, kg is imagin-
ary. Thus in the perfect crystal with w real, waves
propagate for 0 < fw] < w, and are evanescent or
nonpropagating for |w/| > w,. The correlation func-
tion R defined by (2. 3) is a function of |q — ¢'] in the
present case, R = R(|q —q’|). Thus (2.4) becomes

GR(k,w) = —(2ia sinkod)™1 33 R(|q|) &' %o'e!* k)3

! (4.7
Now we use (4.7) and (4.4) in (2. 11) to obtain the
dispersion equation
coskd =1 — 2(w/w,)? — 8e2a(w/w,)* GR(k,w).

(4. 8)

By solving (4. 8) for k or for w,or by using (4.7) and
(4. 4) in (2. 12) and (2. 13), we obtain the results

J. Math, Phys., Vol. 13, No. 9, Septembder 19%2
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134 ; 2 3/2
Blw,€2) = ky + ——& 5% R(lg])e o®ei*® I b oe2) = [" € (1 — coskd)
O d(w,/w)2 — 1) 7«33 (lq mu(k, €%) = 20, sinkd 2
+ 0(et), (4.9

><<R(0) S RGO+ coqukd)) + 0(e4)]. (4.14)
w(k, €2) = £w,[5(1 — coskd) /2 — (i€2/sinkd) -t

x 3(1 — coskd)3/2 35 R(|q|)et lai+a) + O(e4)].
g (4. 10) Im&kdi
Taking the real and imaginary parts of (4.9) and
(4.10) yields
04 .
€2 742 -1
Rek(w, €2) = Reky(w) — — (——‘i — 1)
2
d \w
o0
X 2, Rlq) sin2qkyd + O(e?), (4.11)
g=1 0.3 _
€2 sw? -1
Imk(w, €2) = ImRy{w) + —{——1
d \w?2
o0
x(R(O) + 7, Rip(1 + coqukOd))+ O(e?), (4.12)
g=1 0.2+ —
1 — coskd\!/2 €2
Rew(k, €2) = +w, [<———_— o
2 sinkd %
CO’/
— 3/2 & o,
X (}___9%&@) 22 R{g) sin2qkd + 0(64)], (4.13) o1k Py, _
2 g=1 ' v
</ &
.:61
Relkdixw
1o 7 N —— i i L1 ! ! [
G O 02 03 04 05 06 07 08 09 10
09 1 w/wc
FIG.2. Imkd vs w/w, for the same case as in Fig, 1
08 based on (4. 15), with four values of § = €2(y2),
' w Uy
()
0.7 A 105
06 - 5
=06 8:08
5:04
05 =
100 820
04 -
03 -
02 - 3-06
0.95~ $=0.8 =04
O -
L $:02
! ] L. L 1. 1 i 1 t
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FIG.1. Rekd is shown as a function of w/w, for waves in a one- kd x 77
dimensional crystal with nearest neighbor interactions and uncor-
related mass defects for three values of 6 = €2(u2). The curves FIG.3. The phase velocity w/Rek, divided by the perfect crystal
are based on the “exact” dispersion equation (4.15). The approxi- velocity w/Rek,,vs.w/w, for the same cases as in Fig.2 based on
mation (4.16) is independent of €2(u2) and yields only the perfect {4.15). Only velocities for frequencies below the cut-off frequency
crystal curve for which € = 0. w, are shown.
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The results (4. 11) and (4. 12) determine the phase
velocity w/Rek and the attenuation coefficient Im#k of
the mean wave. For propagating waves the attenu-
ation coefficient is positive because w2 < w2, and the
expression in braces in (4. 12) is also positive. This
is so because it is the sum of R(0) and the Fourier
transform of the correlation function R evaluated at
zero and at 2kqd, all of which are positive. Similarly
(4. 13) and (4. 14) determine the frequency and decay
rate of a standing wave.

As an example, let us consider uncorrelated mass
defects. Then R(g) = 0 for ¢ = 0, R(0) = (u2) and the
dispersion equation (4. 8) becomes

2 2ieXp?(w/w,)?
coskd = 1— 2(%) — [W . (4.15)

C
From (4.15),or from (4.11)-(4.14),o0r from (2.12)
and (2.13), we obtain

Rek(w, €2) = Reky(w) + O(e4), (4.16)

Imk(w, €2) = Imkg(w) + B2 4 o(ct),

d[(w,/w)? — 1] .17)

Rew(k, €2) = 2w, [5(1 — coskd)/2 + 0(e?)],  (4.18)

Imw(k, €2) = +w, [—(€2(?)/sinkd) 3(1 — coskd)3/2
L o(ed)].  (4.19)

Upon rationalizing (4.15), it becomes a cubic equation
in (w/w,)2. Therefore in addition to the solutions
tw(k, €2) given by (4.13) and (4.14),there are two
other pairs of solutions. One of them, which corres-
ponds to the vanishing of the denominator of the €2
term, is readily found to be

2e4(1n2)2w,

(coskd —1)2 ' 0(66)>. (4.20)

w(k,€2) =+ (wc +

The other is spurious, since it does not satisfy the
unrationalized equation. We note that the solution
(4.20) is real to the order shown.

Graphs of Rekd and Imkd as functions of w/w, for
several values of €Z(u2) are shown in Figs.1 and 2.
Figure 3 shows the corresponding phase velocity
w/Rek. Figures 4 and 5 show Rew/w, and Imw/w, as
functions of kd based on (4.15) and also on (4,18)-
(4.20).

As a second example let us treat mass defects with
the exponential correlation function

R(q) = (u2)elald/a, (4.21)

Here a is the correlation length of the random de-
fects. Now (4.7) can be summed to yield

~ (2 - . -
CB(k, w) = = [(1—e d/a+i (gt k)d) 1
2ia sinkyd

d/a+i -
+ (e /a l(k0+k)d_1) 1]

_ (u?) sinkd , (4.22)
2a sinkyd (coskd — cosKd)

where K is defined by
K(w) = ko(w) + (i/a).
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FIG.4. Rew/w, vs. kd for the same case as in Fig.1 based on
(4. 15), with four values of 8 = €2(u2), The approximate result
(4. 18) yields only the perfect crystal curve for which € = 0.
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(4.15), with four values of & = €2(uu2). The approximation (4.20)
yields only the result Imw = 0.
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as in Fig. 6,based on the approximation (4.28).
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Then the dispersion equation (4. 8) becomes

(coskd — coskyd) (coskd — cosKd) = 4€2(u2)

X (w/w,)4 (sinKd/sinkyd). (4.24)

When € = 0,(4.24) has the two solutions & = k,(w) and
k = K(w). Then perturbation analysis yields for ¢
small the following two solutions:

4e2?) (w/w,)* sinkd
d sin2kyd (coskyd — cosKd)

kw, €2) = kylw)

+0(e?),  (4.25)
i 4e2(u2) (w/w,)*
2 _ L
Rlw, €2) = ky(w) a d sinkd (cosKd — coskd)
+ 0(et).  (4.26)

Solution (4.25) represents the slightly attenuated mo-
dification of the mode of the perfect crystal, while

(4. 26) represents an additional strongly attenuated
mode.

The real and imaginary parts of & given by (4.25) are

Rek = kO it 4 ‘—% - 1)
w

e~4/a sin2kyd

1 — 2e7%/@ cos2kyd + e24/a

€2<IJ'2> wg -1 e-d/a
Lo g (S
d <w2 ) <1 — gd/a
1 — e /e cos2kyd

+
1 —2e%/a cog2kyd + e 2d/a

We see that Imk > 0, and that Rek < k&, if sin2kyd > 0
and Rek > k; if sin2kyd < 0. Thus the phase velocity
w/Rek of the mean wave exceeds that of the unper-
turbed wave if 0 < k, < 7/2d and is less than the un-
perturbed speed if n/2d < k, < n/d. Graphs of the
phase velocity w/Rek and of Imk are shown in Figs. 3
and 7,based on (4.27) and (4.28). We note that kyd =
/2 at w/w, = 2712 = [ 707.

To solve (4.24) for w(k, €2),we use (4.4) and (4. 22)
in (2.13) to obtain

w(k, €2) = +w,{3(1 — coskd)1/2 + (ie%(u2)/sinkd)3/2

x [(1 — e-d/a+2ikd)~1 ¢ (gd/a — 1)"1] + ofed)}.
(4.29)

In this case both Rew and Imw have corrections of
order €2 to the solution for the perfect crystal. Addi-
tional solutions of (4.24) can also be obtained;but

we shall not present them.

Qur result (4.17) for uncorrelated defects can be
compared with a result obtained by Rubin8 and Mat-
suda and Ishii® for w/w, small. When w/w, is small,
Imky(w) = 0 and (4.17) yields Imk(w, €2) ~ eXu2dw2,
Both Rubin and Matsuda and Ishii obtained one-half
this result. The difference is evidently due to the dif-
ferent statistical properties of the solution deter-
mined by those authors and by us.

It is also of interest to compare our low frequency
result with the result for a continuous elastic rod. In
the one-dimensional case with nearest neighbor in-
teraction,the equation of motion is

o{ed), (4.27)

Imk =

) + 0(e?). (4.28)

aA2u(q) + w2m[l + eu(q)]ulg) = 0. (4.30)
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We now let the spacing d and the frequency w tend to
zero in a fixed ratio. Then we define k,, which is fi-
nite, by

ko = (w/d) tm /a)2/2, (4.31)
We also set x = gd and then (4. 30) becomes
2 .
420 | a1+ en()|ulx) = 0. (4.32)
dx?

This equation, with p(x) a random function, has been
analyzed by Kupiec et al.1® When the correlation
function of u(x) is a delta function or an exponential,
the results (22),(36),and (37) of Ref. 10agree, respec-
tively, with our results (4.15),(4.25),and (4. 26) for

w small.

APPENDIX: NONSIMPLE LATTICES

Let us consider a lattice with pparticles per cell. We
shall label each cell by a vector n = (ny,n,,n4) with
integer components, and label each particle in a given
cell by an index r = 1,...,p. Thus q = (n,r) desig-
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nates a particular particle in a particular cell. Let
a,,a, and a, be the three primitive translation vec-
tors of the lattice. Then x(n) =n,a; + nya, + nza,
denotes a fixed point in cell n and x(n,7) = x{n) + £(»)
denotes the equilibrium position of particle n,». The
displacement u(g)e *«* satisfies (1. 1), which can be
written in the form (1. 2) with L given by (1. 3), and
(i) satisfies (1.4).

A plane wave is a solution of the form

(un,r) = A@)ekx(n) ¥ —1,...,p. (A1)

By using (Al) in (1.4) with f = 0, we obtain

ekx(m) ([ Hy-lekx(WA(y) =0, »=1,...,p.
(A2)

These are p vector equations for the p vectors A(¥),
and their determinant must vanish for the solution to
be nontrivial. This determinant is of order 3p in
three dimension, 2p in two dimensions, and p in one
dimension. Its vanishing yields the dispersion equa-
tion for k.
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The lattice Green's function for the triangular lattice at an arbitrary lattice site is expressed in terms of the

complete elliptic integrals of the first and second kind. The lattice Green's function for the honeycomb lattice
is shown to be expressed in terms of the one for the triangular lattice. The results obtained are shown by

graphs.

1. INTRODUCTION

The triangular lattice is the two-dimensional closed
packed lattice. The honeycomb lattice is composed of
two triangular sublattices. The lattice sites on one of
the sublattices, say A in Fig. 5, have bonds extending
vertically downward, while the sites on the other sub-
lattice B have bonds extending vertically upward. The
lattice sites of one type cannot be found from those of
the other type by a simple translation, which would be
required if they were in equivalent position in the lat-
tice. These situations resemble the relation of the
fcc and diamond structure lattices. The density of
state for the diamond structure lattice was recently
calculated by Thorpe and Weaire! in connection with
the problem of electronic properties of an amorphous
solid of the Weaire model.2 In that calculation, the
one-band Hamiltonian of the Weaire model is used
which is equivalent to the one of the electron in the
solid on:the tight-binding approximation. In order to
see whether the structure of lattice reflects in its
lattice Green's function or not, we investigate the be-
havior of the functions for the triangular and honey-

comb lattices and discuss the similarity between the
functions for the honeycomb and diamond structure
lattices.

The theoretical studies of the lattice vibrations of
graphite need the lattice Green's function for the lat-
tice of the graphite structure. In that structure,the
distance between layers is much larger than the dis-
tance between the nearest atoms within the same
layer, and the forces between atoms within the same
layer are usually much stronger than those between
atoms in different layers.3 If only the nearest neigh-
bor interaction in the same layer is assumed, the lat-
tice Green's function for the honeycomb lattice is
needed for the studies on the lattice vibration of the
graphite.4

In the present note, we investigate the lattice Green's
functions for the triangular and honeycomb lattices.
It is shown in Sec. 2 that the lattice Green's function
for the triangular lattice is expressed in terms of the
complete elliptic integrals of the first and second
kind with a modulus of complex number, and in Sec. 3
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1. INTRODUCTION

The triangular lattice is the two-dimensional closed
packed lattice. The honeycomb lattice is composed of
two triangular sublattices. The lattice sites on one of
the sublattices, say A in Fig. 5, have bonds extending
vertically downward, while the sites on the other sub-
lattice B have bonds extending vertically upward. The
lattice sites of one type cannot be found from those of
the other type by a simple translation, which would be
required if they were in equivalent position in the lat-
tice. These situations resemble the relation of the
fcc and diamond structure lattices. The density of
state for the diamond structure lattice was recently
calculated by Thorpe and Weaire! in connection with
the problem of electronic properties of an amorphous
solid of the Weaire model.2 In that calculation, the
one-band Hamiltonian of the Weaire model is used
which is equivalent to the one of the electron in the
solid on:the tight-binding approximation. In order to
see whether the structure of lattice reflects in its
lattice Green's function or not, we investigate the be-
havior of the functions for the triangular and honey-

comb lattices and discuss the similarity between the
functions for the honeycomb and diamond structure
lattices.

The theoretical studies of the lattice vibrations of
graphite need the lattice Green's function for the lat-
tice of the graphite structure. In that structure,the
distance between layers is much larger than the dis-
tance between the nearest atoms within the same
layer, and the forces between atoms within the same
layer are usually much stronger than those between
atoms in different layers.3 If only the nearest neigh-
bor interaction in the same layer is assumed, the lat-
tice Green's function for the honeycomb lattice is
needed for the studies on the lattice vibration of the
graphite.4

In the present note, we investigate the lattice Green's
functions for the triangular and honeycomb lattices.
It is shown in Sec. 2 that the lattice Green's function
for the triangular lattice is expressed in terms of the
complete elliptic integrals of the first and second
kind with a modulus of complex number, and in Sec. 3
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that the lattice Green's function for the honeycomb
lattice is calculated with the aid of the one for the
triangular lattice. The analytic properties become
clear for these functions. The discussion is given in
Sec. 4 for the singularities of the function and for the
behavior of the function for the honeycomb and dia-
mond structure lattices.

2. TRIANGULAR LATTICE

The lattice Green's function for the triangular lattice

with the nearest neighbor interaction is the solution

of the following difference equation which involves the

§-function type inhomogeneous term

2t G(la, mb) —
— G(la + a,mb +b) —
—G(la—a,mb +b) —

G(la + 2a,ma) — G(la — 2a, mb)
G(la + a, mb — b)
G(la ~ a,mb — b)

=20,00,,0° (2. 1a)
where ! + m is an even integer, and ¢ and b are equal
to 3 and —w/— times the length of the edge of the tri-
angles: a=3and b = 1V3if the nearest neighbor dis-
tance is chosen to be equal to 1. The boundary value
of the function is required to be equal to zero as 12 +
m?2 tends to infinity. The solution of this equation
under this boundary condition is given as follows:

ab /a fwr/ b

—_— X
(2m)2 “n/a ~1/b
ei(lax+mby)

G(la,md) = dy

. (2.2a)
t — cos2ax — 2 cosax cosby

The function is unchanged under the rotation by an
angle 3(n7), n = 1,2, 3,4, 5, of the coordinate axes
around the origin,

G(la, mb) =

G(la cosi(nr) — mb sin3 (um),

la siny(nm) + mb cosiln)), (2.3)

and under the inversion on the la axis and mb axis,

G(la,mb) = G(la, —mb) = G(~ la, mb); (2.4)
cf. Fig. 1. Using Eq. (2. 3) for » = 5 and Eq. (2. 4) for
the inversion on the mb axis, one obtains the following
equation by which the function G(la, mb) for mb > 3la
is expressed in terms of the one for mb < 3la:

Gla, mb) = GGla + 3V3 mb, V3 la— imb). (2. 5a)

FIG. 1. The network of the triangular lattice.

J. Math. Phys., Vol, 13, No. 9, September 1972

TSUYOSHI HORIGUCHI

Thus it is sufficient to calculate only the values at
lattice sites shown by a black point in Fig. 1.

Equations (2. 1a) and (2. 2a) are simplified to

—GIl+1l,m+1)—G(Il+1,m—-1)
__G(l——l,m+ 1)—G(l_1’m_1)
= 251,06m,0y (2 lb)
T
G(l,m) =— fy dx fon dy coslx cosmy

{ — cos2x — 2 cosx cosy )

(2. 2b)
(2. 2b) may be obtained either by solving (2. 1b) or by
changing the variables x and y in (2. 2a) by x/a and
v/b, respectively. To show the variable ¢ explicitly,
we use the notation G(¢;!,m) in place of G(I, m).

We shall see later that the value of G(I,m) at an arbi-
trary lattice site is calculated by using some recur-
rence formulas if the values of G(0,0), G(2,0),and
G(4,0) are known. At first, we investigate these three
functions.

If ¢ is real and t> 3, the values of G({,0) for 1 = 0,2, 4
are obtained by the standard formulas5 as follows:

G(0,0) = (1/2m)gK (), (2.6)
G(2,0) = (1/2m)g{2[1— (1/a?)] TI (a%,k)
+ [(2/a2) — 1]K(R)}, (@.7)

G(4,0) = (1/2m)g{[(a® — 2)2/a*]K(k)
+ [4(@2 — 1)/(k2 — a2)a2]E ()
+ [4@2 — 1)/(k2 — a2)at](k2 — 222 + a?)
X 11 (@2, k), (2.8)
where
g = 8/[(2t + 3)¥/2 — 13/2[(2¢ + 3)1/2 + 3]1/2, (2.9)
a2 = 4/[1 — (2t + 3)1/2]2, (2.10)

= 4(2t + 3)1/4/[(2t + 3)1/2 — 1]3/2[(2¢+ 3)V/2 4 3]1/2,
(2.11)
and K{(%),E(k),and Tl (@2,k) are the complete elliptic
integrals of the first, second, and third kind, respec-
tively:

/2 1
K(k) = [ 57 smzgya 20 (2.12)
/2
E(R) = fo“ (1 — k2 sin26)1/2d0, (2. 13)
/2 1
M{a2,k) =
(@2, k) fO (1 — a2 sin26)(1 — k2 sin29)1/2
(2. 14)

On the other hand, substituting (2. 6) into Eq. (2. 1b)
for I = 0 and m = 0 and using the symmetry relations
(2. 3) and (2. 4), we obtain another expression for
G(2,0);

G(2,0) = (t/6m) gK(k) — 5. (2.15)

By comparing two expressions (2.7) and (2. 15) for
G(2, 0), we obtain the following relation which expres-
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ses the complete elliptic integral of the third kind
(2. 14) in terms of the one of the first kind (2. 12) for
the special modulus £ and parameter a2 given by
(2.11) and (2.10):

G(4, 0)

T2 3(k2 — a2)a?

Equations (2. 6), (2. 15), and (2. 17) express G(0, 0),
G(2,0),and G(4,0) in terms of the complete elliptic
integrals of the first and second kind.

We have derived these expressions for the case in
which f is real and ¢t > 3. Because of the analyticity of
the lattice Green's function, these expressions are
valid for any complex value £. When { = s + i€, where
s is real and € is a positive infinitesimal number, the
factor (s + ie — @)1/ for s > a changes to e*i"n(q —
s)1/7 for s < a in Egs. (2. 9)-(2. 11). Figures 2(a) and
2(b) show the curves for modulus & for t = s + ie,

— o< s< o and € > 0. The upper half of the complex
t plane is mapped into the region which is the second
and third quadrants outside of the loop and the fourth
quadrant for { = s + ie in Fig. 2(a), and the lower half
into the region which is the second and third quad-
rants outside of the loop and the first quadrant for

t = s — i€ in Fig. 2(b). The function K(k) and E (k)
have branch points at 2 = + 1. The expressions (2.12)
and (2. 13) are analytic on the Riemann surface exclu-
ding the branch cuts connecting + 1 and + o, and — 1
and — %, respectively,on the real axis. We call this
part of the Riemann surface as sheet I. The Riemann
surface which is the upper quarter plane reached
through the cut connecting — 1 and — «© from the sheet
I is denoted as sheet II in Fig. 2(a), and the one which
is the lower quarter plane reached through the cut
connecting — 1 and — © is denoted as sheet III in Fig.
2(b). In Figs. 2(a) and 2(b), sheets I and II and sheets
I and II, respectively, are written in the same figure

.y
COMPLEX k PLANE
2
I t=s+i€ (€20}
i
§=-1L5
-2 =1 0 I\ ; —_—
/ $=3 =1
s+
-1
I 1

-2 1

1 <3(a2~ 2)(B2 + @2 — 2) + 2(k2 — 202 + a4)tK(k) + 4{a2 — 1) E(k)>—- 2 (k2 — 202 + a4)
2
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M(a2,k) = [1/6(e2 — D{[(3 + t)a2 — 6]K(k)
— (2ma2/g)}.
By using this relation in (2. 8), G(4,0) is given by

2. 16)

(k2 —a2)a 3(k2 —a2)az  '(2.17)

—

by drawing the branch cut connecting — 1 and + 1.
For % on the sheets II and III, the analytic continua-
tions of the function K(k) and E (%) on the sheet I to
the sheets II and III are considered, and the obtained
expressions are used in place of K(k) and E(k). They
are given as follows®.7;

KU (k) = K(k) + 20 K'(R),

EI(k) = E(k) + %[K'(k) — E'(k)],
KUL(k) = K(k)— 2%K'(k),

EUI(E) = E(k)— 2i[K’'(k) —E"(R)],

(2.18)

where K’(k) and E’(k), respectively, are the complete
elliptic integral of the first and second kind with the
complementary modulus of k. One sees from (2. 18)
that the analytically continued function has the
branch points at the origin and at the infinity. In Fig.
2(a), these branch points are connected along the posi-
tive portion of the imaginary axis and in Fig. 2(b)
along the negative portion of it. Hence sheet II in
Fig. 2(a) is restricted to the left upper quarter of the
complex k2 plane and sheet III in Fig. 2(b) to the left
lower quarter.

We have the expressions of the functions G(0, 0),
G(2,0),and G(4,0) for any complex variable #:

G(0,0) = (1/2n)gK (&), (2. 19)
G(2,0) = (t/6n)gK (k) — %, (2. 20)
COMPLEX k PLANE
z -
tz=s-ie (€ 20
I I
Y
[NV s T

-2

s= -1 ‘

FIG. 2. (a) The curve of the modulus % in the complex 2 plane when ¢ = s + ¢, s is real and ¢ is a positive infinitesimal number. The

bold solid lines between — 1 and + 1, and 0 and + ¢« denote the branch cuts of the complete elliptic integrals of the first and second kind.
The lower half-plane represents the sheet I and the left upper quarter of the plane the sheet II. (b) The curve of the modulus % in the com-
plex k-plane when t = s — je. The bold solid lines between — 1 and + 1, and 0 and — i« denote the branch cuts of the complete elliptic in-
tegrals of the first and second kind. The upper half-plane represents the sheet I and the left lower quarter of the plane the sheet III.
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1
G(4,0) = =~
(4,0) ™

« g 3(a2 — 2)(k2 + 02 — 2) + 2(k2 — 202 + ot
3(2 — a2)a
E(k)) _2(k% — 202 + ad)
3(k2 — a2)0?

) &k

4(@2 — 1)
(k2 — a2)a2

, (2.21)

where K (k) and E (k) are given as follows:

"K(k) for Im¢ > 0 and Imk< 0
- or Im¢t < 0 and Im%2> 0
K(k) = ,  (2.22)
?KU(k) for Im¢ > 0 and Im% > 0
K1)  for Imt < 0 and Imk < 0
|.5’~ T T _[» T T T ]
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FIG. 4. The lattice Green's functions G(3, 1), G(5, 1), and G (6, 2)
for triangular lattice. R and ] indicate the real and imaginary parts,
respectively.

1415
"E (k) for Imt > 0andImk < 0
- orImt < 0andImk> 0
E(k) = . (2.23)
E(k) for Im¢ > 0 and Im%. > 0
EIil{p) forImf<OandImk<O0

It is known that the complete elliptic integrals of the
first and second kind with the modulus of complex
number are easily calculated by using the aritheme-
tic geometric means.® Thus, one is able to know the
Green's functions G(, 0) for I = 0, 2, 4 numerically as
well as analytically.

We shall derive some recurrence formulas in order
to obtain the values of G(I, m) at an arbitrary lattice
site. In the first place, we consider the function

G(l,0). In Refs. 9 and 10, a method of deriving a re-
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currence formula connecting the lattice Green's func-

tion along an axis is discussed for the square lattice
with the interaction up to the second neighbors. By
the same method, one obtains the following recur-
rence formula for G(I, 0):

G(l + 4,0) = 1AL+ 2)][4( + 1)(t + 1)G( + 2,0)
— 21(212 — 3)G (1, 0) + 4(1 — 1){{ + 1)

XG(l—2,0)— (I —-2)G(I—4,0)], (2.29)
where [ is even. From this equation, one sees that
the values of G(I, 0) for ! = 6 are calculated from the
knowledge of G(0,0), G(2,0),and G(4,0). Thus one is
able to calculate the lattice Green's function at an
arbitrary lattice site on the la axis in Fig.1. The
graphs for the G(1,0) (I = 0, 2, 4, 6) are given in Fig. 3
fort =s—ie,— o< s<wand e 0.

In the next place we consider the function G(I, 1).
From Egq. (2. 1b), one obtains the following equation by
taking symmetry properties (2. 4) into account:

GI+1,1)=tG(,0) ~3[G( + 2,0)

+G{I—2,0)]-G(I—1,1), (2.25)

where [ is even and greater than or equal to 2, and

G(1,1) =G(2,0). (2. 26)
For G(I,m) where I = 4 and m = 2, the following re-
currence formula is obtained by applying Eq. (2. 1b)
for lattice site (I — 1, m — 1):

G(l,m)=2tG(l—-1,m—~1)—G(l—2,m)
—-GUl—-3,m—1)—G(l+1,m—1)

—G(,m—2)—G(l—2,m — 2). (2. 27)

When Eq. (2. 27) is used, we note that the function
G(l, m) for m > 3l is expressed by the one for m < 3!
by using the relation (2. 5a):

G(l,m) = GG + 3m), 3(I — m)). (2. 5b)
The graph for G(3,1),G(5, 1), and G(6, 2) are given in
Fig.4fort=s —je,— 0 <s< ® and € R 0.

Now the analytic properties and values of the lattice
Green's function for the triangular lattice at an arbi-
trary lattice site can be discussed from those of
G(0,0),G(2,0), and G (4, 0) by using the recurrence
formulas (2. 24), (2. 25), and (2. 27).

3. HONEYCOMB LATTICE

We consider the monatomic lattice Green's function
for the honeycomb lattice with the nearest neighbor
interaction. The honeycomb network is shown in Fig.
5. Here we distinguish the lattice site A or B accord-
ing as it is an upper site or lower site of a vertical
bond. Each of the sublattice constitutes a triangular
lattice.

At first, the case in which the initial lattice site be-

longs to the sublattice A is considered. In that case,
the lattice Green's function is the solution of the fol-
lowing set of two difference equations:
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21G44(la, mb) — GBA(la — a, mb + b)
— GB4A(la + a,mb + b) — GBA(la, mb — 2b)

=26, 08,00 (3.1)

2tGBA(la, mb) — GAA(la + a, mb — b)
— GAA(la — a, mb — b) — GAA(la, mb + 2b) = 0,

(3.2)

where
la=@,—r,),, (3.3)
mb = (r,—r;),, (3.4)

and r; and r, are the initial and final lattice site, res-
pectively. a'=+v3 and b = 1, if lattice constant is cho-
sen to be equal to 2. The solution of these equations
under the boundary condition that G (la, mb) is equal to
zero as I2 + m? tends to infinity, is given by

b ile /b
GAA(la, mb) = 4t:1”— Loyedx [, dy

ﬂz ‘ﬂ/b
eillax+mby) (3. 5)
412 — 3 — 2 cos2ax — 4 cosax cos3by’
BA _ab (s "o
G#4(la, mb) = 42 f-ﬂ/a x fﬂr/b dy
eillax+mby)[pi2bx 4 pi(-ax-b)) 4 gi(ax-by)
x [ ¢ ¢ L

4t2 — 3 — 2 cos2ax — 4 cosax cos3by

To show the variable ¢ explicitly, we use the notation,
for example, GAA(t; la, mb) instead of (3. 5).

Next, we consider the case in which the initial site be-
longs to the sublattice B. In a similar way to the fore-
going paragraph, the following relations are obtained:

3.7

GBB(la, mb) = GAA(la, mb),

FIG. 5. The network of the honeycomb lattice. Distinction is given on
the lattice site as A or B according as it is an upper site or lower
site of a vertical bond.
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G4B(la, mb) = GBA(— la, — mb). (3.8)
Then, it is needed to consider the detailed knowledge
of GAA(la, mb) and GBA(la, mb) in the following, We
shall drop the superscript on the function when we do
not need to indicate them.

The functions GA4(la, mb) and GBA(la, mb) are un-
changed under the rotation $n7, n = 1, 2, of the coordi-
nate axes around the initial lattice site:
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G(la, mb) = G(la cos(3nn) — mb sin(3n7),

la sin(3nm) + mb cos(3nm)),

3.9)

and under the inversion on the vertical axis

G(la, mb) = G(— la, mb).

(3.10)

As we put { = s —ie, where s is real and ¢ is a posi-
tive infinitesimal number, we can easily confirm that

1.5 F

0.0

—r

6(1,3)

0.5

1.5 20 25

05+

00

6(0,4)

-0.5

-1.0r

-1.5

0.0

05

1.5 20 25

FIG. 6. The lattice Green's functions G(0,0), G(1, 1),G(1, 3), and

G (0, 4) for the honeycomb lattice. R and I indicate the real and im-
aginary parts, respectively. It is noticed that the imaginary parts of
G(0,0) and G(1, 3) and the real parts of G(1, 1) and G(0, 4) are even
functions of s, and the real parts of G(0, 0) and G(1, 3) and the imagi-
nary parts of G(1, 1) and G(0, 4) are odd functions of s.
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the real and imaginary parts of GAA(t; la, mb) are an
odd and an even function, respectively, and the real
and imaginary parts of G BA({; la, mb) are an even and
an odd function, respectively;

ReG(s —ie;la,mb) = — A, ReG(—s —ie; la, mb),
(3.11)

ImG(s —ie;la, mb) = A, ImG(— s — i€; la, mb),
(3.12)

where A, is plus or minus unity according as the
sites [ and m belong to the same sublattice or to dif-
ferent sublattices. This fact corresponds to the sym-
metry properties discussed generally in Ref. 11. for
the “alternating lattice.”

After the parameters a and b are deleted by the vari-
able transformation, these functions GAA(la, mb) and
GEA(la, mb) are expressed in terms of the lattice
Green's function for the triangular lattice

GAA(l,m) = 21G (3(412 — 3);1,5m), (8.13)
GBA(l,m) = G (3(4t2 — 3);1,5(m + 2))
+ G (3(42 =3);1—1,5(m — 1))
+ G342 -3);1+ 1,3(m—1)), (3.14)

where G,({; I, m) is defined by Eq. (2. 2b). Thus, the
analytic properties and the values of the lattice
Green's function for the honeycomb lattice are ob-
tained from the knowledge of the one for the triangu-
lar lattice. The graphs for the honeycomb lattice are
given in Fig. 6 for G(0,0),G (1, 1),G(1, 3),and G(0, 4).

The imaginary part of G(0, 0) is equal to the frequency
distribution function of the lattice vibration without a
factor 7. The curve for the frequency distribution
was first given by Hobson and Nierenberg.4

4. DISCUSSIONS

The exact expressions for the lattice Green's function
for the lattice sites (0,0), (2,0),and (4, 0) are derived
for the triangular lattice. The function at an arbitrary
lattice site is shown to be calculated by using the re-
currence formulas (2. 24), (2. 25), and (2. 27) from the
knowledge of these three functions. The lattice
Green's function for the honeycomb lattice is presen-
ted in terms of that for the triangular lattice. These
expressions are also useful for the case when the
parameter { is a complex number.

For { = s — i€ where s is real and € is a positive in-
finitesimal number, the graphs of the functions for the
several lattice sites are shown. The singularities are
found at the singular points which are determined by
the critical points. These critical points are easily
seen to be nondegenerate, and, hence, the behaviors of
the function are expected to be logarithmic divergent
from the general discussion of Ref. 12 at the singular
points. However, some cancellations of the singularity
of the lattice Green's function occur at the middle of
the band for the honeycomb lattice. In fact, the value
of the function at the lattice sites which belong to the
same sublattice is equal to zero at the middle of the
band, cf. (3. 13) and (3. 7). In this case, the derivative
of the imaginary part of the function with respect to s
has a finite jump but the derivative of the real part

of the function with respect to s shows a logarithmic
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divergence. For the function at the lattice sites
which are on different sublattices, no cancellation
occurs and the real part of the -function diverges lo-
garithmically, cf. (3. 14). Only exception is function
G (1, 1). This function is easily expressed as

G(1,1) = 212G (4 (412 — 3);0,0) — 3.

It is inferesting to compare the graphs for G(0,0) and
G(1, 3) in Fig. 6 with the graphs for G(0,0) and G(2, 0)
in Fig. 3. The sites (0,0) and (1, 3) of the honeycomb
lattice correspond to the sites (0, 0) and (2, 0), res-
pectively, of the triangular lattice. The region which
is defined by t =s — i€, s > 0,and € 2 0, for the honey-
comb lattice is mapped into the region which is defin-
edby f=s —ie,s >— 1.5 and € 2 0 for the triangu-
lar lattice. The region which is defined by / = s — i,
s < 0,and € 2 0 for the honeycomb lattice is mapped
into the region which is defined by f = s + i¢,5 > —
1.5,and € < 0 for the triangular lattice. The values
$ =—1.5and — 1.0 and 3. 0 which are the singular
points of the function for the triangular lattice (cf.
Fig. 3) change to the values s = 0,+ 0.5,and ¢+ 1.5
which are the singular points of the function for the
honeycomb lattice (cf. Fig. 6). The top of the band,

s = — 1.5, for the triangular lattice corresponds to
the middle of the band, s = 0, for the honeycomb lat-
tice and, as mentioned above, at that point the singular
behavior of the function for the honeycomb lattice can-
cels out. The portion corresponding to the one above
the top of the band for the triangular lattice disap-
pears for the honeycomb lattice. The function for the
triangular lattice does not satisfy any symmetry pro-
perties with respect to s; however, the function for the
honeycomb lattice satisfies the symmetry properties
(3.11) and (3.12). We notice a similar correspon-
dence between the graphs for G(0, 0) in Fig. 6 and
G(0,0) in Fig.3 and also between the graphs for G(1,3)
in Fig. 6 and G(2,0) in Fig. 3.

Thorpe and Weaire have recently shown that the im-
aginary part of the lattice Green's function for the
diamond structure lattice at the origin is expressed
in terms of the one for the fcc lattice. The result was
shown by a graph. The diamond lattice is composed
of two fcc sublattices and fcc lattice is one of the
three-dimensional closed packed lattices. As discus-
sed in Ref. 13, if the lattice sites on one of the sub-
lattices have the bonds extending vertically upward,
the sites on the other sublattice have bonds extending
vertically downward, cf. Fig. 2-7 in Ref. 13. One can-
not get a site on one of sublattices from that on the
other sublattice only by a simple translation. These
relations for the diamond structure and fcc lattices
are quite similar to the ones for the honeycomb and
triangular lattices. The top of the band for the fcc
lattice corresponds to the middle of the band for the
diamond structure lattice and the singularity of the
function at the origin for the diamond lattice is can-
celled out at this point of the band. Other singular
points are due to the nondegenerate critical points
then singular behaviors are square root as discussed
generally in Ref. 12. The singular behaviors of the
function for the honeycomb lattice are logarithmic
divergent or finite jump at the singular point due to the
nondegenerate critical points. Taking these facts into
account, we see that the similarity of the lattice re-
flects to the lattice Green's function if we compare
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Fig. 6 with Fig. 2 in Ref. 1. On the other hand, the
linear, square, sc, and bece lattices are composed of
the linear, square, fcc, and sc sublattices, respectively.
The relations for these lattices and their sublattices
are not similar to the ones for the diamond and fcc
lattices or the honeycomb and triangular lattices.
Especially, one can get a site on one of the sublattices
from that on the other sublattice only by a simple
translation, and the behaviors of the lattice Green's
functions for these lattices are different from the
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ones of the functions for the honeycomb and diamond
structure lattices.
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A modified version of the Lee model by Bronzan is investigated by the LSZ formalism approach. The existence
of (V6) bound state in the Bronzan's model is discussed. An iterative technique is applied for solving the tau
functions in the V-26 sector. Each term in the series preserves (2) (V6) bound state properties, (b) analytic
structure,and (c) symmetry properties of the tau function. The $-matrix elements for both nonbound-state and
(V6) bound state scattering processes in the V—-26 sector are obtained. Comparison of the result obtained by
our iterative expansion method with that obtained by Bronzan's variational principle method is made.

I. INTRODUCTION

In addition to the V,N,and 6 particles, Bronzan! in-
troduced another fermion called U particle with the
coupling U <> V + 6 to the Lee model.2 We will refer
to this modified Lee model as B model here after.
Bronzan investigated the U + 6 elastic scattering pro-
cess3 using a variational principle technique.

In the previous articles,4:5 we studied the V-26 and
general higher sectors of the Lee model using the
LSZ formalism. An iterative expansion method was
used for calculating the multiparticle and bound state
scattering processes. Each term in the series was
shown to preserve (a) the properties of the bound
state, (b) the analytic structures,and (¢c) the symmetry
properties of the tau function. Because our iterative
expansion preserves the above properties, it is a use-
ful technique for approximating the complex Green's
function.

It will be shown in this article that, in analogy to the
Lee model,a (V) bound state can exist in the B mo-
del for suitably chosen parameters. Therefore,the
B model also offers the opportunity for the study of
bound state scattering processes.

The purpose of this article is thus to apply our itera-
tive expansion technique to solve the V-26 sector of
the B model. From the iterative solution of the tau
functions,we can then calculate all the S-matrix ele-
ments for both nonbound-state and (V6) bound-state
scattering processes in the V-20 sector. A compari-
son is made of our result for the U + 6 elastic scat-
tering amplitude and that obtained by using the vari-
ational principle method in Ref. 3.

The outline of the article is as follows. The descrip-
tion of the B model and 1.SZ formalism for the re-
duction formula of the S-matrix are given in Sec.Il.
In Sec.III,the existence of a (V9) bound state in the
B model is discussed. The iterative expansion me-
thod is illustrated in See.IV for solving the tau func-
tions in the V-2 6 sector. Our solution preserves the
analytic structure and symmetry properties of the
tau function and most important, the properties of the
(V8) bound state. Solution to the tau functions furnish
all the information for the V-26 sector. In Sec.V,
S-matrix elements for the nonbound state scattering
processes

U+ 6-U+ 6,

U+60<V+6+0,

U+ 0« N+0+06+0,
V+0+6->V+6+ 0,
V+O0+0<>N+6+6+86,
N+0+6+0->N+6+6+90

are calculated. Comparison between our result of
U + 6 elastic scattering amplitude and that obtained
by variationed principle in the dispersion theory ap-
proach is made. The calculation of the S matrix for
all the bound state processes in the V-246 sector,

(V) + 6<=> (Vo) + 6,
(Vo) + <>V + 0+ 6,
(Vo) + 6> U + 0,

(V) + 6> N+ 6+ 0+ 9,

is discussed. The conclusion follows in Sec. VI.
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Fig. 6 with Fig. 2 in Ref. 1. On the other hand, the
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The relations for these lattices and their sublattices
are not similar to the ones for the diamond and fcc
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troduced another fermion called U particle with the
coupling U <> V + 6 to the Lee model.2 We will refer
to this modified Lee model as B model here after.
Bronzan investigated the U + 6 elastic scattering pro-
cess3 using a variational principle technique.

In the previous articles,4:5 we studied the V-26 and
general higher sectors of the Lee model using the
LSZ formalism. An iterative expansion method was
used for calculating the multiparticle and bound state
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shown to preserve (a) the properties of the bound
state, (b) the analytic structures,and (¢c) the symmetry
properties of the tau function. Because our iterative
expansion preserves the above properties, it is a use-
ful technique for approximating the complex Green's
function.

It will be shown in this article that, in analogy to the
Lee model,a (V) bound state can exist in the B mo-
del for suitably chosen parameters. Therefore,the
B model also offers the opportunity for the study of
bound state scattering processes.

The purpose of this article is thus to apply our itera-
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II. MODEL AND REDUCTION FORMULA

The renormalized Hamiltonian for the B model in
momentum space is?

H=mZ iy +mZ, Yy +mpiyy
+Zk}wa;ak +glyivyA +YiAY ]
HAZ WiV yA + YA Yy

+omyZyygy t Omy Yy, (1)
where

A =7 [uw)/Qw)2]a,,w
)
[ak"a;] = ékkn{lpuywa} = I/ZU
Wy vt =1z, {yy,¥it =1, (2)

and all other commutation relations vanish. For sim-
plicity, we let the renormalized masses for U, V,and
N particles have the same valuem.

= (u2 + k2)1/2

From Egs. (1) and (2),the field equations can be de-
rived as

(2w)1/2 (i d

—w> @, (O=gW 5OV () +AZ w30 Wy (0)
ulw) dt

A% (z ﬁ——m —om V> vylt) = gy (A,
(i ﬁ— - m> Vo) = g, (DA (D),

Zy (iﬁ —m — omU> Yy 8) =AZ P, (DA, (3)

There are two number operators in this B model
which commute with H:

Qu=2Zy¥¥yt Zyyvy+ Vavn

Q2 =Zyyy¥yy + L? apap—
Thus the model breaks up into sectors designated by
the eigenvalues of @, and @,,namely g, and ¢;.

The reduction formula for the B model can be de-
rived similarly as in Ref.6. Assume the following
conditions for the Heisenberg fields:

Ya¥n, (4

Aim (Bsn'lemimtyr () |asm) = €Bsn' Ly, lasn),
out (5)
dim 25 0 swhen i (g’ lag (1) [asm)
={psn’lag  losnp,  (6)

out

where f@',w) is a good function of w’, centered about

the point w' =w, satisfying the condition
0 kR =k
2 e w fw” w’) ={ as . (M
b 1 k = kr

{ |represents the physical state, o, represents U
or V or N particle,n and »’ are the number of 0 par-
ticles. The S-matrix element can then be shown to
be
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SaBE «B?”gutla""in»
2mi N =~
=030, + W 6(1}@1 w, “‘UZJI wu)
n n! 2
x(Z} w,~ 22 w,ﬂ)
y=1 v=1
x (1M 2 ®

W=m+ E wy ?

where the tau function 7,4(W) is the Fourier trans-

form of Taﬂ(t)

Ty =L [ © dteWiT (o), 9)
and ‘
a0 = (0174 i, a3, w0 i, 0 0)10)
(10)

. (V6) BOUND STATE IN THE B MODEL

In the following presentation, we will make use of
the results of the V sector (g, = 1,9, = 0) and V~0
sector (q; = 1,g5 = 1) solved by the dispersion the-
ory,1:3 and some of our results by the LSZ forma-
lism which are listed in Appendix A.

To study the existence of a (V8) bound state in the B
model, we write down the V + 6 elastic scattering
amplitude which has been shown to be

u2w)g?
2wh(w)

(282 — A2)[1 + Aw)A@)] — *2[1 — B(w)]
{(282 — 22)[1 — R AG@)] + A2[1 — B@w)]}’
where
hw) = w[1 — Bw)],
[1 - =1+

S,:’g, EX)

(11)

gzw f°° dwul@ w2 — u2)1/2

w 2w —w — ie) (12)

and

X< a2g®
2
Curve | : :;“2 [I-ﬁ(w)]
»
Curve 2: (;b; -1) [I—h(w)A(w)}

FIG. 1. Diagrams of A2[1 — g(u)]/2g2 and
[(x2 — 242)/2g2][1 — (WA ()] for A2 <2g2,
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A(w) = —Iw(W),

1 (e 1 1
Iyz)==J dw'Im < >x .
e=7 fl‘ rw'y W' — 2)[1 — W —w')]
(13)
Or,in terms of LSZ formalism,S}% can be derived as
2
S¥B = Oy +2mi 112(_@ dw —ww —w')2g2
w

x[ X (W,w,w) ” . (14)
W — (W — w) | w=w

With the solution of X~(W ,w,w’) given in Eq.(A9), we
can reobtain Eq.(11). From Eq.(12), we find

1—8w) >0, hw) =0

1 —8(0) =1, K0 =0

d d

dw[l—B(w)] >0, dwh(w) >0, 0<w<pu.
d? d2

d_wg [1—p@)] >0, Ew—zh(W) >0 (15)

From Egq. (13), we find

Aw) >0

< aw) >ol, 0<w<p. (16)
dw

d2

d—w—zA(w) >0

Hence,1 — g(w) and 2@w) are real and monotonically
increasing functions of w for 0 <w < u.

Moreover, it has been shown? that

r(u)A(u) > 1 (cf.Fig.1) (17

for sufficiently large coupling constant g.

Through this analysis we see that if A2 < 2g2, S}¢
in Eq.(11) will have a pole at w, where 0 <w, < u,

provided that the following condition is satisfied:
(A2/2g2)[1 — ()] < [(2/2¢2) — 1][1 — A()A(p)]. (18)

The occurence of this pole wy in S/§, corresponds to
the existence of a (V) bound state in the B model
with mass My, where

M

g = twg, 0 <wyp <. (19)

In order to study the higher order scattering pro-
cesses and the ones involving the (V) bound state,
we investigate the V-20 sector in the next section.

IV. V-26 SECTOR

The V-20 is characterized by ¢; = 1 and ¢, = 2. The
appropriate tau functions are the following8:

_ (dww')1/2
- ww)u(w’)
< 0] Ty (Da )y 5(0)at,(0) 10,

TG([,M),W')

(20a)
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7,(t,w,w' ,w") = (Buww'w”) /2
7 Y w(w)ulw ulw"”)
X0 T(y , (t)a)a, (DY (0)a;,(0))[0), (20b)
To(t,ww' w') = (Buwww")1/2
SO ulw)ulw )uw"”)
x0Ty y(Dalt)y;(0)as(0)ar,(0)10), (20c)

(16ww'w"w™)1/2

wlw)ulw Yu(w  Yulw

1glt,w,w" ,w" ,w™) =

"t

x 01 T(yy(B)agt)ar )a,, Oy §(0)at,(0))|0), (20d)

Tlo(t ,w,w, ’w//’wm)
__(16www"w")1/2
w(w)ulw Yu Yulw™

X0 T y(a Oy (0)a},(0)ay, (0)a,,(0)) |0)
(20€)

and

4 Qw2
TQ(t,wl,wz,ws,w4) = Il ~ v
i=1 u(wz)

x 01Ty v (Day Da, (D4 §(0ag, (0)a;, (00 ]0), (21a)

TLO( ;w0 Wy , W5, Wy, W05) = [1 (2w) 172
=1 uw,)
x (0] T(IPN(t)dkl(i)akz(l‘)ak3(f)d/ ;}(0)0{4(0)61;5 010y,
(21b)
5 (2w,;)1/2
Tll(tawl’wz””B’w4’w5)=i:nl o)
X QOIT(W y(a, (Day (D5 (0)ag, (O)a,;‘4(0)a,;5(0)) 10},
(21c)
TL2(E w0y wa,w w05, W)
6 (2w,) V2
:il-:ll uw)) <0‘T(‘PN(t)ak1(t)ak2
X (t)aks(l‘)ll/ﬁ(o)a;;‘l(o)a{s(0)(1;6 (0N 10). (21d)

With the aid of field equations in Eq.(3) and commu-
tation relations in Eq.(2), we can derive the following
equations:

W —m — omy —w)TsW,w,w’)
2wl  AZ, . uE@W”

- utwzy,  Zy e 2w”
W—m —bmy, —w —w)7,(W,w,w ,w")
_ & 5 wPw")

Zy e 20"

+A[rWw' ,w") + 15(Ww,w")],

7, (W,w"w,w'), (22a)

Tg (W,w”/ .w,w,,w”)

(22b)
W—m — dmy, —w —w") 1gW,w,w ,w")
g 5 u2(w'™)

Zy b 2w
+ A 7g(W,w,w") + 75(W,w,u')],

4

T1oW,w,w’, w" ,w™)

(22¢)
W—m —w—w —w)re(W,w,w' ,w" w")
= glr, W' ,w",w") + 7,(W,w, w", w")

+ 7 (W,w,w' ,w")], (224d)
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(W——m _w/ _ LU” —w"’)‘rlO(W,w,W',w",w"’),
=g[7-8(W’u)’wl’wu) + TS(W’w,w/,wm)
+ 7g(W,w,w",w")] (22¢)
and
W—m — dmy — wy — wy) (W, w, ,wy,Ww3.10,)
4w w
= -2 [6k k 6):2 k
uZ(w ulw,)Z, 2 24

+ )\[Te(W w2)w3’w4) + Tg(W Wl,W3,w4)]

* aklk‘l 6k2 kS]

+ —g—Z) u?(w) TI(W, w,w ,wy,w4,W,),

23
Zy & 2w (232)

W —m —w; —wy —ws)TIOW,w,wy,ws,W,,ws)
= g[r(W,wy ,wq,ws,ws) + THW,wy,ws3,w,,Ws)

+ (W, wy, wy, wy, ws)], (23b)

W —m — Wy — Wy _ws)Tll(W,wl,wz,w3,w4,w5)
= g1 W,wy,wp,w3,w,) + T9W,w,,wy, 5, w5)

+ 79(W>wlawz,w4’w5)]> (23¢)

W —m —w, —wy— wy) TL2(W,wy ,wy,Ws,W, , W, W)

2, %%

- u? (s, Ju?(wy )u?(ws) pri

8w wyiwg

+g[TIIW,w Wy, , Ws,w0g)

+ T W, w05, ,Ws W)

+ Tll(W’WZ;w?,ywapws;wG)], (23d)
where
szl 6% = 01,0k, 2,08k, T Onk,On O i,
+ Op b, Ok, 0Ok T Ok ik Ok, 00k,
+ Op O 0, Ok,k, t O i, Ok, kO, (24)

Due to the coupling between the tau functions we find
that the entire sector is solved if we can solve the
tau functions 7,(—) and 79(-).

The integral equation for 7,(—) can be obtained by
substituting Eqgs.(22a) and (22d) into Eq.(22b):
W —w —w' Y7, W + m 0,0, 0"
_ AZV 2w "(ék 124 + ékrkn)
Zu(w" YW — dom , —

1 © 14
+ - fp dw" Imh (" )7, (W + m e, w', u")

wooow
" W —_—————
W‘ 1/ ' wl/
) oW z P
Y S S
vV U vV
n ! 1" !
W W \4 er W
N . /\ N \/ //1
- .
\Y \\N \Y Uy VvV uUuyv
‘w
+ diagrams with w and w' interchanged

FIG. 2, Diagram of the integral equation for 7AW, w0, w").
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< 1 A272
x v
WY—W'—w'—w'" Zng(W— émv—u)')>

1 oo
+ - fu dw"Imh@” )1, (W + m,w" w,uw")

1 A222
x r N ’ " + Y ; > (25)
W—w—w —uw Zy84W — dmy —w)
(cf. Fig. 2).
By defining
Y (Waw.w' w’) = lim Y (W,z,w",w")

Z2w—1€
= h(W—w—w)1,(W+m,w,w ,w") (26)

and continuing w into complex z plane, Eq. (25) be-
comes

)kZ 2w"(d

Y (W, 2,0, w") = Oy *
VA u2( /r)( _ a’nu _wu)

1 (o dw"” Imh(w”’)

T W —w —w")

kl kn)

Y_(W, wm’ w' , wu)

A2Z% >
Zy83 W
. Y'( W, wm, z, w"

( 1

x +

W—2z—w —w”
1_ jw ml" Im h(lv"’)
7Y hRW—z —w”

—bmy—w')

7\222
14 ) (27)
Z,82(W— dmy;—2)

( 1

X +
W—2z—w —w”
Notice that Y (W,w,w’,w") in Eq.(27) is symmetric
under the interchange of w and w’. We define

Y (W,w,w',w") = F-(W,w,w' ,w") + F(W,w ,w,w"), (28)

where

AZ 20", ,,
Z yu? ()W
1 (o dw” Imh(w™)

H

T (W —w' —w™)

FW,z,w,w") =
— Gm v w//)

( 1 A2Z2
X

W—z —w' —w” gzZ (W — bmy, — w))
x Y—(u/’wm,w/’wn). (29)

Substituting Eq. (28) mto Eq.(29),we get an integral
equation for F(W,z,w',w"),

AZy2u" Oy,
Zyuw (W — dmy —w”)

L1 (e dw” i)

FW,z,w ,w'y =

a h(W —w —w"
A2Z2
X l: + v ]
W—z—w —w” Zyg2W—dmy—uw)
X [FAW,w™ ,w',00") + F(W,w ,w" .w")]. (30)

We can read off the analytic structure of F(W, z,uw'w")
as a function of z for fixed W,w’,and w”. It has a
branch cut along the real axis for ~w=z=W-w' —w.

The singular integral equation (30} is very similar to
Eq.(22) obtained in Ref.4. Due to the complicated
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structure of the tau functions involved in this sector,
also of those in the higher sectors,a closed solution

is not possible. We use our iterative expansion tech-
nique to solve this integral equation.

Starting by introducing a parameter o in front of the
last term of Eq.(30),we get

AZ 2w By, ,,
Z yu2 " W — dmy —w”
1 (e dw" Imh(w™)
T H h(W“wI-"wm)

F(W, z,w',w") =

F‘(W,w"’,w’,w")

( 1 A2Z3
X +
W—z—w —w" Z,g2W—w — (’maU))
174 Ht
g :0 dZvU Imh(w ) F“(W, w’,w’",w"}
T l’l(W‘" wl e wm)
A2Z72

v ) (31)

ZUgZ(W—~ dm , — w')

Next, expressing F(—) as a power series in o,i.e.,

1
x( +
W—2z —w —w"”

o0

F(W,z,w',w") = 25 anF (W, z,u',w"), (32)
n=0

substituting Eq.(32) into Eq.(31), and equating terms
with the same order in o, we get

AZ,2w"8,,,,
Zyuw" W —bmy, — w")
f:o dw” ITmh(w”)
?{ MW —w' — w'™)

Fo(W, z,w' ,w") =

< 1 A2Z2
x " )
W—2z—w —w" Z,g2(W—0dmy—w)
X F5(W,w™,w' ,w"}, (33)
nr 12t
Fy(W, 2,0’ wn)_l Jo dw Imh")
}2( w/ _wm)
1 272
“ P ).
W—z—w —w" Z,g2(W— omy;—w)

X [FiW,w” ,w',w") + Fo{W,w’ ,w" ,w")]. (34)

o dw" Imh{w™)

1
E (W z,w.w") ==~
ol 7 Y nw—

w — wm)

< 1 2273

x + >
W—z—w —w" Z,82(W— dmy—uw)

X [FAWw” w',w") + FE,; ((W,w',w",w"))]. (35)

At the end of calculation,we set o = 1,then Eq. (31)
reduced back to the original form in Eq.(30).

From Eqs.(33)—(35),it is obvious that the analytic
structure and symmetry properties will be preserved
in the solutions.

To solve for Fy(—),notice that Eq.(33) is an equation

of the variable z for fixed W,w',and w”. Comparing it

with the equation for the vertex function 7,(W, 2) in

Eq.(A3),we f{ind

Fo(W.w, 0’ ,w")
2w'0,,,,

MW —w —w)1,{W—w’ +m,uw). (36)
uZ(w')

1423
In Appendix B,Eq.(34) is solved. The result is
o dw, Imh(w,)
Fi(W,z,0',uw") = EEE———
! f“ hW —w; —w)
X X(W—w’,z,w)F5(W,w' ,wy,w"). (B4)

Substituting Eq. (36) into Eq. (B4}, we get

F{(W,w,w,0")
= g2 (W —w’,w,w" )T (W—w"+m,w). (37)
In analogy with equation for F;(—) in (34), we can

write down the solution for the general term in the
series F, in (35) as

foo dw; Imh(w,)
b on(w—
X X(W—w', z,w)F, (W' ,w,w"). (38)

Fn(W;Z‘w,aw”) =
m

wy ~—w’)

Substituting Eq.(37) into Eq.(38),we obtain the solu-
tion for Fy(—). Analogously,we can get F; and all
higher order termsinthe series. The result of F, and
F; are

foo dwy Imh(w,)
(W — wy —w’)
X XAW —w',w,w )XW —w,w ,w")
X 7(W—w" +m,w0,). (39)

F5(W, w, w',w")
f f dwdw, Tmh(w,) Imh(w,)
W —w' — wy) (W — w; — w,)
X X(W — w0, wx)X (W — wy 00" ,10,)
X XAW —wy,wy, w") T W — w" + m,0,). (40)

Fy(Wow,w' ,w") = —
m

With the aid of Egs. (26),(28),(36),(37),(39),and (40)
the first four order terms of 7,(—) are (cf.Fig. 3)
TAW +m . w,w' ,w")
2w
= ron TolW — w'+ m,u
T u2(w) Oure ol )
&2X(W—w' ,w,w")To(W —w" + m ,w’)
W —w —w")

+ diograms with w and w' interchanged

FIG. 3. Diagrams of the first four terms in 77(W+ ww,w,w),
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N tﬁ fco dw; Imh{w)X (W — w' ,w,w,)
Tt W —w’ —w (W —w — w')
X X'(W'_ wl,w’ ,w”)Tz(W_" wﬂ + m,wl)

+ é’; f:o f:o dw,dw, Imh(w,) Imh(w,)
a W —w' —w,)
XAW — ' ,,00,)X (W —wy, w0’ ,w,)

W(W —wy — w)h(W — w — w')

X X (W —wy,wy, w")To(W —w" + m,wy) (41)

+ terms with w and w’ interchanged.

From Eg.{41),we see that each term in the iterative
solution contains the function X (W —w,w’'w") which
has a pole at the (V) bound state for suitable chosen
parameters [ef. Egs. (11) and (14)]. This confirms
that our iterative expansion technique preserves the
properties of the bound state.

Substituting the solution of 7,(—) in (41) into Eq.(22),
we get the functions 74(—), Tg(—), 7o(—),and 7,,(-).

To complete the solution for this sector,we will now
solve the integral equation for 79(—). Substituting Eq.
{23b) into Eq.{(23a), we get

RW —wy — wy))1(W + m ,wy,wy Wy, w,)

4w,y

w2(w, Ju?(w,) 6k1k36k2k4 + 6k1k46k2k3)

+AZ, [Tg(W + m,wy ,wa,wy) + Tg(W+ m,wy,wg5,w,) ]
1 (o dww Tmhl{w)

rF (W—w—w; —w,)

+ [TQ(W+ W, Wy ’w3’w4)

+ W + m, w,wy,w4,w,) ] (42)

Following the same reason, we again solve Eq.(42) by
the iterative expansion method.

The algebra is outlined in Appendix C. The result is
(cf.Fig. 4)

W, W, w, W,
RCEN A
Wa W Ws _, e
- : +
vV vV
Wy s W2 owy wa
a2
G, O
17 VARGEQRY,
. WP AR v
VooV Wy ow
N
Wq e Wy
RV VQ\TQV
o Ta
Wy Wo

+ diagrams with w, and w, interchanged
+ diagrams “with w, and w, interchanged
FIG. 4. Diagrams of the first four terms in T9(W + m,wy,wy, w5, 1),
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W + m w0y, w0y, wq,w,)
4w1w5(0; B, + Ot,,0 k)
- w2 )u? W) (W — wy —w,)
1

+
W — wy —wy)h(W — wy —w,)
2w,

2
—2 2 X (T — 2.
X{uz(wz) 6k2k3g XAW —wy,wy,wy)

N gAX (W —wy 0, ,wy) X(W— W st o, ty)
W — wy —wy)
N g*-joodw Ima() X (W — wy,w y, WX (W —w, Wy, W)
7t P(W — wy — wa)h(W — w — w,)
X XA(W—wg,w,w,)

+ terms with w, and w, interchanged} .
+ terms with w, and w, interchanged

(43)

By using Egs. (23b)—(23d) the solution to the tau func-
tions 710(—), 711(—), and 712(—) can be obtained.

With solutions of all the tau functions in the V-2¢
sector which are new results, we are ready to inves-
tigate the S matrix for all relevant processes.

V. S-MATRIX ELEMENTS

In the V~20 sector, the nonbound-state scattering
processes are

() U+6,->U+6,,
(2) U+o
3y U+,
(4 V4o, +6 Vo, + O,

(5) V+6,+6, <>N+0 +06, +96,.
6) N+6, + O * 0y >N+ O, +06, +6

KH

«>V+86 +8,,
«>N+6 +6,+8

K

Kg "'

Using the reduction formula in (8) and definition of
the tau functions in {20)—{(21),the corresponding S~
matrix elements can be derived to be

(1) S¥g-ve = 5, + 2midw — w)[u?(w)/2wlw — w')2

X T5(W + m,w,w') | (44)

W=w?

2) SUeevee = 2midlw” —w —w
( ) kirktk ( (8wu)/w//)1/2

(w" —w —w')?
X
V2

(3) SYa7He06 = 2nidw” —w —w —w”

W+ m 0,0 ,w) | e (45)

(o)l D ulw” Y ulw”) W —w —w’ —w")?2
(16 ww'w"w™) 1/ 2 N
X 1(W +m 0,0, 00" ,00") | e

X

(46)

(4) syop-ves

kqkskoky = 20y 5 Ope, T+ Opp,Orp,) + 2710

Xy +wy —wy —wy)ilw, +wy —wy —w,)?
a4 ulw,

w1 ulw,)

g .
THW + oy s Wny s - .
N Gy { WUy, Wy, 3/w4”W-wl+w2

(47)
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(5) SEEomiose = mid(w, + wg —w, — W, — ws)

(w4 +tws —wy —wy —wg)2 5 ulw,) 10

V3 i=1 (Zw,-)lfz
X (W + m ,wl,wz,tD3,w4,w5) l W= W4+w5’ (48)
1

6) SYG8p N0 6%
(6) SYAERAR° = 2%

+ 2midlw, + wy +wg —wy —w, —ws)

1 )2 6 ulw)
K —6--(w4 + wy +wg —wy Wy — 3 L G172

X T12(W +m s Wy Wy ;w3;w4>w5;wg) | W= wit wyb (49)

The specific solution of all these S-matrix elements
can be obtained straightforwardly by using Egs. (22),
(23) and the results of 7,(—) and 79(-) in Eqgs. (44)
and (43). For example,the § matrix for U + ¢ elastic
scattering is {ef. Fig. 5}

2]
SEETUO = by + 2760w — w) uz(;”) § [ - Bw)]
2 o dwy Im[1 ,
— 1 Im[1 — Blwy)] X(w—wy,wu) + - }
7/()1

(50)

We will now compare our new result for U + 6 elastic
scattering amplitude with that obtained by Bronzan.3
The function ng(w} calculated by Bronzan's disper-
sion approach corresponds to the on-mass shell value
of 74 in our LSZ formalism. His result of T3,) in-
volves four functionals F; which are functions of an
unknown function ¢. Instead of getting the final re-
sult, Bronzan conjectured a trial solution for ¢. We
pursued his conjecture and found that his method of
calculationis too complicated and very impracticable.
Nevertheless,we can show that as g — 0,to the lowest
order in A, T3,(w) reduces to

T%2(w) = )\2/‘”}
variational principle method), (51)

(dispersion approach with the

and our result for SP8 — U6 in Eq.(50) reduces to

SYe-Ue = o, + 2midlw — wu2(wr2/2uw?
(LSZ formalism approach with iterative expan-
sion method). (52)

Since the relation between S matrix and T is

SYg=Ue = o, + 2mid(w — w)[ul(w)/2w]T3,w). (53)

FIG. 5. Diagrams of the first three lowest order
terms of the § matrix for UV + 8, U + 6,.
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We see that to the lowest order in the coupling con-
stant result of U + 9 elastic scattering amplitude
agrees with that obtained by Bronzan.

We now consider the bound state scattering processes
in the V~2 8 sector. They are

(Vo) + 8 -(VO) + 6,

(Ve + <V + 6+ 8.
(V) + 6> U + 6,

(VO) + <> N+ 89+ 06+ 6,

The (V) bound state field operator B{f) can be con-
structed as%.?

Bo(t) = Cyy(0) + Co, (1) [d3ka )
+ Oy ® S 3k d3kya, (0, (1), (54)
where C4,C,,and C3 are c-numbers.

The renormalized field operator B(f) is defined as

B(t) =By)/VZ 5, (55)
where
(ZB) vz = (OIBQ(O) B (56}

and | B) is the eigenstate of the (V) bound state.

Also, the asymptotic condition for the field B(t) is
assumed to be

Lim Cale imB(t)|B) = (aiBf, 18). (57)
out

By using the asymptotic condition and the reduction
formula,we can obtain all the S-matrix elements for
the (V 6} bound state scattering processes listed above.
With the aid of Eqs. (20)-(23), we see that the matrix
elements can all be expressed in terms of 77(——) or
72(—). Due to the lengthy algebra,all the details will
be left out here. We would refer the interested read-
ers to our articles?.5 on the (V) bound state scat-
tering in the Lee model.

VI. CONCLUSION

From the study of the V + ¢ elastic scattering ampli-
tude in the B model we concluded that a {(V 6) bound
state can exist in the B model for suitable chosen
parameters. In the V=20 sector,we investigated not
only the multiparticle reactions but also various
cases of scattering a 8 particle off the (V 8) bound
state.

The iterative solution preserved the analytic struc-
ture, symmetry properties and the properties of the
(V6) bound state.

By using the LSZ reduction formula and the iterative
solutions of the tau functions,S~matrix elements for
various relevant processes including both nonbound -
state and bound-state scattering were obtained. Com-
parison of our new result for U + 6@ elastic scattering
amplitude with that obtained by Bronzan’'s variational
principle method was made. To the lowest order in
the coupling constant,the two results agree with each
other.
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APPENDIX A

The U~V -0 vertex function TZ(W, w) is the Fourier
transform of 7,(f,w) defined as

To(W,w) = 17 ffo dt etWtT,(t,w), (A1)
where
To(t,w) = [(20)1/2/ulw) KO T(y , (Da )y, (0) |0)..
(A2)

It can be shown that 7,(W,w) satisfies the following
equation:

rZ 1
14 + —f:o dw' Imh(w')

h(W—Z)Tz(W'l-m,Z):m -

1 hzZ%, )
+ ’
Z ,g%(W — dmy)
(A3)

X 1,(W+m w’)<
2 ’ W—w —z

where Z(w) is defined in Eq. (12).
f

222M1/ (W —m —w) + [BW —m)/w|[ly (W —m —w) — I, (W—m)]}

TSU-HUEI LIU

Let 75(¢,w,w’) be the tau function corresponding to the
process V+ 6 -V + g,

5(t.w,w') = [(dww’) Y2/ uw@u(w)]

X0 T(y3, Oa Oy, (0)a;,(0))[0).  (A4)
Its Fourier transform is
75(W,w,w’) = (1/3) f_ojo dt eitWtrs(t, w,w’) (A5)
By defining
2w 0,
X-(Wyw,w') = —— —2 y(W —w')
u2(w) g2
W —wh(W — '
N (W — w)h(W — w’) SO+ mww'), (A6)
g2
the following equation can be derived:
1 AZ,
X(W,z,w) = + — T W+ m,w)h(W —w')

W—z—w g
n 1_ f°° dw” Imh(w”)X‘(W,w”,w’) .
7t MW —w)W—z—w")  (AT)

By using the method introduced by Maxon,7 both Egs.
(A3) and (A7) can be solved to be

72(W9 W) =

and

g

APPENDIX B

A
(W—m)A2[1 — (W —m)] + (282 —A2)[1 + A(W —m)I,._,W —m)]} (48)
XAW,w,w') = z_!iwrr_l“X(W,z,w’)
RS V(W —w') + [1 — _,< N _W—w o 1
[ g T2V w (W =)+ (1= B ] (e =y W =) e
9 {1 —BW —w)] + [R(W — Dh(W) /w1 ., (W—w) — I, (W]} .\ h(W — )
1+ W)y, (W) YW —w —w + i€
W — )y, )1 — B(W —w)] (W — w) (W — )y, (W — w’)
W—w—w' + i€ * w'w —w + i€)
N [1—B(W—uw) )W —2w)[1 — BW —u) Jw — W)2I,_ (W —w) ’ (A9)
W —w+ie)w—W+w —iew'
where I;(z) is defined in Eq. (13).
-
[1—p(W—2z—w)R W, z,uw ,w")
To solve Eq.(34) for F,(—),we define C(W,w',w") foo dw™ Im[1 — Blw™)
B 1r LW —w —w”)W—z —w' —uw™)

Fi(W, z,w ,w") — C (W, w,w")
MW —z —w')
1 o dw” Imh(w™)
7 w1l — BW —w' — 2)
Fo(W,w' ,w™,w")

X ; (B1)
AW —w —w"YW—2z —w' —w")

R (W, z,w" ,w") =

where

Ci(Ww' ,w") = F{(W,W—w + ic,w ,w"). (B2)

An integral equation for R (W, z,w’,w") can be obtain-
ed by using Eqs.(34) and (B1):
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1 e dw™ Tm(1 — glw™)
——;j“ [1—8W—w —w)(z +w +w" —W)
N f,o dw; Im{l — plw) | FgW,w',wy . w")

P OR(W —w' —w)(W—w"” —w' —w, + i€)
1 o dw” Im[1 — glw”) | RUW,w” 0’ ,w")

__J“

T (z +w +w” —W)

(B3)

Following Maxon's method in Ref.7,Eq.(B3) can be
solved and C,(W,w’,w") can be determined. Substitu-
ting both solutions of R; and C; into Eq.(B1),we
finally have
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dw, Imhlw
FI(W,Z,w',w” f:o __l—i_
T W—w, —w)

X X(W—w',z,wy), (B4)

FoW, o', 0, ,w")

where X{W,w,w’) is given in Eq. (A9).

APPENDIX C

We now solve the function 79(—) by the same iterative
technique used to solve 7,(—) in the text.

By defining
VAW, wy,wy,w5,w,) = 21£i15111_i€ V(W, 2z, w05 ,0,)

4w w h(W—wy —w,)

(Oklksékzktz * 6k1k4 Okzks)

&2u2(w, Ju?(w,)
BW —wy — wy)h(W—w, —w,)
+ gz
X 7W + m ,wy, Wy, wq,W,), (c1)

Eq. (42) becomes
2W2(5k2k3 + szkq)

U2y (W
2w1(6k1k3 + 6k1k4)
w2(w (W —w,

1 dw Imh(w) VW, w,wy,wq,w,)
+—J,
it

(W —w —w,)
VAW,w, 2z, ,wg,w,) . 7\ZVh(W—w3 —w4)
"W —w—z) g2
X [1AW + m ,wg,wy,w5) + T(W + Mg, Wy, 21) ]
(C2)

Due to its symmetric property in w; and w,, we re-
write V-(W,w,,w,,ws,w,) as

VW, 2,y ,Wa,,)
121, Wo W3, Wy 2, —wy —wy)

— w3 —w,)

(W—w_‘zl _wZ)

= G (W,wq,wy,wq,w,)

+ G (Wywy,wy,w0g,w,), (C3)

VAW, wy, wy,ws,1,)

where

21,{)2(6,22,63 + 6k2k4)

G(W, 2 |, iy, t,0) =

LT u2(w, (W — 2| — w3 — w,)
AZy

+ =Y ww — iy
gz

—w) W + mwy, w0, ,wy)

w  dw Imh@)V-(W,w,wy ,ws,w,)
. C4
f“ (W—w—2z; —w)(W—w —w,) ()

Substituting Eq.(C3) into (C4), we get an integral equa-
tion for G(—)

205 (0, o, + O ,,)

G(W, z .\t 00, 0,) =
LA T 2 (W — 2, — wy — w,)

\Z yh(W —wy —w,)
+ 22
joo dw Imh(w)G

- w—2z, —

7AW+ m wg,w,,w,)

GH(W, w,wy ,wy,w,)
woYn(W—w — w,)

dw Imh(w)G(W,w, S Wy W 20, )
w (W — w — w,) )

N

r W—w—2; — (C5)

We now solve Eq.(C5) by its iterative expansion:

(1) Introduce a parameter o to the last term in Eq.

{C5).

(2) Write a series expansion for G,

G~ (W, wy,wq,ws,ws) =2, G, (W,wy,wy,ws,w,). (C6)
n

(3) From Egs.(26),(28),and (32),we can write

A=) =23 [1,9], a”. (cn

n
(4) Equatingthe terms of same order in @ in Eq. (C5),
we get
GolW, 21, Wy, 05, w,)

2”2(5k2k3 + 6k2k4) AZ,
- + (W —wy —w,)
u2(w (W — 2, —wg — w,) g2

X [77(W+ M ,wWs, Wy, W) o

N foo dw Imh@w) G o(W,w,w,, w3, w,)
m (W—w—z, —w)h(W—w—w,)’ (C8)
G1(W, z,,wy,wq,w,)
AZ,
—Ez—h(W wg —wy)[1,(W +m,wq,m,,w,)],
+ — f:o dw Imh(w)
T

[Gi(W’w,w2;w3;w4) + Gb(wyw27w3w3;w4)]

(W—w— 2z, —w))h(W—w — w,) ’(CQ)
and
G, (W, z ,wy,w5,w,)

AZ
= -————V h(W Wg —
g2

w ) [1,(W + m ,wq,wy,,) ],

l (o
+ — fu dw Imh(w)
T

(GLAW,w,wq,w3,w,) + G _y (W, wy, w,05,,) ]
MW —w—w))(W—w—z; —w,)

b

(C10)
where [cf.Eq. (41)]
[T7(W + mwg,wy,w5) ]
= 2,) kok T2l W—wy + m 105
+ [20,/u2(w,)] Opp, To\W—wy +m,wy)  (C8)

and

(1AW + m g, wy ,w5) |,
g2

= }m TZ(H/_ Wy + m,w4)X‘(W—w4,w3,w2)
g2

T T (W—wy + m,w) X (W— wao,w,,w,).
W(W — wy — w,) o 2 3)X( 35 Wy Wo)

(€9
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Notice that Eq.(C8) is an integral equation of vari-
able z, for fixed W,w,,w;,and w,;. As we compare
this equation with Eq. (A7), we find that

Gb(W', Wy Wy, Wy, w4)

= W) 20124 (c11)
w(iy) 22 %15 %g):

Using the same method for solving Eq.(34), G;(-) in
Eq.(C9) can be solved to be

G1(W,wy,wy,w5,,)

TSU-HUEI

LIU

_1 (= dwlmh(w
7 P (W —w—w,)

x Go(W,wy,w,105,10,).

X (W —wy,wy,u) (C12)

The general terms in the series expansion is then

G;(Mwl,wz,w3,w4)
1 o dwImhi(w
== [ R X-(w—
7 P (W —w— w,) ( 1z 101, )

X G;,_1(Wywy,w,w5,w,).

(C13)

The solution of 79(—) can then be obtained by using
Eqgs.(C1) and (C3) together with the results in Egs.
(C11)—(C13). The first few terms in the expansion
solution for 79(—) are written in Eq. (43).
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Two-Time Spin-Pair Correlation Function of the Heisenberg Magnet at Infinite Temperature. lI1.
bce Lattice and Arbitrary Spin

Tohru Morita*
Depavrtment of Physics, Ohio University, Athens, Ohio 45701
(Received 24 March 1972)

The expansion coefficients in powers of time of the two-time spin-pair correlation function are obtained up to
terms of order ¢ 8 for the bec Heisenberg magnet of spin -3 at infinite temperature and up to terms of order ¢6
for the linear, square, sc, and bec Heisenberg magnets of an arbitrary spin at infinite temperature. The result
is applicable to the isotropic as well as the anisotropic Heisenberg magnet where the exchange integrals in the
z direction and in the orthogonal plane are assumed to be different. Analysis of the results are given in sepa-

rate articles.

1. INTRODUCTION

In the first paper of this series,! the numerical
values of the short-time expansion coefficients of the
two-time spin-pair correlation function of the Heisen-
berg magnet of spin § at infinite temperature are
provided up to O(£10) for the linear chain and up to
O(18) for the square and sc lattices. The analysis of
the results obtained by the expansion2.3 have been
found to reproduce the exact solution for the one-
dimensional Heisenberg magnet of finite length of
spin 3,4 and also the results of the computer simula-
tion calculation for the Heisenberg magnet of class-
ical spin,5 and the neutron diffraction data for

Rb Mn F, 5 with a suitable choice of time scale for
different spins.

The only existing Heisenberg magnet of spin § will be

solid He3, which crystalizes in the bee structure. If
one considers magnets with larger spin, one has

Mn F, in which the magnetic ions constitute the bee
structure, and extensive experimental data are avail-
able. For the investigation of these systems, the
short-time expansion coefficients are provided up to
terms of O(#8) for the bee Heisenberg magnet of spin
3 and up to O(t 8) for the linear, square, sc, and bce
magnets of an arbitrary spin in this paper.

The calculation of the short-time expansion coeffic-

ients oé?;")(Rif) in the preceding paper was performed
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in two steps. In the first step, the expansion coeffi-

cients y (221") {diagram IF) for small diagrams are com-
puted. In the second step, the number of different

ways n(R;; diagram IF) by which the small diagrams
with the initial and final sites I and F occur in the
lattices with the difference of the final site and initial
site R;; are obtained. The sum of the products of
those two sets of numbers gives the coefficients 02(21"
(R;) for the lattice under consideration. In order to

obtain the coefficients of the term of O(8) og) (Rif)

for the bece lattice, we need the coefficients yésl) (dia-
gram IF) for the diagram 10 of Fig.1 in addition to
those for diagram 1-9 which are given in Ref. 1. In
Sec. 2 of the present paper, these coefficients for spin
3 are provided, and then the computation of the values
n(R, ; diagram IF) is described. Combining them with

the values of y(227) (diagram IF) given in the previous
paper, we obtain the values of 0;21")(le) for the bee

Heisenberg magnet of spin 3. In Sec.3, -yézln) (diagram
IF) for 2n § 6 are calculated for an arbitrary spin.
Those values are combined with the values of n(R,, ;
diagram IF) given in the preceding paper! and Sec. 2

to give the coefficientsoézl") (R;;) up to O(t6) for the
linear, square, sc, and bece lattices. The numerical
values are provided. Analysis of the results are not
given in the present paper.
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able. For the investigation of these systems, the
short-time expansion coefficients are provided up to
terms of O(#8) for the bee Heisenberg magnet of spin
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in two steps. In the first step, the expansion coeffi-

cients y (221") {diagram IF) for small diagrams are com-
puted. In the second step, the number of different

ways n(R;; diagram IF) by which the small diagrams
with the initial and final sites I and F occur in the
lattices with the difference of the final site and initial
site R;; are obtained. The sum of the products of
those two sets of numbers gives the coefficients 02(21"
(R;) for the lattice under consideration. In order to

obtain the coefficients of the term of O(8) og) (Rif)

for the bece lattice, we need the coefficients yésl) (dia-
gram IF) for the diagram 10 of Fig.1 in addition to
those for diagram 1-9 which are given in Ref. 1. In
Sec. 2 of the present paper, these coefficients for spin
3 are provided, and then the computation of the values
n(R, ; diagram IF) is described. Combining them with

the values of y(227) (diagram IF) given in the previous
paper, we obtain the values of 0;21")(le) for the bee

Heisenberg magnet of spin 3. In Sec.3, -yézln) (diagram
IF) for 2n § 6 are calculated for an arbitrary spin.
Those values are combined with the values of n(R,, ;
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linear, square, sc, and bece lattices. The numerical
values are provided. Analysis of the results are not
given in the present paper.



TWO-TIME SPIN-PAIR CORRELATION FUNCTION. III

2. COMPUTATION

The two-time spin-pair correlation function o®,¢)
is defined by

oR;;,t) = (si(t)sF(0)) — (s")(s/).

The short-time expansion coefficients of o(R, ) is
denoted as ¢ @n(R,):

2.1)

o0
- (=1"
O(Rif, f) = 0(0)(Rif) + nE=1 @1 o )(Rif)t 2n (2.2)
When the exchange interaction is of nearest neighbors
and the values coupling the z — z components and the
orthogonal direction are J; and J;, respectively, 0@»
(R,s) is expressed as follows:

@n) 21 2n-21 (2n)

o (Rif) = l§) Jll JL Gy, (Rif)- (2.3)

For the isotropic Heisenberg magnet where J,| = J
= J,0@2%(R, ) are given by

o@n (Rif) =J 2not(2n) (Rif)’ 2.9

A(R,) = z o2, (2.5)

The coefficients oézl")(Rif) are calculated from the

corresponding expansion coefficients 7(227) (diagram
IF) for the small diagrams by the following formula:

0i"Ry) = X X nlRy;diagram IF)
diagram IF

(2n)

X vy, (diagram IF). (2.6)

The diagrams to be considered in the calculation of
the expansion coefficients for the bec lattice up to

O(¢8) are given in Fig, 1. The values 7(221”) (diagram

IF) for diagrams 1-9 have been given up to 2%z = 8 in

Table II of Ref. 1. The values yz(,zl")(diagram 10, IF)
are given in Table I.

FIG.1
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TABLE 1. The coefficients y2” (diagram IF) and y<2" (diagram IF)
for diagram 10 of Fig. 1. This table supplements Table I of Ref. 1 in
the case of the bee lattice.

diagram IF 7(,8) v(g) vés) Y(48) 7(?
10 1 —78.0 246.0 —522.0 198.0 0.0
10 12 —142.0 ~-264.0 398.0 —276.0 0.0
10 15 504. 0 546.0 —672.0 630.0 0.0
10 22 424.0 248.0  —40.0 216.0 0.0
10 23 ~70.0 140.0 —378.0 168.0 0.0

The quantity n(R,, ; diagram IF) is the total number of
different ways by which the small diagram with the
initial and final sites IF occurs in the lattice with the
difference of the final and initial sites R;. It is cal-
culated by a computer as follows. The sites and
bonds are labeled as in Fig, 1. The topologies of the
diagrams are memorized in the computer, as follows.
For instance, for diagram 4, the following numbers
are memorized in addition to the total numbers of
bonds and sites in the diagram:

- W N e

1 2 0
2 3 0
3 4 0
4 4 3

The first row means that the first bond starts at site
1 and ends at 2; the second row that the second bond
starts at 2 and ends at 3; etc. Except for the first
bond, each bond must start with a site which is con-
nected with one of the preceding bonds. The nonzero
number at the last column means that the corres-
ponding bond ends at a site which has already appear-
ed in the preceding bonds. If that number is n(n = 1),
that bond ends at the same site as the nth bond which
has already appeared. The position of the site 1 is
set at the origin of the lattice. Directions of the first
through #th bond are chosen in z* ways, where z is
the coordination number of the lattice. After each
choice of the direction of the bond, it is checked
whether the ending site is not on any of the sites
which have already appeared or whether it is on the
same site as the »nth bond, according as the final num-
ber on the respective row is 0 or n(z = 1). For each
set of the choice of the directions which gives a
figure in the required topological form, we calculate
the difference R;, of the coordinates on the lattice for
each pair IF of sites of the diagram and add one to
the register for n(R; ; diagram IF). At the end of 2z~
choices,® we get n(R;; diagram IF). The values are
needed for the topologically different cases when the
labeling on the sites and bonds are erased and hence
the resulting numbers are divided by the symmetry
number of the diagram in which the initial and final
sites are distinguished. This program was used in
checking the values in Table III of Ref. 1. The result
for the bece lattice is given in Table II.

By using the values in Tables I and II and the coeffic-

ients yz(zl") (diagram IF) given in Table II of Ref. 1, we

calculate the sums of the products given in (2. 6) and
obtain the values of ofl")(Rif) and o' 2")(Rif) for the bee

Heisenberg magnet of spin 3. They are listed in
Table III.
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TABLE II. The number of different ways n(R,, ; diagram IF) by which
diagrams with the initial and final sites IF occur in the bec lattice
with the difference of the final and initial sites R, = (,m, n).

R, =(0,0,0) Ry, =(1,1,1)

TOHRU MORITA

Rg =(2,0,0),(2, 2,0), (2, 2,2)

diagram IF (0,0,9) diagram IF (1,1, 1) diagram  IF (2,0,0) 2,2,0) (2,2,2)
1 11 8 1 12 1 2 13 4 2 1
2 11 56 2 12 7 3 13 28 14 7
2 22 28 2 21 7 3 31 28 14 7
3 11 392 3 12 49 4 13 24 12 6
3 22 392 3 21 49

3 14 12 5 13 6 1
4 11 168 3 23 49
4 22 56 6 13 184 96 49
4 12 21 6 21 184 96 49
5 11 48 4 21 21 6 15 56 52 42
6 24 184 96 49
6 11 2648 5 12 12
6 22 2648 7 13 168 84 42
6 33 1324 6 12 331 7 31 168 84 42
6 21 331 7 15 168 84 42
7 11 2352 6 14 72 7 24 84 42 21
7 22 1176 6 41 72 7 42 84 42 21
7 33 1176 6 23 331
7 44 1176 6 32 331 8 13 60 30 15
8 11 280 7 12 294 9 13 36 22 12
8 22 70 7 21 294 9 31 36 22 12
7 14 72 9 24 36 6
9 11 288 7 41 72 9 42 36 6
9 22 288 7 23 147 9 35 72 12
9 33 576 7 32 147
9 44 288 7 34 147 10 15 4
7 43 147 10 23 8 2
10 11 24
10 22 36 8 12 35
8 21 35 R, =(3,1,1),(3,3,1),(3,3,3)
9 12 36 diagram IF (3,1,1) (3,3,1) (3,3,3)
9 21 36 3 14 9 3 1
9 14 9
9 41 9 6 14 63 21 7
9 23 72 6 41 63 21 7
9 32 72
9 34 72 7 14 54 18 6
9 43 72 7 41 54 18 6
10 12 9 9 14 8 1
10 21 9 9 41 8 1

R, =(4,0,0),(4,2,0),(4,2,2) R;=1{440),(4,42),(4,49

diagram IF (4,0,0) (4,2,0) (4,2,2) diagram IF (4,4,0) (4,4,2) (4,4,4)

6 15 36 24 16 6 15 6 4 1

3. COMPUTATION FOR ARBITRARY SPIN
The short-time expansion coefficients 0(2")(Rif) is ex-
pressed as follows:

oO(R, ) = (s7sp),

0A(R) = — ([H, s?][H, sF],

o WR,) = ((H,[H, s71I[H, [H, s71D,

o@®(Ry) = — ((H,[H, [H, s7]I[H, [H, [H, s7]1D,

(3.1)

where H is the Hamiltonian of the system. In com-
puting 0(2n (R, ), we first calculate coefficients y (27
(diagram IF)for the small diagrams as shown in Fig.
1. 7(2")(diagram IF) is the sum of all those contri-
butions from

(H,[H, ..., [H,sf]]]sf) (3.2)
involving 2n commutators, which involves at least one
term of H associated with each bond in the diagram,
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where H is the Hamiltonian for the diagram. It is
argued in Ref. 1 that we have a contribution only when
2(m — 1) = 2n for the case of spin %, where m is the
total number of sites in the diagram. It is shown in
the ‘Appendix that it is true for an arbitrary spin. As
a consequence, we have only to consider diagrams
with the total number of sites m < 2,3, and 4 for 2»
= 2,4, and 6, respectively. For instance in the com-
putation of 0(4)(Rif), we first compute the coefficients
y @ (diagram IF) for each of diagrams 1 and 2 shown
in Fig. 1. In the calculation, we use the form of (3.1)
instead of (3. 2). All the nonzero terms of the com-
mutation [H,[H, s?]] for all the sites ¢ in the diagram
are computed and stored in the memory of the com-
puter. All the pairs of such terms with i =Iand i =
F, respectively, are considered. If every bond in the
diagram is used in either of the commutations, the
trace of the product of the two terms is calculated

for spins from % to & and summed to y(zzl") (diagram

IF); for each spin, they are expanded in powers of
S(S + 1)/3 as follows:
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TABLE III, Expansion coefficients ofz")(Ri/-) and og‘;")(Rif) for the bec Heisenberg magnet of spin } at infinite temperature.
Rif 9 ot(Zn) 0'62") QZn) 04211) gﬁ(ﬁn)
(6,0,0) 0 0.25 Q.25 0.0 0.0 0.0
2 4.0 4.0 0.0 0.0 0.0
4 212.0 156.0 56.0 0.0 0.0
6 20140.0 10144.0 7756.0 2240,0 0.0
8 2960756.0 1047076.0 1102688.0 668976.0 142016, 0
(1,1,1) 2 —0.5 -0.5 0.0 0.0 0.0
4 —37.0 —30.0 ~7.0 0.0 0.0
6 —3870.0 —2343.0 -1247.0 —280.0 0.0
8 —568240.0 ~261116.0 —188824.0 —~100548. 0 —17752.0
(2,0,0) 4 6.0 6.0 0.0 0.0 0.0
6 840.0 720.0 120.0 0.0 0.0
8 124096.0 94528.0 20496, 0 9072.0 0.0
(2,2,0) 4 3.0 3.0 0.0 0.0 0.0
6 450.0 360.0 0.0 0.0 0.0
8 72016.0 46256, 0 20188.0 5572.0 0.0
(2,2,2) 4 1.5 1.5 0.0 0.0 0.0
6 232.5 180.0 52.5 0.0 0.0
8 38962.0 23254.0 12432.0 3276.0 0.0
(3, 1,1y 6 —45.0 —45, 0 0.0 0.0 0.0
8 —10794.0 ~8820.0 —1526.0 —448.0 0.0
(3,3,1) 6 —15.0 —15.0 0.0 0.0 0.0
8 —3738.0 —2940.0 —742.0 —56. 0 0.0
(3,3,3) 6 —5,0 -5.0 0.0 0.0 0.0
8 —1274.0 —980.0 —294.0 0.0 0.0
(4,0,0 8 630.0 630.0 0.0 0.0 0.0
(4,2,0) 8 420.0 420.0 0.0 0.0 0.0
(4,2,2) 8 280.0 280.0 0.0 0.0 0.0
(4, 4,0) 8 105.0 105, 0 0.0 0.0 0.0
(4,4,2) 8 70.0 70.0 0.0 0.0 0.0
(4,4,4) 8 11.5 i7.5 0.0 0.0 0.0

72" (diagram IF)

= Dvey) (diagram IF)[S(S + 1)/3]2.  (3.3)
P

The obtained values for y;zl,ng (diagram IF) are given
in Table IV.

y{2") (diagram 1, 11) = — 9,27 (diagram 1, 12)

1 % 225) i i s
B (28 + 1)—2 j=0  j=0  m=-j m=-5 m|=S
i=m=j"

S=m-m =8, -S=m-m=8)

X C(SSj" |mf,m —mYC(SS" |m ,m —m )m C(SSjlm,m —m )j'(i" + 1) — j(j + 1))2~,

where C(j,jyjlm,m —m,) are the Clebsch~Gordon
coefficients.?7 This equation was used to check the co-
efficients y{2» (diagram 1, IF) in Table IV.

For an arbitrary spin, the coefficients oézl")(Rif) are
expanded as follows:

2n) 27
Oy, (Ry) = 2305, 5 (R[S(S + 1)/3]7.
P
oézl,’;)(kv) are calculated by the formula (2. 6) from

¥4, (diagram IF) with the aid of the numbers n(R,;

diagram IF) given in Ref. 1 and the preceding section.
The obtained coefficients for the linear, square, sc,
and bec lattices are listed in Tables V-VIIIL.

{3.5)

For the isotropic Heisenberg magnet, 0 2"(R /)
appearing in (2. 4) is expanded as

o @MR,) :é?gr(’zpn)(gij){s(s + 1)/3]2. {(3.6)

For diagram 1, the complete set of the eigenfunctions
and eigenvalues are well known for the isotropic case
Jy =dJ;. By using the complete set, the coefficients

v2" (diagram 1 IF) can be expressed as

27 C(SSjlmi,m —m{)m]

{3.4)

|
Recalling the relation (2. 5), we have

2
0 @R, = ; a52 (R,).

The values of 0{27)(R, ) are also listed in Tables V-
VI ’

(3.7

4, SUMMARY

The two-time spin-pair correlation function for the
Heisenberg magnet at infinite temperature is expand-
ed in powers of time as Eq. (2. 2). The coefficients
o(2(R,) are calculated from oc2"(R ;) and 05")(}%#)
by (2.3) and (2. 4) for spin 3. The numerical values

of 0;2")(Rif) and oézl")(Rif) for the bee Heisenberg

magnet of spin 3 are computed for 0 < 22 < 8 and
listed in Table IIl. For the case of an arbitrary spin,
the coefficients 0(2”)(Rif) are obtained by (2. 3) and

J, Math, Phys., Vol. 13, No. 9, September 1972
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TABLE IV. The coefficients y(t‘zp

IF denote the initial and final sites.

TOHRU MORITA

) L. @2n) ..
(diagram IF) and v, , (diagram IF) of the terms 2#{S(S + 1)/3]* for the diagrams shown in Fig. 1, where

2n =2
diagram IF P v fi) y (()2;
1 11 2 8.0 8.0
1 12 2 —8.0 —8.0
2n = 4
. @ @ @
diagram IF b Yt.p Yo.p Y2,p
1 11 2 —16.0 —6.4 —-9.6
1 11 3 192.0 153.6 38.4
1 12 2 16.0 6.4 9.6
1 12 3 —192.0 —153.6 —~38.4
2 11 3 64.0 32.0 32.0
2 12 3 —160.0 —128.0 -32.0
2 13 3 96.0 96.0 0.0
2 22 3 320.0 256.0 64.0
2n=6
. ® ©) ( )
diagram IF P Yip y(fp “/zs,)p Yffp
1 11 2 89.6 68.04 + 5/7 —19,32 — 3/7 39.88 + 5/7
1 11 3 —1228.8 —710.52 — 3/7 —236.84 — 1/7 —280.44 — 3/7
1 11 4 5529, 6 3791.44 + 2/7 1263.48 + 3/7 473.68 + 2/7
1 12 2 —89.6 —68.04 — 547 19,32 + 3/7 —39.88 — 5/17
1 12 3 1228.8 710.52 + 3/7 236.84 + 1/7 280.44 + 3/7
1 12 4 ~5529.6 —3791.44 — 2/1 —1263.48 - 3/7 —473.68 — 2/7
2 11 3 —960.0 —384.0 —320.0 —256.0
2 11 4 7680.0 3840.0 2688.0 1152.0
2 12 3 1280.0 —1768.0 256.0 256.0
2 12 4 —13440,0 —9216.0 —3072.0 -1152.0
2 13 3 —320.0 —384.0 64.0 0.0
2 13 4 5760.0 5376.0 384.0 0.0
2 22 3 —2560.0 —1536.0 —512.0 -512.0
2 22 4 26 880.0 18432.0 6144.0 2304.0
3 11 4 512.0 128.0 384.0 0.0
3 12 4 —1792.0 —768.0 —1024.0 0.0
3 13 4 2560.0 1920.0 640.0 0.0
3 14 4 —1280.0 —1280.0 0.0 0.0
3 22 4 6144.0 2176.0 3200.0 768.0
3 23 4 —6912.0 -3328.0 —2816.0 —1768.0
4 11 4 2560.0 1024.0 768.0 768.0
4 12 4 —8960.0 —6144.0 —2048.0 —168.0
4 13 4 3200.0 2560.0 640.0 0.0
4 22 4 26 880. 0 18432.0 6144.0 2304.0
5 11 4 —11792.0 0.0 —1792.0 0.0
5 12 4 2816,0 0.0 2816.0 0.0
5 13 4 —3840.0 0.0 —3840.0 0.0
TABLE V. Expansion coefficients at(i")(Rif) and oézl‘”;(Rif) for the linear chain.
) (2n) (2n) (2n)
Ry 2n b oy %,y 955 05
(0) 0 1 1.0 1.0 0.0 0.0
2 2 16.0 16.0 0.0 0.0
4 2 —32.0 —-12.8 —19.2 0.0
4 3 832.0 627.2 204.8 0.0
6 2 179.2 137.08 + 3/7 —38.64 - 6/7 80.76 + 3/7
6 3 —6937.6 -3725.04 — 6/7 —1625.68 — 2/7 —1584.88 — 6/7
6 4 66611.2 38302.88 + 4/7 21214.96 + 6/7 7091.36 + 4/7
(1) 2 2 —8.0 —8.0 0.0 0.0
4 2 16.0 6.4 9.6 0.0
4 3 —512.0 —409.6 —102.4 0.0
6 2 —89.6 —68.04 — 5/7 19.32 + 3/7 —39.88 — 5/7
6 3 3788.8 2246.52 + 3/1 748.84 + 1/7 792.44 + 3/7
6 4 —42905.6 —27087.44 — 2/1 —12271.48 — 3/7 —3545.68 — 2/7
(2) 4 3 96.0 96.0 0.0 0.0
6 3 --320.0 —384.0 64.0 0.0
6 4 10880.0 9216.0 1664.0 0.0
(3) 6 4 —1280.0 —1280.0 0.0 0.0

J. Math. Phys., Vol. 13, No.
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TABLE VI. Expansion coefficients of?p")(Rif) and 05, (R) for the square lattice.
(2n) (2n) Zny (Zn)
Ry 2n P o, 9 5 Ty p T4y
(0,0) 0 1 1.0 1.0 0.0 0.0
2 2 32.0 32.0 0.0 0.0
4 2 —64.0 —25.6 —38.4 0.0
4 3 3456.0 2534.4 921.6 0.0
6 2 358.4 274.16 + 6/7 —78.28 — 5/7 161.52 + 6/7
6 3 —31795.2 —16667.08 — 5/7 —7859.36 — 4/7 —7266.76 — 5/7
6 4 646 246. 4 340798.76 + 1/7 229822,92 + 5/7 75623.72 + 1/7
(1,0 2 2 -8.0 —8.0 0.0 0.0
4 2 16.0 6.4 9.6 0.0
4 3 -1152.0 —921.6 —230. 4 0.0
6 2 —89.6 —68.04 — 5/7 19.32 + 3/7 —39.88 — 5/7
6 3 8908.8 5318.52 + 3/7 1772.84 + 1/7 1816.44 + 3/7
6 4 —231321.6 —142287.44 — 2/7 —70127.48 — 3/7 —18905.68 — 2/7
(1,1) 4 3 192.0 192.0 0.0 0.0
6 3 -640.0 —768.0 128.0 0.0
6 4 51200, 0 44032.0 7168.0 0.0
(2,0 4 3 96.0 96.0 0.0 0.0
[ 3 —320.0 --384.0 64.0 0.0
6 4 27520.0 22016.0 5504.0 0.0
2,1) 6 4 —3840.0 —3840.0 0.0 0.0
(3,0 6 4 —1280.0 —1280.0 0.0 0.0
TABLE VI. Expansion coefficients at(,i")(Ri/) and a(zzl'fz(Rif) for the sc lattice.
(2n) {2n) (n) 2n
Ry 2n b 0. 9. p Opp 04';
06,0,0) 0 1 1.0 1.0 0.0 0.0
2 2 48.0 48.0 0.0 0.0
4 2 —96.0 —38.4 —57.6 0.0
4 3 7872.0 5721.6 2150.4 0.0
6 2 537.6 412.24 + 2/7 —117,92 — 4/7 243.28 + 2/7
6 3 ~74572.8 —38825.12 — 4/7 —181701.04 — 6/7 —17044.64 — 4/7
6 4 2334873.6 1190109.64 + 5/7 865438.88 + 4/7 2179323.08 + 5/7
(1,0,0) 2 2 —-8.0 —8.0 0.0 0.0
4 2 16.0 6.4 9.6 0.0
4 3 —1792.0 —1433.6 —358.4 0.0
6 2 —89.6 —68.04 — 5/7 19.32 + 3/7 —39.88 — 5/7
6 3 14028.8 8390.52 + 3/7 2796.84 + 1/7 2840.44 + 3/7
6 4 —575385.6 —345551.44 — 2/7 —183279.48 — 3/7 —46 553. 68 — 2/7
(1,1,0) 4 3 192.0 192.0 0.0 0.0
6 3 —640.0 —768.0 128.0 0.0
6 4 84480.0 69632.0 14848.0 0.0
(1,1,1) 6 4 —7680.0 —7680.0 0.0 0.0
(2,0,00 4 3 96.0 96.0 0.0 0.0
6 3 —320.0 —384.0 64.0 0.0
6 4 44160.0 34816.0 9344.0 0.0
(2,1,0) 6 4 —3840.0 —3840.0 0.0 0.0
(3,0,0) 6 4 —1280.0 —1280.0 0.0 0.0
@n @2n
(2. 4) and (3.5) and (3. 6) from O p (R,.f) and 021,p(Rif). ((H,[H,...,[H, sF]""* 1]s%) (A1)

The numerical values of these coefficients are cal-
culated for 0 < 2n < 6 for the linear, square, sc,
and bcce lattices and listed in Tables V—VIIIL.
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APPENDIX: DIAGRAMS CONTRIBUTING TO
ORDER 27

The value y@2#® (diagram IF) for a diagram shown in
Fig.1 is the sum of all those contributions from

involving 2n commutators, which involve at least one
term of H associated with each bond in the diagram.
Here H is the Hamiltonian for the diagram. In this
appendix, we prove that y 2# (diagram IF) can be non-
zero only when

2(m — 1) < 2n, (A2)

where m is the total number of sites in the diagram.

Before taking commutators, operator s is associated
with site / and operator unity with all the other sites.
By taking commutation with H, the operator associa-
ated to each site becomes a product of a number of
spin operators; e.g., a product of three operators like
sisis? for site 1. Initially we have only one spin

J. Math, Phys., Vol. 13, No. 9, September 1972
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TABLE VIIL. Expansion coefficients o,y (R,) and 02" (R,,) for the bec lattice.
@n) ©ny (2n)

Ry 2n P 0, 96.p Ogp Of;)
(0,0,0) 0 1 1.0 1.0 0.0 0.0

2 2 64.0 64.0 0.0 0.0

4 2 ~128.0 —51.2 768 0.0

4 3 14080.0 10188.8 3891.2 0.0

6 2 716.8 549,32 + 5/7 —157.56 — 3/7 324.04 + 5/7

6 3 ~135270.4 —70199. 16 — 3/7 ~34151.72 — 1/7 ~30918.52 — 3/7

6 4 5685 452. 8 2868861.52 + 2/7 2124670.84 + 3/7 691919, 44 + 2/7
(L,1,1) 2 2 8.0 -8.0 0.0 0.0

4 2 16.0 6.4 9.6 0.0

4 3 —2432.0 ~1945.6 —486. 4 0.0

6 2 —89.6 ~68.04 — 5/7 19.32 + 3/7 ~39.88 — 5/7

6 3 19148.8 11462.52 + 3/7 3820.84 + 1/7 3864.44 + 3/7

6 4 ~1065881.6 —644559. 44 — 2/7 ~334831.48 — 3/7 86 489,68 — 2/7
(2,0,0) 4 3 384.0 384.0 0.0 0.0

6 3 —1280.0 —1536.0 256.0 0.0

6 4 220160.0 190 464. 0 29696.0 0.0
(2,2,0) 4 3 192.0 192.0 0.0 0.0

6 3 —640.0 ~768.0 128.0 0.0

6 4 117760.0 95232.0 22528.0 0.0
(2,2,2) 4 3 96.0 96.0 0.0 0.0

6 3 —320.0 ~384.0 64.0 0.0

6 4 60800.0 47616.0 13184.0 0.0
(3,1,1) 6 4 ~11520.0 ~11520.0 0.0 0.0
(3,3,1) 6 4 ~3840.0 ~3840.0 0.0 0.0
(3,3,3) 6 4 ~1280.0 —1280.0 0.0 0.0

operator s. We notice that (i) the operator for each
site other than / becomes s?,s*,or s- when it is in-
volved in a commutator for the first time, and (ii) at
each commutation the total number of the spin opera-
tors for all the sites in the diagram is increased by
one. If there are m sites in the diagram under con-
sideration and a term of the Hamiltonian to each of
the bonds in the diagram is required to occur at least
once, a nonvanishing contribution is expected only

when a product of at least two spin operators is asso-
ciated with each site excluding F and at least one
spin operator with site F. In order to get such a pro-
duct of at least 2(m — 1) + 1 spin operators for the
whole diagram, we need at least 2(m — 1) commuta-
tions starting from the initial one spin operator sf.
Hence we have a contribution only when the total
number of commutations 2# is equal to or greater
than 2(m — 1), namely (A2).

* Semior Foreign Scientist of National Science Foundation and Ohio
University (1971-1972). Present address: Department of Applied
Science, Faculty of Engineering, Tohoku University, Sendai, Japan.

1 T, Morita, J. Math. Phys. 12, 2062 (1971).

2 T.Morita, J. Math, Phys, 13, 714 (19'72); T. Horiguchi and T. Morita,
in preparation.

3 R.A.Tahir-Kheli and D. G. McFadden, Phys. Rev. 182, 604 (1969);
B 1,3649 (1970). In these papers, Tahir-Kheli and McFadden
made a number of analyses with the aid of the expansion including
terms up to O(¢ 4) for an arbitrary spin.

J. Math. Phys., Vol. 13, No. 9, September 1972

4 F,Carboni and P. M. Richards, Phys. Rev. 177, 889 (1969).
C.G.Windsor, in Neutvon Inelastic Scattering, Vol.l (IAEA,
Vienna, 1968), p. 83.

6 In actual computation, we can save the computer time by fixing
the direction of the first bond to one of z directions and using the
symmetry property of the lattice to get the final values of n(R ;
diagram IF),

7 E.g.,M.E.Rose, Elementary Theory of Angular Momentum
(Wiley, New York, 1957).

o



Energy of Gravitational Shock Waves

David C. Robinson
Department of Mathemalics, King's College, London, England

and

Jeffrey Winicour
General Physics Reseavch Laboralovy, Aerospace Reseavch Laboratories, Wright-Patierson AFB, Ohio 45433
(Received 27 January 1972)

A model of a gravitational shock wave is developed using the null hypersurface approach to the initial value
problem. Interior to the shock front is a flat Minkowski region. This is joined to a shear-free but curved ex-
terior. The geometric properties of the shock front determine the physical properties of the wave. The gravi-
tational energy measured at null infinity is a functional of the 2-geometry of the shock front. The positive
energy conjecture reduces to a simple statement concerning the geometry of 2-surfaces. Explicit numerical
calculations carried out for various 2-surfaces have led to positive energy. However, no inequality is known to

show that the energy is positive for all 2-surfaces.

1. INTRODUCTION

In this paper, we investigate the energy content of a
simple model of a gravitational shock wave. This
work has been motivated by recent attempts to answer
the question,“Can the energy of an asymptotically

flat space—time be negative ? 175 In the weak field
case, this question has been decided in favor of posi-
tive energy.2.4 However, these efforts have failed to
produce any conclusive results in the case of strong
gravitational fields.

Here we treat the energy as formulated in the null
infinity description of asymptotically flat space-
times.6~9 Qur program is from the point of view of
the characteristic initial value problem analogous to
the treatments of Brill10 and of Arnowitt, Deser, and
Misner!! based upon Cauchy data on a space-like
hypersurface. These latter space-like models have
established that the Hamiltonian energy measured at
spatial infinity is positive for the special cases in
which the Cauchy data can be classified in terms of
the canonical formalism as either “axially symmetric
pure coordinate” or “pure momenta.”

We have not been able to draw any such definite con-
clusions from our model. The energy content of the
gravitational shock wave depends upon the geometri-
cal properties of a two-dimensional surface char-
acterizing the shock front in a way which does not
make the sign of the energy evident. We have numeri-
cally calculated the energy for several explicit
choices of shock front geometry. All these calcula-
tions have led to positive energy. Hence the question
of the possibility of negative energy remains unre-
solved. However, the shock wave model does furnish
valuable physical insight into the properties of gravi-
tational energy.

Our signature for the space-time metrie is minus
two. Greek indices range from zero to three, and the
four-dimensional covariant derivative is denoted by
V.

2. MODEL OF A GRAVITATIONAL SHOCK WAVE

Asymptotically flat solutions of Einstein's vacuum
field equations can be specified by characteristic
initial value data on a null hypersurface N of topo-
logy S2 X E1 which extends from an interior cross-
over region B to a sphere at future null infinity.12 In
the interior region of N the complex shear, which can
be given freely, forms the complete characteristic
initial value data. To complete the data, additional in-
formation must be given about the geometry of the
cross-over region B, We shall construct a model of
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a gravitational shock wave by specifying the data for
N and B in an especially simple way which guaran-
tees that the data generate a nonsingular asymptoti-
cally flat space-time.

In order to do this it is convenient to introduce a null
polar coordinate system with retarded time x0 = u,
affine parameter along the null rays x1 = », and ray
labels xA(A = 2, 3). The line element takes the form

ds? = goodu? + 2 g4 dudr + 2 gy ,dudx

+ ggdxAdxB,  (2.1)
and the contravariant form of the metric satisfies the
algebraic conditions
gOO — gOA: O’ gOl — 1’ and gABgBC — éé_
In the formulation of the characteristic initial value
problem for the vacuum Einstein field equations, the
null hypersurface constraint equations take the form

Ryy=p11+3(p)2=0, (2.2)
Ry, = 38, e Merg! BY1+3b1a=0, (2.3)
and
84PR,p = @R + e?/2[er2(3511 p | +p )],
+ ng,l;B 4 %gABglA '1g13'1
+ (g8 p1)p=0 (2.4)

Here p = In(— g), @R is the Ricci scalar corres-
ponding to the 2-surface metric g,,, the semi-colon
indicates two-dimensional covariant differentiation
with respect to g,, and a comma indicates partial
differentiation.

Once the shear is specified on the initial surface N
given by u = u, these equations can be integrated to
give a solution of Einstein’s equations in terms of the
integration constants that arise. These integration
constants are determined by additional data that must
be given at the interior cross-over region B. It is
important and nontrivial o prescribe data at B so as
not to produce any singularities in the 4-geometry of
space~time. We carry this out in the following way.

We let the data on the inner portion of N correspond
to flat space data; that is the inner portion of ¥
corresponds to a shearing null hypersurface embed-
ded in Minkowski space. An example is the null
hypersurface interior to an ellipsoid. Next we choose
some two-dimensional cross section Z, of this inner
portion of N such that %, lies exterior to the cross-
over region B. For further simplicity we take I, to
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be embedded in a surface of constant Minkowski time.
We fix the affine parameter » so that Z, is given by
v = 1 and complete our data by demanding that the
shear vanish for v > 1. As long as the divergence p
of the null rays is positive at Z;, the null hypersur-
face N will extend to future null infinity without de-
veloping caustics and, since the shear is zero ex-
terior to X, the solution will be asymptotically flat.
Unless the flat inner portion of N is a null cone its
shear will not vanish and there will be a discontinuity
in both the shear and curvature across Z,, the shock
front of an imploding spherical gravitational wave.13
However, these discontinuities are of the allowable
type which may be removed by a smearing of the
region Z, until the usual continuity conditions of the
Lichnerowicz type are satisfied.14 The energy of the
shock front varies continuously under such a smooth-
ing operation so that these discontinuities may be con-
sidered to be nonpathological. Setting the data this
way has also ensured that there are no singularities
associated with the cross-over region B, since space-
time is flat in the neighborhood of B.

In order to calculate the energy of the shock wave we
first integrate the constraint equations in the shear
free region 1 < » = ., Since the shear vanishes in
this region, we have

8as1 = 38anb - (2.5)

The boundary conditions at Z, imply that at v = 1,

8ap = Maps (2.6)

where £, , is the metric of the 2-surface Z, and that
alsoatr =1,

g8 =glB =0
and ’
%gllp’l tpo=— %P,l-

Equations (2. 7) and (2. 8) follow from the fact that 2,
is embedded in a flat 3-surface of constant time in
Minkowski space.

From Egs.(2.2),(2.5), and (2. 6) it follows that

(2.7)
(2.8)

gap=|1+ @ — 1)B)2h,p> (2.9)
where B(x4) is an arbitrary function whose geometri-
cal significance can be seen by calculating the diver-
gence of the null rays on N. If [, = u ,then the
divergence p is given by

o= %Vul#. (2.10)
By virtue of Eqgs. (2.9) and (2.10) we have
p=B[l+ @ — 1B, (2.11)

so that at » = 1, p = B. Hence to ensure that N ex-
tends to future null infinity without developing caus-
tics exterior to X, we require that B be a smooth
posilive function so that p is continuous and posifive
at Z.

By using Eqs.(2.7) and (2. 9), the constraint Eq. (2. 3)
can be integrated to give
g8 = hABB ,B-4[(r — 1 + B 1)2

—2B-1(r — 1 + B-1)3 — §B2],  (2,12)
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We can now integrate the remaining constraint Eaq.
(2. 4); but as we shall see in the next section this is
unnecessary as we already have sufficient informa-
tion about the metric on N to calculate the energy at
the retarded time u,.

3. THE ENERGY OF THE WAVE

We shall use the asymptotic symmetry linkages to
calculate the energy of the shock wave at the retard-
ed time #,.779 These quantities are functionals of
the spherical cross-sections £ of N and may be con-
veniently written?

Lg(E) = — f dSl"an,,ﬁf‘.
Here
ds = (4n) Y(— g)/2dx2dx3,

(3.1)

and n# is an arbitrary vector field on Z which satis-
fies I#n, = — 1. The Bondi—Metzner-Sachs sym-
metry descriptors £# are determined asymptotically
by applying Killing's equations at future null infinity
and are then propagated along N by the projection of
Killing's equations

LYGER) = 31KV, tp. (3.2)
The total energy of a system is usually calculated by
evaluating the linkage which corresponds to an asymp-
totic time translation and then taking the limit to
future null infinity 9+

E = 1lim L.(2), (3.3)
ozt

where Z* = N N g+, When the shear is zero, however,
the values of the linkages are independent of the par-
ticular slice T on which they are evaluated.15 We
shall use this fact to calculate the energy by evaluat-
ing at 2, the linkage which corresponds to anasymp-
totic time translation. Hence for this model

E = L (Z). (3.4)
In the null polar coordinate system given by Eq. (2.1)
the propagation equations (3. 2) take the form

£0 L=0, (3.5)

p &L =2glAL0 ,— 284 —p EO, (3.6)
and

gAll_____gABgo B* (3.7)

By using Egs. (2. 2), (3. 5), and (3. 6) it is a straight-
forward matter to show that at» = 1:

— v = —(p )Pyt 281 4] 180
— APy LEA 4y — 58— a[Pg + 2811 1]80.
(3. 8)

We can rewrite this expression by using Eq. (2. 4),
Eq. (3. 7), and the boundary conditions given by Egs.
(2.7) and (2.8). We obtainatr =1

— npluvyg# = (p’l)—l QR0 — StA o 1 ,150

+ 2(p )y LE0A , — (1)1 y;084  (8.9)

The asymptotic form of the time translation is given
by
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£k ~BVVHy, (3.10)
where V is the conformal factor relating the metric
of Z to the metric of the unit sphereg,5,

hap = — V2q,5. (3.11)
(The minus sign arises because h,, is negative de-
finite and g, is positive definite.) Note that although
this form for £# could be found by solving Killing's
equations asymptotically, it can also be obtained dir-
ectly from known results8 by recalling the behavior
of asymptotic Killing vectors under conformal trans-
formations and by noting from Eq. (2. 9) that asymp-
totically

Lap ~ — y2R2 VZqAB'

By using Egs. (2. 9), (2.12), and (3. 10), we can inte-
grate Egs.(3.5) and (3.7) to find £% and £4 atr =1,
We are then in a position to evaluate the energy from
Eq. (3. 4). It follows that

E = §; [{®R — 3B2 — $(InB),,(InB):4

+ z(InB):4 ,|vdS. (3.12)
Since Z,, is embedded in a hypersurface of constant
Minkowski time and B is equal to the divergence of N
Z,, we can use a result of Kantowskil€ to identify B
with the mean curvature of Z; (up to a constant deter-
mined by convention). In this way the energy of our
model becomes a functional of the 2-geometry of a
smooth (say C5) surface with spherical topology em-
bedded in flat Euclidean 3-space.

Therefore in the remainder of this paper we shall
regard the problem of calculating the energy of the
gravitational shock wave as a problem in the theory
of 2-surfaces embedded in flat 3-space. For this
reason it is convenient to introduce a positive-de-
finite metric 7,, to describe the intrinsic geometry
of the 2-surface 2,

Nap = — Map,

so that using Eq. (3. 11), the line element may be
written as

ds? =n,pdxAdxB = V2q, dxAdx 8, (3.13)

We then rewrite the energy expression Eq.(3.12) in
terms of the Gaussian curvature

K=3@R
and the mean curvature!?
H=2B>0
of a surface embedded in flat 3-space to obtain
E=3¢[K— iH2 — (InH)4 ,
+ 3(InH),,(InHyA]vdS, (3.14)

where the colon represents covariant differentiation

with respect to the metric 7,5. The conformal rela-

tionship to the unit sphere given in Eq. (3. 13) implies
that

ds = v2dQ,
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where dQ is the element of solid angle on the unit
sphere, and18

V2K =1—VV:4 , + VAV, ,. (3.15)
The sign properties of the energy of this model
clearly cannot be determined at a glance. If the
energy of the gravitational field could indeed become
negative, then the present model would seem to offer
a reasonable possibility for constructing a negative
energy space-time. The energy would have been zero
if we had not set the shear equal to zero at Z,, but
rather allowed N to extend to future null infinity as a
shearing null hypersurface embedded in Minkowski
space. However, elimination of the shear exterior to
Zg introduces a pulse of Weyl curvature at Z, which
make the energy nonzero. Considerations of curved
space geometrical optics13 indicate that the presence
of shear causes positive focussing and, in that sense,
simulates the effects of positive mass, This heuristi-
cally suggests that the elimination of shear from the
Minkowski null surface might lead to negative energy.
Indeed, the first two terms of the integrand in Eq.
(3. 14) may be written as

K —gH2 = — 4(k) — ky)2 = — A2, (3.16)
where 2, and k, are the two principle curvaturel? of
Zg, 50 that A is a measure of the astigmatism or
shearl6 of the null rays of N interior to Z,. We see,
however, that although the contribution of A to the
energy is negative definite, the contribution from the
term

3(InH), ,(InH):A

(3.17)

due to inhomogeneities in the mean curvature is posi-
tive definite. On the other hand, the term

—_— (lnH):A a

has no definite sign. The weighting of these terms by
the conformal factor V adds to the difficulty in deter-
mining the sign of the integral. The remainder of
this paper will be devoted to this problem.

4, THE WEAK FIELD ENERGY

It is known that the energy of a weak gravitational
field evaluated on a good null cone is positive de-
finite.4 In fact, this energy, considered as a functional
of the geometry, has a strict local minimum at flat
space. Although the energy of the present model is
not evaluated on a good cone, it is reasonable to sup-
pose that a good cone does exist in the domain of de-
pendence of N in the flat space limit, so that in this
limit the energy evaluated at this later retarded time
must be positive. It would then follow from the
Bondi-Sachs19:20 mass loss theorem that the weak
field energy evaluated at N was positive. In this sec-
tion, we shall show that the weak-field energy of our
model does indeed have these properties.

In our model, flat space~time corresponds to the
choice of a metric sphere for Z,. In this case N isa
null cone and the energy is zero. We calculate the
weak field energy by evaluating the functional E(Z)
for a two-dimensional surface with spherical topology
in Euclidean 3-space which differs from a metric
sphere by a small amount. Because of the scaling
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behavior of the energy,5 it is sufficient to consider
perturbations of the unit metric sphere.

The use of spherical polar coordinates in E3,x1 =R,
x2 = 6,x3 = ¢, enables the representation of such a
surface by the simple equation
R =1+ €¥(8, ¢), (4. 1)
where € is a small parameter, and ¥ generates the

first order deformation of the unit sphere. Since the
line element of E3 takes the form

ds2 = dR2 + R2(d 62 + sin?6d¢?), (4.2)
the line element of the 2-surface is given by

ds? = (1 + e¥)2(d62 + sin20dp2) + O(e2). (4.3)
Hence the conformal factor is given by

V=1+ e¥ + O(e2?), (4.9)

In order to calculate H and K we introduce in E3 an
orthonormal triad [n?, ¢ ,'], where »’ is the unit nor-
mal to Z, and { ,* are unit vectors tangential to the
surface. In spherical polar coordinates we have

n; =08l —e¥ 48,4+ 0(e?), (4. 5a)

kg =R lqg 40,1+ €, ¥ ,)+ O(e2), (4.5b)
where ¢, 4 form an orthonormal dyad on the unit
sphere, the conventional choice in polar coordinates
being g, 4 = (1,0) and ¢, 4 = (0, 1/sing). Calcula-
tion of the second fundamental form then gives

Hyp) = Y4y () Dym; = Bppf1 — €¥)
— ¥ cpq %am P + O(e?), (4.6)

where D represents covariant differentiation in E3,
and the semicolon represents covariant differentia-
tion on the unit sphere. We may now calculate the
curvature invariants from17

H = Tr{H, ] (4.7a)
and

K = det[H( 4 ). (4. o)
The calculation of the energy integral is facilitated
by the use of a complex dyad

(4 = (2y 1/2[p, A 4+ 0, (4] (4. 8)
and the use of the differential operator 5.15 The
action of the operator & is defined by relations of the

type

5(Napcq?qPqc) = ‘/577.430;1) q4q3q 4>, (4.9)
where g4 = — q(5 418, We have
§(AB) — ((A)(B) 4+ [(A) (B)
€(AB) = (L (W[ (B — [ (A (B (4.10)
G(AB)I’ (A)L (B) = 0,
so that
H=08WBH ,_ =2— 2V — €55t ¥ (4.11)
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and
K — iH? = 3¢ (APe CDH 4, H(pp) — $H?

= — ;€252¥ 5*2y, (4.12)
By using the commutation relation for spin-weight s
quantities,

(8*5 — 35™)m = 297, (4.13)
and by using the properties of 5 for integration over
the unit sphere, it is straightforward to show that

E(Z,) = 5€2 §[252¥ 5*2¥
+ 35(¥ + 3557 )X (¥ + $55%¥)])dQ

+ O(e3). (4.14)

Hence the lowest-order term is quadratic in € and
positive definite.

5. AXIALLY SYMMETRIC CALCULATIONS

The energy integral in Eq. (3. 14) is in general quite
difficult to calculate numerically because of the pro-
blem of determining the conformal factor V. How-
ever, in the axially symmetric case an explicit ex-
pression for the conformal factor may be readily
obtained. In this case, the surface I, is generated by
revolution of a curve in E3,

To set up an axially symmetric formalism for num-
erical computation, we introduce cylindrical coordi-
nates (p, z, ¢) so that the line element of E3 is

ds? = dp? + dz2 + p2dg?2.

We represent the generating curve by p = f(2), where
z is the axis of revolution. The line element in Z is
then given by

ds? = (1 + f'2)dz22 + f2d¢2, (5.1)
where the prime denotes partial differentiation with
respect to z In this coordinate system, it is straight-
forward to obtain

K=—f"/f(1+f'2), (5. 2a)
H=1+f2-—ff"/fQ1+f2)32, (5. 2b)

d z
" V=7 coshf0 [k + f-1(1 + £'2)1/2]dz. (5.2¢)

The constant  reflects the freedom of the group of
conformal transformations of the sphere onto itself.
This group is in correspondence with the 6-para-
meter Lorentz group.2! Because of axial symmetry,
only Lorentz transformations in the z direction are
involved. All our calculations are for surfaces which
are symmetric under reflections of the z axis about
2z = 0. For this reason we take £ = 0 so that the
energy corresponds to the rest energy of the system,

We normalize our generating curve to range between
endpoints at z = — 1 and z = + 1, with reflection sym-
metry about z = 0. We write 4 = f(2), B= f'(2),

C =f"(z), D =f"(z),and E = f""(z). By using Eqgs.
(5. 1) and (5. 2), the energy integral in Eq. (3. 14) re-
duces to

1
E= [ dN coshfoz dz'(1 + B2)V2/A, (5.3)
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where

1 ( AC )2
N=——r——— 1+ —
8(1 + B2)1/2 1+ B2
__1_B< 3A2BC2  A(AD + BC) _ B )
2 \(1 + B2)5/2 (1 + B2)3/2 1+ B2)1/2
+ 242
3(1 + B2)1/2(1 + B2 — AC)?
y (3ABCZ B(1 + 32))2
1+ B2
_ A2(1 + B2)1/2 <_ 15AB2C3 |
2(1+ B2 ~AC) \ (1+B2)3
+ 3(AC3 + B2C2 + 3 ABCD)
(1 + B2)2
+ 2B2C — AC? ~ ABD — A%E | 2B2 —AC>'
A(l + B2) A2

—AD — BC —

(5. 4)

Equation (5. 3) expresses the energy in a form suit-
able for numerical calculation. The smooth curve
f(z2) determines the functions A, B,C,D,E,and N
through straightforward algebraic and differential re-
lations. The double integral in Eq. (5. 3) can then be
numerically integrated. Some care is necessary in
treating the endpoint z = 1. Because f(z) is a smooth
closed curve, its slope at 2 = 1 must be infinite. This
singularity is of course a purely formal one. It does
not lead to any difficulties in the numerical calcula-
tion as long as the terms are properly grouped.

A. Ellipse

Our first calculations were for a one-parameter
family of ellipsoids. We represent the generating
ellipse by the function

f = a(l - 22)1/2;

where the parameter a ranges between 0 and ©, The
case & = ay = 1 generates the sphere. The prolate
case is given by a < 1 with a = 0 giving the limit of a
thin rod. The oblate case is given by ¢ > 1 with a —
© giving the limit of a thin disc.

In the case of the ellipsoid, we can analytically inte-
grate Eq. (5. 2¢) to obtain an explicit expression for
the conformal factor. Putting

P =1+ 22(a2 — 1),
We find for a < 1,
V = za(az + P1/2) expla-1(1 — @2)1/2
x sin~1[z(1 — a2)V/2]} + }a(1 — 22)(az + PV/2)1
x exp{— @ 1(1 — a2)V/2 sin-1[z(1 — a2)1/2]}
and for a > 1,
V = zalaz + P1/2)[z(a® — 1)V/2 + pl/2]-(«?-D¥/a
+ 3a(l — 22)(az + PV/2)-1

X [2(a2 — 1)V/2 + p1/2]|(a®-Da,

The qualitative features of numerical integration of
the energy integral are shown in Fig.1. Ata = ag
corresponding to the sphere, we have
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dE
in agreement with the weak field results of Sec. 4.
The energy then increases monotonically as |a — ag|
increases and becomes infinite at the two critical
values ¢, = 0 or a, = ® at which curvature singulari-
ties arise.

B. Ovals of Cassini

The one-parameter family of surfaces are generated
by the ovals of Cassini?2 described by the function

f={-a—22+[(1-a)?+ 4a22]¥/2} V2 (5.5)
with 0 = a < 1. The shape of these curves for various
values of the parameter a are illustrated in Fig. 2 in
which the solid arrow indicates the axis of revolution.
The case a = a; = 0 generates the sphere [Fig. 2(a)].
For a = a, = 1 the generating curve in the lemni-
scate of Bernoulli [Fig. 2(d}]. In this limit the corres-
ponding surface has a curvature singularity at the
equator. Although these surfaces are qualitatively
very different from the ellipsoids, the numerical cal-
culations for the energy give exactly the same re-
sults shown in Fig. 1.- The energy rises monotonically
from its minimum at the sphere and approaches in-
finity as a 2 a,.

Calculations were also carried out for the ovals of
Cassini for the case in which the axis of revolution
(2 axis) corresponds to the broken arrow in Fig. 2,

In this case, the generating curves can still be des-
cribed by Eq. (5. 5), but now with — 1 < a <0, The
case @ = a; = 0 again generates the sphere; but the
case a = a, = — 1 corresponds to the curve in Fig.
2(b). In this limit, the mean curvature vanishes at the
pole. This provides a limit to the physical reason-
ableness of this case since for values ¢ < — 1 the

E

ﬂ

0

+ »Q

9 Gc

FIG.1. Numerical results for the energy integral
are plotted vs curve parameter,

A
(@) {b)
)
A BN
f .
v N
1
i
{c) (d)
FIG.2. A sequence of four ovals of Cassini are illustrated.
The arrows indicate possible choices of axes of revolution.
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corresponding space-time would not necessarily be
asymptotically flat. The numerical results for the
energy are given as before by Fig.1. The infinite
energy in the limit @ == a, now arises from the flat
spots where H = 0 at the poles and not from curva-
ture singularities.

C. Miscellaneous

Calculations were also made for two additional fami-
lies of surfaces. These surfaces do not shed any
further light on the subject except to show that the
preceding examples were not statistical anomalies.

In the first case, the generating curve is described by
the function

f=(1-22)l/2 _ g1 — 22)

with gy = 0=a< 1= a_. The corresponding surfaces
are only of differentiability class C2 at the poles
(except when @ = 0). Due to axial symmetry, the
curvature is continuous, but not differentiable at the
poles. This leads to a 6-function contribution to the
energy integral from the poles. The integral, however,
still converges except in the limit a = a,.. The
numerical results are again described by Fig.1 ex-
cept for a = a,:

dE

da = 0.

The behavior at the poles invalidates the usual weak
field limit.

In the second case, the function p(z) describing the
generating curve is given in parametric form by

E=0 but

p=(1—p2)1/2(1 — ap2)(1 + a)
z=p[l+ (1 - p?)a(l + a)l],

where — 1= p = 1. For a = g, = 0, the curve is a
circle. For a= a, = 1, a curvature singularity
arises at the poles. We were able to obtain the expli-
cit expression for the conformal factor

(1 ~ap?)
V=S50+a

freaGEe)” om0 ]

The energy integral was calculated using a different
computer program than in the previous examples.
However, the results again turned out to be described
by Fig. 1.

6. DISCUSSION

The calculations of the preceding section constitute
the first explicit determination of the energy of
vacuum gravitational fields from the null hypersur-
face point of view. Their common features exhibited
in Fig. 1 are consistent with the conjecture that the
total energy of a nonpathological gravitational system
must be positive. The positive-definite term (3. 17)
in the energy integral arising from curvature in
homogeneities dominates in the weak field limit over
the negative-definite astigmatism term (3. 16).
Apparently, this headstart is sufficient to keep the
energy positive throughout the strong field domain.
However, we have not exhausted a wide enough spec-
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trum of allowable surfaces to warrant any firm con-
clusions. In particular, our calculations are limited
to surfaces having axial symmetry, The chief dif-
ficulty in extending these calculations to the case of
no symmetry is the problem of determining the con-
formal factor V. This is also the chief obstacle to
formulating analytical arguments to determine the
behavior of the energy.

To emphasize the importance of the role of the con-
formal factor, let us consider the functional E *(Z)
obtained by setting V = 1 in the energy integral Eq.
(3.14). Let the surface Z be a cylinder to whose ends
arbitrary end caps are smoothly joined to produce
spherical topology.

The contribution to the functional E* is strictly nega-
tive from the cylindrical region of Z where the mean
curvature is constant, No matter how large a positive
value the end caps might contribute, the total value of
E* may always be made negative by lengthening the
cylindrical region while keeping the same end caps.

For the energy functional E(Z) the situation is quite
different. As the cylinder is lengthened, the con-
formal factor, which is a global quantity, weights the
end caps more heavily so that what results in the
limit of infinite length is not obvious. We have exa-
mined this limit for end caps generated bly the
Cassini ovals given in Eq. (5. 5) with @ = 3. For this
choice of parameter q, the shape corresponds to Fig.
2b with the solid arrow indicating the axis of revolu-
tion. The equatorial radius f(0) = + matches the
radius of the coaxial cylinder to which the equators
of the ovaloids are joined at each end. The surface is
of differentiability class C3 at the join; but the curva-
ture invariants are of class Cl. Accordingly, the join
does not make a contribution to the energy integral.
For a cylinder of length 2/ the conformal factor Eq.
(5. 2¢) is given by

V, =% cosh3z for |z]| =1,
V, = W cosh3l + (W2 — F2)/2 ginh3!
forl=z=1+1,

where

W(z) = Vol lz| — 1)
and

F(z) = f(lz] = D).

Here Vy(z) and f(z) are, respectively, the conformal
factor and the profile function for the Cassini oval by
itself (I = 0). The energy functional Eq. (3. 14) takes
the form

E, = — 33 sinh3! + E cosh3l + R sinh3l.

The first term is the negative contribution from the
cylinder. In the second term, E is the positive
energy of the Cassini oval without the cylinder; the
factor cosh3! accounts for the displacement along the
axis. The third term is more difficult to interpret,
and its sign is not obvious. However, it is sufficient
to compare the first two terms to understand why the
previous construction which led to negative values
for E *(Z) does not work in such a simple way for
E(Z). The computer calculations for the Cassini oval
with parameter a = 5 give E; ~ 0,1165. Hence the
contribution from the end caps (neglecting the third
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term) overrides the contribution from the cylinder
even in the limit I — o,

The most attractive feature of our shock wave model
is that it reduces the study of gravitational energy to
a study of two-dimensional surfaces. The conjecture
that gravitational energy must be positive reduces to
a simple geometrical statement.

Reduced Enevgy Conjecture. For all smooth sur-
faces Z in Euclidean 3-space with spherical topology
and positive mean curvature, the functional E(Z) de-
fined in Eq. (3. 14) is positive. Furthermore, E(Z) =
0 implies that Z is a metric sphere.

Although many inequalities concerning the global dif-
ferential geometry of 2-surfaces are known,23 they
bear no similarity to the above conjecture. Resolu-
tion of this conjecture would be a major step toward
understanding the properties of strong gravitational
fields.
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